You are here
Free Swimming Soft Robotic Jellyfish with Adaptive Depth Control
- Date Issued:
- 2019
- Abstract/Description:
- This thesis is encompasses the design, construction, control and testing of an improvement upon the novel soft robotic Jennifish platform. The advancement of this platform includes the addition of light and depth sensors as well increasing the separation of tentacle groups from two to three sets. The final vehicle model consists nine PneuNetstyle actuators divided into three groups of three, molded around a machined Delrin pressure vessel. With a 12V submersible impellor pump connected to each actuator grouping, propulsion is created by the filling and emptying of these tentacles with surrounding ambient water. The Jellyfish2.0 is capable of omnidirectional lateral movement as well as upward driven motion. The vehicle also has a temperature sensor and IMU as did the previous of this platform. Qualitative free-swimming testing was conducted, recorded and analyzed as well as quantitative inline load cell testing, to create a benchmark for comparison with other jellyfish like robots.
Title: | Free Swimming Soft Robotic Jellyfish with Adaptive Depth Control. |
113 views
65 downloads |
---|---|---|
Name(s): |
Luvisi, Daniel, author Engeberg, Erik, Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 132 p. | |
Language(s): | English | |
Abstract/Description: | This thesis is encompasses the design, construction, control and testing of an improvement upon the novel soft robotic Jennifish platform. The advancement of this platform includes the addition of light and depth sensors as well increasing the separation of tentacle groups from two to three sets. The final vehicle model consists nine PneuNetstyle actuators divided into three groups of three, molded around a machined Delrin pressure vessel. With a 12V submersible impellor pump connected to each actuator grouping, propulsion is created by the filling and emptying of these tentacles with surrounding ambient water. The Jellyfish2.0 is capable of omnidirectional lateral movement as well as upward driven motion. The vehicle also has a temperature sensor and IMU as did the previous of this platform. Qualitative free-swimming testing was conducted, recorded and analyzed as well as quantitative inline load cell testing, to create a benchmark for comparison with other jellyfish like robots. | |
Identifier: | FA00013234 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Robotics--Design and construction Soft robotics Coral reef ecology Coral reef monitoring |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013234 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |