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non-existence of some combinatorial designs. We give the construction or proof of
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CHAPTER 1

INTRODUCTION

A combinatorial design is an arrangement of elements of a finite set into sub-

sets that satisfy certain balance properties. Types of combinatorial designs include

balanced incomplete block designs, t-designs, pairwise balanced designs, Steiner sys-

tems, projective geometries, affine geometries, graph designs, large sets of t-designs,

orthogonal Latin squares, and orthogonal arrays. The fundamental question in com-

binatorial design theory is whether a design of a specified type exists or not. Modern

design theory includes many existence and non-existence results. However, many

problems remain open concerning the existence of certain types of designs.

Many problems in design theory that are studied today have their roots in the re-

search of Euler, Kirkman, Cayley, Hamilton, Sylvester, Moore, Witt, M. Hall Jr., and

others in the last three centuries. Combinatorial design theory arise as an academic

subject in its own rights after Fisher’s work on the design of biological experiments in

the 1920’s. Modern design theory has applications in many areas including cryptog-

raphy, coding theory, algorithm design and analysis, finite geometry, mathematical

biology, tournament scheduling, etc., see [5, 27].

In this dissertation, we study some open problems concerning the existence of

certain types of combinatorial designs. We give the construction or proof of non-

existence of some Steiner systems, large sets of designs, and graph designs, with

prescribed automorphism groups.

Let t ≤ k ≤ v and λ be positive integers. A t-(v, k, λ) design is a pair (X,B),
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where X is a set of v elements, called points, and B is a collection of k-subsets of

X, called blocks, where each t-subset of X is contained in precisely λ blocks. A t-

design (X,B) is said to be simple if B is a set, i.e. there are no repeated blocks. A

basic counting argument shows that the number of blocks in a t-(v, k, λ) design is

b = λ
(
v
t

)
/
(
k
t

)
.

Let D = (X,B) be a t-(v, k, λ) design, and x ∈ X. It is well known that Dx =

(X \ {x},Bx), where Bx = {B \ {x} : x ∈ B ∈ B}, is a (t − 1)-(v − 1, k − 1, λ)

design, called the derived design at x. The number of blocks in Dx is λ
(
v−1
t−1

)
/
(
k−1
t−1

)
.

Repeating this process, we can construct a second derived design Dx,y, a third derived

design Dx,y,z, and so on. Therefore, for 0 ≤ s < t, the number λ
(
v−s
t−s

)
/
(
k−s
t−s

)
, which is

the number of blocks in the sth derived design, has to be an integer. These conditions

are called the necessary conditions for the existence of a t-(v, k, λ) design.

A t-(v, k, 1) design is also called a Steiner system, denoted by S(t, k, v). A Steiner

system is necessarily simple. For t ∈ {2, 3}, infinite families of Steiner systems are

known to exist. For t ∈ {4, 5}, only finitely many Steiner systems are known to exists.

No Steiner system with t ≥ 6 has been constructed yet, see [11].

Steiner systems S(2, 3, v), S(3, 4, v), and S(4, 5, v) are called Steiner triple, quadru-

ple and quintuple systems, respectively. The parameter v is called the order of the

system.

For Steiner triple and quadruple systems, it has been proven that the necessary

conditions are also sufficient. An S(2, 3, v) exists if and only if v ≡ 1 or 3 (mod 6),

and an S(3, 4, v) exists if and only if v ≡ 2 or 4 (mod 6), see [11].

The necessary conditions for the existence of a Steiner quintuple system is that

v ≡ 3, 5, 11, 15, 17, 21, 23 or 27 (mod 30). The sufficient conditions are still unknown.

The existence of a Steiner quintuple system of order 5 is trivial. The first non-trivial

Steiner quintuple system, which is of order 11, was constructed in 1908 by Barrau [3].
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In total, only finitely many Steiner quintuple systems are known to exist, namely of

orders 5, 11, 23, 35, 47, 71, 83, 107, 131, 167, and 243, all of which are derived designs of

known S(5, 6, v) [11]. The non-existence of a Steiner quintuple system of order 15 was

shown in 1972 by Mendelsohn and Hung [24]. Since then, it has been a challenge for

many researchers to construct a Steiner quintuple system of order 17 or 21. Recently,

Österg̊ard and Pottonen [25] have proven the non-existence of an S(4, 5, 17), leaving

21 as the smallest order for which the existence, or otherwise, of a Steiner quintuple

system is unknown. We get the following theorem.

Theorem 1.0.1. If there exists an S(4, 5, v) for v < 21, then v = 5 or v = 11.

The problem of the existence of a Steiner quintuple system of order 21 is much

harder than the one of order 17. In Chapter 3, we study the possible automorphism

groups of such a system, and prove that, if an S(4, 5, 21) exists, the order of its full

automorphism group is 1, 2, 3, 4, 5, 6, 7, 10 or 21.

Let
(
X
k

)
denote the set of all k-subsets of a set X. A large set LS[N ](t, k, v) is

a pair (X,B = {Bi}Ni=1), where (X,Bi) is a simple t-(v, k, λ) design for all Bi ∈ B,

and {Bi}Ni=1 is a partition of
(
X
k

)
. Arithmetically, for a large set LS[N ](t, k, v), we

have N = Mλ(t, k, v) =
(
v−t
k−t

)
/λ. Let Dλ(t, k, v) denote the maximum number of

mutually disjoint simple t-(v, k, λ) designs on a particular set of v points. So, a large

set of t-(v, k, λ) designs exists if Dλ(t, k, v) = Mλ(t, k, v). We denote M1(t, k, v) and

D1(t, k, v) simply as M(t, k, v) and D(t, k, v).

A projective plane of order n, if such exists, is a 2-(n2 + n+ 1, n+ 1, 1) design. If

a large set of projective planes of order n exists, it is an LS[N ](2, n+ 1, n2 + n+ 1),

where N =
(
n2+n−1
n−1

)
.

In 1850, Cayley [9] proved by a brief argument that a large set LS[5](2, 3, 7) of Fano

planes does not exist. In 1978, Magliveras conjectured that a large set of projective
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planes of order n will exist, i.e. D(2, n+ 1, n2 + n+ 1) = M(2, n+ 1, n2 + n+ 1), for

all n ≥ 3, provided that n is the order of a projective plane. In 1983, Chouinard II

[10] constructed such large sets for n = 3, namely LS[55](2, 4, 13), by prescribing an

automorphism of order 11 which acts semiregularly on the set of 55 planes. In Chapter

4, we construct new large sets LS[55](2, 4, 13) by prescribing an automorphism of

order 13. We classify all such large sets and determine their full automorphism

groups.

The existence, or otherwise, of a large set of projective planes of order n for n ≥ 4,

is still an unsettled problem. For n = 4, we have M(2, 5, 21) = 969. Kramer and

Magliveras have shown in [20] that D(2, 5, 21) ≥ 197. Later, they constructed over

600 mutually disjoint projective planes of order 4 by probabilistic means. In our effort

to construct a large set LS[969](2, 5, 21), we show in Chapter 4 that D(2, 5, 21) ≥ 912,

which improves the lower bound for D(2, 5, 21) obtained by Kramer and Magliveras.

Let Kn denote the complete graph with n vertices. Note that a 2-(v, k, 1) design

may also be considered as a decomposition of Kv into mutually disjoint subgraphs

each isomorphic to Kk. If we replace Kk by any subgraph of Kv, we get the notion

of a graph design.

In general, for a (finite, undirected) graph G, let V = V (G) and E = E(G) denote

the set of vertices (or points) and the multiset of edges of G respectively. A graph G

is called simple if it has no multiple edges or loops. Let G = {G1, G2, ..., Gr} be a set

of graphs. A G-decomposition of a graph K (or a (K,G)-decomposition) is a set D =

{B1, B2, ..., Bs} of subgraphs of K, called blocks, such that {E(B1), E(B2), ..., E(Bs)}

partition E(K), and for 1 ≤ j ≤ s we have Bj
∼= Gi for some i, 1 ≤ i ≤ r. A (Kn,G)-

decomposition is called a G-design of order n. When G = {G}, we simply denote it

as a G-design. The spectrum for a graph G is the set of positive integers n such that

there exists a G-design of order n. The known results on the spectrum of graphs may

4



be found in [2, 7, 8].

There are three obvious necessary conditions for the existence of a G-design.

Theorem 1.0.2. If a G-design of order n exists, then:

(1) n = 1 or n ≥ |V (G)|,

(2) n(n− 1) ≡ 0 (mod 2|E(G)|), and

(3) n− 1 ≡ 0 (mod d), where d is the g.c.d. of the degrees of the points in G.

The problem of determining the spectrum of a graph has been considered for

several types of graphs, such as complete graphs, trees, cycles, matchings, paths,

stars, cubes, graphs of geometric solids, even graphs, theta graphs, unions of graphs,

all graphs with up to five vertices, and all graphs with six vertices and up to eight

edges. The spectrum problem has been completely solved for cycles, matchings, paths,

stars, and graphs with up to four vertices, see [2, 7, 8].

The spectrum problem is almost completely solved for graphs with five vertices.

Up to isomorphism, there are 23 simple graphs with 5 vertices and no isolated vertex.

The spectrum problem has been completely solved for 20 of these graphs. For the

remaining 3 graphs, in total 15 orders are unsolved. Twelve of these unsolved cases

are for the graph with 5 vertices and 9 edges, which is shown below. We denote this

graph as K5 \ e.

The necessary conditions for the existence of a (K5 \ e)-design of order n is that

n ≡ 0, 1 (mod 9). The first result on the existence of a (K5 \ e)-design has been given
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in 1980. Bermond et al. [4] constructed a (K5 \ e)-design of order 19, and showed

that (K5 \ e)-designs of orders 9, 10, and 18 do not exist. In [17], it was stated that a

(K5 \e)-design of order n exists for all n ≡ 1 (mod 18) with the possible exceptions of

n ∈ {37, 55, 73, 109, 397, 415, 469, 487, 505, 541, 613, 685}. Although this result is now

known to be true, a proof is not given in any of the references cited there. In 2005,

Li and Chang [23] eliminated the twelve exceptions stated above. In addition they

constructed (K5\e)-designs of orders 28, 46, and 82. Finally, in 2007, Ge and Ling [14]

solved the problem for almost all orders satisfying the necessary conditions including

a complete solution for the case n ≡ 1 (mod 18). Their result is the following:

Theorem 1.0.3. ([14]) There exists a (K5 \e)-design of order n for all n ≡ 0, 1 (mod

9) except for n ∈ {9, 10, 18}, and except possibly for n ∈ {27, 36, 54, 64, 72, 81, 90,

135, 144, 162, 216, 234}.

In Chapter 5, we settle the problem for four of these twelve unsolved orders. We

construct (K5 \ e)-designs of order 27 by prescribing an automorphism of order 6.

We classify all such (K5 \ e)-designs and determine their full automorphism groups.

Then, we give the construction of (K5 \ e)-designs of orders 135, 162 and 216 which

follow immediately by the recursive constructions given in [14].

In Chapter 6, we consider the spectrum problem for complete bipartite graphs.

Let Ks,t denote the complete bipartite graph with one part of size s and one part of

size t. The necessary conditions for the existence of a Ks,t-design of order n are:

(1) n = 1 or n ≥ s+ t,

(2) n(n− 1) ≡ 0 (mod 2st), and

(3) n− 1 ≡ 0 (mod gcd(s, t)).

In 1966, Rosa [26] proved the following theorem.
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Theorem 1.0.4. [26] For s, t ≥ 1, there exists a Ks,t-design of order n for all

n ≡ 1 (mod 2st).

As mentioned in [2], this result completely solves the spectrum problem when s

and t are both powers of 2. The spectrum problem for stars, i.e. the graphs K1,k for

k ≥ 1, was completely solved in 1975 by Yamamoto et al. [31], and independently in

1979 by Tarsi [29]. The spectrum problems for K2,3 and K3,3 were completely solved

in 1980 by Bermond et al. [4] and in 1968 by Guy and Beineke [16], respectively.

Some non-existence results for Ks,t-designs have also been proven by Graham and

Pollak [15] and de Caen and Hoffman [12]. These results are given in the following

theorem.

Theorem 1.0.5. [12, 15] For s, t ≥ 1, there does not exist a Ks,t-design of order n

for 1 < n < 2st. Moreover, for s, t ≥ 2, there does not exist a Ks,t-design of order

2st.

