You are here

Microbial Induced Degradation in Synthetic Fiber Reinforced Concrete Samples in South Florida

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Synthetic fiber reinforced concrete sample sets were exposed to two different environments. One set, of six samples, was exposed to filtered seawater in the lab with wet and dry cycles, while the other set of samples was exposed, on a barge, to the marine environment, in the intracoastal waterways, at SeaTech. The samples were exposed for 8 months, and then removed for experimental and mechanical testing. Upon removal, the barge samples were photographed to observe surface organisms that were attached to each sample. The barge samples, after cleaning, were then exposed to UV light to observe surface bacteria. The barge samples were also taken to Harbor Branch facility for DNA testing, and then sent in for sequencing. This sequencing was used to identify the organisms that were present inside the concrete samples. An Indirect Tensile Strength Test, IDT, was performed on both sets of samples to observe the first crack, max load, and fracture toughness of each sample. The Barge samples had a lower first crack, max load, and fracture toughness, which means that it took less force to break these samples, than the Seawater samples. As the fiber content increased, the Seawater samples grew stronger, while the Barge samples grew weaker. Also, as the fiber content increased, the biodiversity found on the surface of the Barge samples increased as well.
Title: Microbial Induced Degradation in Synthetic Fiber Reinforced Concrete Samples in South Florida.
73 views
32 downloads
Name(s): Parkinson, Jacqueline Cecile, author
Presuel-Moreno, Francisco, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 61 p.
Language(s): English
Abstract/Description: Synthetic fiber reinforced concrete sample sets were exposed to two different environments. One set, of six samples, was exposed to filtered seawater in the lab with wet and dry cycles, while the other set of samples was exposed, on a barge, to the marine environment, in the intracoastal waterways, at SeaTech. The samples were exposed for 8 months, and then removed for experimental and mechanical testing. Upon removal, the barge samples were photographed to observe surface organisms that were attached to each sample. The barge samples, after cleaning, were then exposed to UV light to observe surface bacteria. The barge samples were also taken to Harbor Branch facility for DNA testing, and then sent in for sequencing. This sequencing was used to identify the organisms that were present inside the concrete samples. An Indirect Tensile Strength Test, IDT, was performed on both sets of samples to observe the first crack, max load, and fracture toughness of each sample. The Barge samples had a lower first crack, max load, and fracture toughness, which means that it took less force to break these samples, than the Seawater samples. As the fiber content increased, the Seawater samples grew stronger, while the Barge samples grew weaker. Also, as the fiber content increased, the biodiversity found on the surface of the Barge samples increased as well.
Identifier: FA00013251 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Fiber-reinforced concrete
Florida
Concrete--Deterioration
Microbes
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013251
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.