You are here

An Algorithmic Approach to Tran Van Trung's Basic Recursive Construction of t-Designs

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
It was not until the 20th century that combinatorial design theory was studied as a formal subject. This field has many applications, for example in statistical experimental design, coding theory, authentication codes, and cryptography. Major approaches to the problem of discovering new t-designs rely on (i) the construction of large sets of t designs, (ii) using prescribed automorphism groups, (iii) recursive construction methods. In 2017 and 2018, Tran Van Trung introduced new recursive techniques to construct t – (v, k, λ) designs. These methods are of purely combinatorial nature and require using "ingredient" t-designs or resolutions whose parameters satisfy a system of non-linear equations. Even after restricting the range of parameters in this new method, the task is computationally intractable. In this work, we enhance Tran Van Trung's "Basic Construction" by a robust and efficient hybrid computational apparatus which enables us to construct hundreds of thousands of new t – (v, k, Λ) designs from previously known ingredient designs. Towards the end of the dissertation we also create a new family of 2-resolutions, which will be infinite if there are infinitely many Sophie Germain primes.
Title: An Algorithmic Approach to Tran Van Trung's Basic Recursive Construction of t-Designs.
79 views
34 downloads
Name(s): Lopez, Oscar A., author
Magliveras, Spyros S., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Mathematical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 180 p.
Language(s): English
Abstract/Description: It was not until the 20th century that combinatorial design theory was studied as a formal subject. This field has many applications, for example in statistical experimental design, coding theory, authentication codes, and cryptography. Major approaches to the problem of discovering new t-designs rely on (i) the construction of large sets of t designs, (ii) using prescribed automorphism groups, (iii) recursive construction methods. In 2017 and 2018, Tran Van Trung introduced new recursive techniques to construct t – (v, k, λ) designs. These methods are of purely combinatorial nature and require using "ingredient" t-designs or resolutions whose parameters satisfy a system of non-linear equations. Even after restricting the range of parameters in this new method, the task is computationally intractable. In this work, we enhance Tran Van Trung's "Basic Construction" by a robust and efficient hybrid computational apparatus which enables us to construct hundreds of thousands of new t – (v, k, Λ) designs from previously known ingredient designs. Towards the end of the dissertation we also create a new family of 2-resolutions, which will be infinite if there are infinitely many Sophie Germain primes.
Identifier: FA00013233 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Combinatorial designs and configurations
Algorithms
t-designs
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013233
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.