In Chapter 6, we prove a recursive construction theorem which provides a way

of constructing infinite families of Ks,t-designs. We consider the complete bipar-

tite graphs with fewer than 18 edges, for which the spectrum problem has not been

completely solved yet, namely the graphs K2,5, K2,6, K3,4, K2,7 and K3,5. Giving nec-

essary direct constructions, we provide an almost complete solution for the spectrum

problem for these 5 graphs, leaving 5 orders in total unsolved.
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CHAPTER 2

PRELIMINARIES

An action of a group G on a set X will be denoted by G|X. For x ∈ X and α ∈ G,

xα denotes the image of x under α. For A ⊆ X, Aα := {xα | x ∈ A}. A group action

G|X is called transitive if X is a single G−orbit, that is, for all x, y ∈ X, xα = y for

some α ∈ G, k-transitive if the induced action on the ordered k-sets of elements of

X is transitive, doubly transitive if it is 2-transitive, semiregular if only the identity

element fixes points, that is, xα = x implies α = 1, and regular if it is transitive and

semiregular.

If A ⊆ X, G [A] = {α ∈ G | xα = x for all x ∈ A} denotes the pointwise stabilizer of

A in G. If A = {x}, G [A] is simply denoted as Gx. The set xG = {xα : α ∈ G} denotes

the orbit of x under G or the G-orbit of x. The number of G-orbits on X is denoted

by o(G). If G has precisely ri orbits of size ui for 1 ≤ i ≤ s, where
∑s

i=1 riui = |X|,

we say that G is of type ur11 ...u
rs
s . For α ∈ G, fix(α) = {x ∈ X : xα = x} denotes

the set of points fixed by α, and fixs(α) = {S ∈
(
X
s

)
: Sα = S} the set of s-subsets

of X fixed by α.

We denote the symmetric group on a set X as SX , the cyclic group of order n as

Cn, the dihedral group of order 2n as D2n, and the Klein four-group as V4. If p is a

prime and r divides p − 1, we denote by Cr
p the unique subgroup of order pr of the

affine group Cp−1
p = Cp o Aut(Cp).

If G is a group and α ∈ G, 〈α〉 denotes the subgroup generated by α. Throughout

the dissertation, we will use α and 〈α〉 interchangebly. The subgroup CG(α) =

8



{β ∈ G : αβ = βα} denotes the centralizer of α in G. For a subgroup H ≤ G,

NG(H) = {β ∈ G | βHβ−1 = H} denotes the normalizer of H in G.

The statements in the following theorem are basic results in group theory and

may be found in [6, 18, 30].

Theorem 2.0.6. Let G | X, x ∈ X and α ∈ G. Then,

(1) |xG| = |G|/|Gx|.

(2) |G| · o(G) =
∑

α∈G |fix(α)|.

(3) NG(α)/CG(α) is isomorphic to a subgroup of Aut(α).

(4) If |G| = pqr, where p < q < r are primes, then G has a normal Sylow r-

subgroup.

(5) If |G| = 2h, where h is odd, then G has a subgroup of order h.

Two t-(v, k, λ) designs D = (X,B) and D′ = (X,B′) are called isomorphic if there

exists α ∈ SX such that Bα = B′, that is, Bα ∈ B′ for all B ∈ B, and we say Dα = D′.

If Dα = D, then α is called an automorphism of D. The group of all automorphisms

of D is called the full automorphism group of D, and is denoted by Aut(D). Any

subgroup G of the full automorphism group is called an automorphism group of D,

and we say that D is G-invariant. If D = (X,B) is a G-invariant t-(v, k, λ) design,

then the orbits of G|X and G|B are called the point orbits and block orbits of G

respectively, and for α ∈ G, fix′(α) = {B ∈ B : Bα = B} denotes the set of blocks

in D fixed by α.

Two large sets L = (X,B) and L′ = (X,B′) are said to be isomorphic if there

exists α ∈ SX such that Bα = B′, that is, Bαi ∈ B′ for all Bi ∈ B, and we write

Lα = L′. If Lα = L, then α is called an automorphism of L. The full automorphism

9



group of L is denoted by Aut(L). Any subgroup G of the full automorphism group is

called an automorphism group of L, and we say that L is G-invariant. If L = (X,B)

is a G-invariant LS[N ](t, k, v), then the orbits of G|X, G|
(
X
k

)
and G|B are called

the point orbits, block orbits and design orbits of G respectively, and for α ∈ G,

fix′(α) = {B ∈ B | Bα = B} denotes the set of designs in L fixed by α.

