You are here

Free Swimming Soft Robotic Jellyfish with Adaptive Depth Control

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
This thesis is encompasses the design, construction, control and testing of an improvement upon the novel soft robotic Jennifish platform. The advancement of this platform includes the addition of light and depth sensors as well increasing the separation of tentacle groups from two to three sets. The final vehicle model consists nine PneuNetstyle actuators divided into three groups of three, molded around a machined Delrin pressure vessel. With a 12V submersible impellor pump connected to each actuator grouping, propulsion is created by the filling and emptying of these tentacles with surrounding ambient water. The Jellyfish2.0 is capable of omnidirectional lateral movement as well as upward driven motion. The vehicle also has a temperature sensor and IMU as did the previous of this platform. Qualitative free-swimming testing was conducted, recorded and analyzed as well as quantitative inline load cell testing, to create a benchmark for comparison with other jellyfish like robots.
Title: Free Swimming Soft Robotic Jellyfish with Adaptive Depth Control.
113 views
65 downloads
Name(s): Luvisi, Daniel, author
Engeberg, Erik, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 132 p.
Language(s): English
Abstract/Description: This thesis is encompasses the design, construction, control and testing of an improvement upon the novel soft robotic Jennifish platform. The advancement of this platform includes the addition of light and depth sensors as well increasing the separation of tentacle groups from two to three sets. The final vehicle model consists nine PneuNetstyle actuators divided into three groups of three, molded around a machined Delrin pressure vessel. With a 12V submersible impellor pump connected to each actuator grouping, propulsion is created by the filling and emptying of these tentacles with surrounding ambient water. The Jellyfish2.0 is capable of omnidirectional lateral movement as well as upward driven motion. The vehicle also has a temperature sensor and IMU as did the previous of this platform. Qualitative free-swimming testing was conducted, recorded and analyzed as well as quantitative inline load cell testing, to create a benchmark for comparison with other jellyfish like robots.
Identifier: FA00013234 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Robotics--Design and construction
Soft robotics
Coral reef ecology
Coral reef monitoring
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013234
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.