Two (K,G)-decompositions D and D′ are called isomorphic if there exists α ∈

SV (K) such that Dα = D′. Automorphism groups of graph decompositions are defined

in a similar way to those of t-designs. If D is a G-invariant G-design, for α ∈ G,

fix′(α) = {B ∈ D | Bα = B} denotes the set of blocks in D fixed by α.
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CHAPTER 3

ON THE POSSIBLE AUTOMORPHISM GROUPS OF AN S(4, 5, 21)

3.1 BASIC RESULTS

Let G ≤ SX , and {T i : 1 ≤ i ≤ r} and {Kj : 1 ≤ j ≤ s} be the collection

of orbits of G |
(
X
t

)
and G |

(
X
k

)
respectively. The Kramer-Mesner matrix is defined

as the r × s matrix A = At,k(G) = (ai,j), where ai,j = |{K ∈ Kj : K ⊃ T}| for a

representative T ∈ T i. In practice, the identity ai,j = |{T ∈ T i : T ⊂ K}| · |Kj|/|T i|

where K is a representative k-set in Kj, can be used to compute the matrix A. The

following theorem was given by Kramer and Mesner in 1976.

Theorem 3.1.1. [22] There exists a G-invariant t-(v, k, λ) design if and only if there

exists an s-dimensional column vector u with nonnegative integer entries such that

Au = λj where j is the r-dimensional column vector of all 1’s.

To reduce computation time in applying Theorem 3.1.1, the following lemma is

useful.

Lemma 3.1.1. Let D = (X,B) be a t-(v, k, λ) design, and G ≤ S = SX . If D is

G-invariant, then Dω is also G-invariant for any ω ∈ NS (G).

Proof: For any ω ∈ NS (G), we have DωGω−1

= DG = D. Hence, DωG = Dω.

3.2 AUTOMORPHISMS OF PRIME ORDER

Throughout this chapter, let D = (X,B) be a putative S(4, 5, 21). Note that the

number of blocks in D is
(
21
4

)
/
(
5
4

)
= 1197. In this section, we derive some results on

11



possible elements of prime order in Aut(D).

Lemma 3.2.1. If α ∈ Aut(D) is of prime order p, then |fix(α)| ∈ {0, 1, 2, 3, 5, 11}.

Proof: Assume that |fix(α)| ≥ 4. For any distinct u,w, x, y ∈ fix(α), there

exists a unique z ∈ X such that B = {u,w, x, y, z} ∈ B. Since {u,w, x, y} ∈ fix4(α),

we necessarily have B ∈ fix′(α) and hence z ∈ fix(α). Therefore, the set of blocks in

D which are pointwise fixed by α form a Steiner quintuple system of order |fix(α)|.

Therefore, the result follows by Theorem 1.0.1.

Lemma 3.2.2. Let α ∈ Aut(D) be of prime order p. Then, |fix(α)| 6= 11.

Proof: Assume that |fix(α)| = 11. For 0 ≤ i ≤ 4, let T i = {T ∈
(
X
4

)
: |T ∩

fix(α)| = i} and ti = |T i| =
(
11
i

)
·
(

10
4−i

)
. For 0 ≤ j ≤ 5, let Bj = {B ∈ B : |B ∩

fix(α)| = j} and bj = |Bj|. Counting the number of pairs (T,B), where T ∈ T i,

B ∈ B, and T ⊆ B, we get (5 − i) · bi + (i + 1) · bi+1 = ti. Therefore we get the

following equations:

5b0 + b1 = 210

4b1 + 2b2 = 1320

3b2 + 3b3 = 2475

2b3 + 4b4 = 1650

b4 + 5b5 = 330

By the arguments in the proof of Lemma 3.2.1, we have b4 = 0 and b5 = 66. Therefore,

b3 = 825, b2 = 0, b1 = 330, and b0 = −24, contradiction.

Lemma 3.2.3. Let α ∈ Aut(D) be of prime order p. Then, |fix(α)| 6= 5.

Proof: Assume that |fix(α)| = 5. Then, p | 16, and hence p = 2. Let {a, b} be

an α-orbit of size 2, and let Fa,b = {{a, b, x, y, z} ∈ B : x, y, z ∈ fix(α)}. For any

12



distinct x′, y′ ∈ fix(α), there exists a unique z′ ∈ X such that B = {a, b, x′, y′, z′} ∈

B. Since {a, b, x′, y′} ∈ fix4(α), we necessarily have z′ ∈ fix(α) and hence B ∈ Fa,b.

Since there are
(
5
2

)
= 10 pairs of fixed points of α, and each block in Fa,b contains 3

such pairs, we get |Fa,b| = 10/3, contradiction.

Using similar arguments, we can get the following lemma. We omit the proof.

Lemma 3.2.4. D cannot have an automorphism of type 1336.

Theorem 3.2.1. Let α ∈ Aut(D) be of prime order p. Then, one of the following

holds:

(1) |fix(α)| = 0 and p ∈ {3, 7}.

(2) |fix(α)| = 1 and p ∈ {2, 5}.

(3) |fix(α)| = 2 and p = 19.

(4) |fix(α)| = 3 and p = 2.

Proof: Follows by Lemmas 3.2.1-3.2.4.

3.3 AUTOMORPHISMS OF ORDER 19

In this section, we prescribe an automorphism of order 19 and prove:

Theorem 3.3.1. D cannot have an automorphism of order 19.

Throughout this section, suppose that X = Z19 ∪ {∞1,∞2}, S = SX , and define

α ∈ S as xα = x + 1 for x ∈ Z19, and (∞i)
α = ∞i for i ∈ {1, 2}. For any Y , where

Z19 ⊆ Y ⊂ X, we denote the restriction of α on Y also as α.

Let G = 〈α〉, and assume that D is G-invariant. The number of orbits of G |
(
X
4

)
and G |

(
X
5

)
are

(
21
4

)
/19 = 315 and

(
21
5

)
/19 = 1071 respectively. We construct the

13



315 × 1071 Kramer-Mesner matrix A as in Thereom 3.1.1 and search for solutions

of Au = j. Note that any columns of A that contain entries greater than 1 can be

deleted, since the corresponding entry of u must be zero in any solution of Au = j.

After deleting such columns, A reduces to a 315× 1035 matrix with entries in {0, 1},

where the column sum is 5. The problem is now equivalent to the exact cover problem,

that is, we search for 63 columns of A which add up to j. An exhaustive search for

such a solution does not seem to be feasible with our computer program. We could

make it more efficient by implementing Knuth’s dancing links algorithm, see [19].

Instead, we develop an alternative approach.

Note that, for i ∈ {1, 2}, the derived designD∞i
= (X\{∞i},B∞i

) is a G-invariant

S(3, 4, 20). Also, their derived design D∞1,∞2 = D∞2,∞1 = (X \ {∞1,∞2},B∞1,∞2)

is a G-invariant S(2, 3, 19). For i ∈ {1, 2}, let B′∞i
= {B ∈ B∞i

: ∞3−i /∈ B}, and

B′ = {B ∈ B : B ⊂ Z19}. Note that |B| = |B∞1,∞2 |+|B′∞1
|+|B′∞2

|+|B′|, where B′∞1
,

B′∞2
, and B′ are also G-invariant. An S(2, 3, 19), an S(3, 4, 20), and an S(4, 5, 21)

have 57, 285, and 1197 blocks, respectively. Therefore, |B∞1,∞2| = 57 = 3 · 19,

|B′∞1
| = |B′∞2

| = 228 = 12 · 19, and |B′| = 684 = 36 · 19.

Proposition 3.3.1. Let Y ⊂
(Z19

4

)
, where |Y | = 228, and suppose that for any

T ∈
(Z19

3

)
, T is contained in at most one 4-set K ∈ Y . Let Y ′ = {T ∈

(Z19

3

)
: T 6⊂ K

for any K ∈ Y }. Then, (Z19, Y
′) is an S(2, 3, 19), and hence (Z19 ∪ {∞}, Y ′′), where

Y ′′ = Y ∪ {T ∪ {∞} : T ∈ Y ′}, is an S(3, 4, 20).

Proof: Let S ∈
(Z19

2

)
, and define YS = {K ∈ Y : K ⊃ S} and Y ′S = {T ∈

Y ′ : T ⊃ S}. By definition of Y and Y ′, any 3-set T ∈
(Z19

3

)
is contained in exactly

one 4-set K ∈ Y ′′. The number of 3-sets T ∈
(Z19

3

)
containing S is 17. Each K ∈ YS

contains 2 such 3-sets, and each T ∈ Y ′S contains one such 3-set. Therefore, we get

2|YS|+ |Y ′S| = 17, and hence |Y ′S| ≥ 1. Note that |Y ′| =
(
19
3

)
− 4 · 228 = 57, which is

14



the number of blocks in an S(2, 3, 19). Therefore, we necessarily have |Y ′S| = 1, and

the result follows.

Proposition 3.3.1 shows that, to construct B∞i
, it is sufficient to construct B′∞i

.

Therefore, to construct B, it is sufficient to construct B′∞1
, B′∞2

, and B′. Since

B∞1,∞2 = B∞2,∞1 , the following condition also has to be satisfied: For any T ∈
(Z19

3

)
,

T is contained in a 4-set in B′∞1
if and only if T is contained in a 4-set in B′∞2

. Also,

since D contains each 4-set exactly once, therefore B′∞1
and B′∞2

have to be disjoint.

We get the following lemma. The details of the proof are left to the reader.

Lemma 3.3.1. There exists a G-invariant S(4, 5, 21), if and only if there exists a

triple (∆1,∆2,∆3) such that:

(1) For i ∈ {1, 2}, ∆i is a union of 12 orbits of G |
(Z19

4

)
, where any 3-subset of

Z19 is contained in at most one 4-set in ∆i.

(2) Any 3-subset of Z19 is contained in a 4-set in ∆1 if and only if it is contained

in a 4-set in ∆2.

(3) ∆1 ∩∆2 = ∅, and

(4) ∆3 is a union of 36 orbits of G |
(Z19

5

)
, where any 4-subset of Z19 is contained

in exactly one set in ∆1 ∪∆2 ∪∆3.

In Lemma 3.3.1, (4) already implies (3), but we mention (3) seperately since it

will be of use later. The number of orbits of G |
(Z19

3

)
, G |

(Z19

4

)
and G |

(Z19

5

)
are

(
19
3

)
/19 = 51,

(
19
4

)
/19 = 204, and

(
19
5

)
/19 = 612, respectively. Let A′ = A3,4

and A′′ = A4,5 be the 51× 204 and 204× 612 Kramer-Mesner matrices, respectively.

Then, the following lemma is a consequence of Lemma 3.3.1. We omit the proof.

Lemma 3.3.2. There exists a G-invariant S(4, 5, 21), if and only if there exists a

triple (u1,u2,u3) such that:
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(1) For i ∈ {1, 2}, ui is a 204-dimensional {0, 1}-vector with exactly 12 one’s, such

that A′ui is a 51-dimensional vector with exactly 48 one’s and 3 zero’s.

(2) A′u1 = A′u2.

(3) u1 · u2 = 0, that is u1 and u2 are orthogonal.

(4) u3 is a 612-dimensional {0, 1}-vector with exactly 36 one’s, such that

A′′u3 + u1 + u2 = j, where j is the 204-dimensional vector of all one’s.

An exhaustive computer search shows that there are exactly 290 vectors u satis-

fying Lemma 3.3.2(1). Out of these vectors, there are exactly 576 pairs {u1,u2} (and

hence 1152 ordered pairs (u1,u2)) satisfying (2) and (3).

To reduce computation time for the search for u3 satisfying (4), we use Lemma

3.1.1. Define β, θ ∈ S as xβ = 2x, xθ = x for x ∈ Z19, and (∞i)
β =∞i, (∞i)

θ =∞3−i

for i ∈ {1, 2}. Note that NS (G) = 〈α, β, θ〉. The action of θ just switches the roles of

u1 and u2. Therefore, it is sufficient to consider only one pair from each β-orbit on

the set of pairs {∆1,∆2} (see Lemma 3.3.1) corresponding to the 576 pairs {u1,u2}.

A computer search shows that there are 32 orbits of β, each of size 18, on these 576

pairs. Let {u1
1,u

1
2}, ..., {u32

1 ,u
32
2 } be orbit representatives.

For 1 ≤ i ≤ 32, we modify A′′ and construct A′′i as follows. We delete any column

of A′′ that contain entries greater than 1, or that are not orthogonal to ui
1 or ui

2, since

the corresponding entry of u3 must be zero in any solution of A′′u3 + ui
1 + ui

2 = j.

Then, we delete any row of A′′ where the corresponding entry in ui
1 or ui

2 is 1. We

obtain 180 × si matrices A′′i , where 292 ≤ si ≤ 297. What is left is to search for 36

mutually orthogonal columns of A′′i . Compared to the 315 × 1035 matrix A in the

original approach, where we had to search for 63 mutually orthogonal columns, the

matrices A′′i are much smaller and easier to work with. An exhaustive search for all

32 cases shows that there exists no solution, which proves Theorem 3.3.1.
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Theorem 3.3.2. Let α ∈ Aut(D) be of prime order p. Then, one of the following

holds:

(1) p = 2 and |fix(α)| ∈ {1, 3}.

(2) p = 3 and |fix(α)| = 0.

(3) p = 5 and |fix(α)| = 1.

(4) p = 7 and |fix(α)| = 0.

Proof: Follows by Theorems 3.2.1 and 3.3.1.

3.4 AUTOMORPHISM GROUPS OF PRIME POWER ORDER

In this section, we derive some results on possible Sylow subgroups of Aut(D).

Lemma 3.4.1. Let P ≤ Aut(D), where |P| = pk, p ∈ {3, 5, 7} and k ≥ 1. Then,

k = 1.

Proof: First let p = 3. If P has a fixed point, then P has an element of order

3 with fixed points, which contradicts Theorem 3.3.2(2). Therefore, P has no fixed

points. Since 21 ≡ 3 (mod 9), P has at least one orbit of size 3. Let Y be such an

orbit and y ∈ Y . Then, Py has fixed points and by the above argument, |Py| = 1.

Therefore, by Theorem 2.0.6(1), |P| = |Py| · |Y | = 3. The cases p = 5 and p = 7

follow by similar arguments.

Lemma 3.4.2. Let P ≤ Aut(D), where |P| = 4. Then,

(1) P is of type 1145.

(2) For any ω ∈ P, where ω 6= 1, we have |fix(ω)| = 1.
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Proof: (1) If P ∼= C4, the result follows by Theorem 3.3.2(1). If P ∼= V4, say

P = {1, α, β, θ}, then by Theorems 2.0.6(2) and 3.3.2(1), we get (21 + 3 · 1)/4 ≤

o(P) ≤ (21 + 3 · 3)/4, and hence o(P) ∈ {6, 7}. Assume that o(P) = 7. Then, P

is necessarily of type 112244, where two elements of order 2 have 3 fixed points and

one element of order 2 has 1 fixed point. Hence, without loss of generality, we have

α = (1)(2)(3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 13)(14, 15)(16, 17)(18, 19)(20, 21),

β = (1)(2, 3)(4)(5)(6, 8)(7, 9)(10, 12)(11, 13)(14, 16)(15, 17)(18, 20)(19, 21), and

θ = (1)(2, 3)(4, 5)(6, 9)(7, 8)(10, 13)(11, 12)(14, 17)(15, 16)(18, 21)(19, 20).

Let T = {2, 3, 6, 7}, T ′ = {2, 3, 6, 9}, and B and B′ be the blocks containing

T and T ′ respectively. Since T ∈ fix4(α), B ∈ fix′(α) and we necessarily have

B = {1, 2, 3, 6, 7}. Similarly, since T ′ ∈ fix4(θ), we get B′ = {1, 2, 3, 6, 9}, which is a

contradiction since the 4-set {1, 2, 3, 6} cannot be contained in more than one block.

So, o(P) = 6 and hence P is of type 1145.

(2) Follows by (1) and Theorem 2.0.6(1).

Lemma 3.4.3. D cannot have an automorphism group of order 8.

Proof: Assume that P ≤ Aut(D), where |P| = 8. Any element α of order 2

in P is contained in a subgroup of order 4. Hence, by Lemma 3.4.2(2), α is of type

11210. Therefore, for any ω ∈ P , where ω 6= 1, we have |fix(ω)| = 1. Therefore, we

get o(P) = (21 + 7 · 1)/8 = 3.5, contradiction.

Theorem 3.4.1. |Aut(D)| divides 22 · 3 · 5 · 7.

Proof: Follows by Theorem 3.3.2 and Lemmas 3.4.1 and 3.4.3.

3.5 NORMALIZERS OF AUTOMORPHISMS OF ORDERS 5 AND 7

Lemma 3.5.1. Let α ∈ G = Aut(D) be of order 7. Then,
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(1) |CG(α)| divides 21.

(2) |NG(α)| divides 42.

(3) If β ∈ NG(α) is of order 2, then β is of type 1329.

Proof: (1) An element of type 73 cannot be centralized by an element of type

1329, 11210, or 1154. Therefore, the result follows by Theorems 3.3.2 and 3.4.1.

(2) Since Aut(C7) ∼= C6, by (1) and Theorem 2.0.6(3), we get |NG(α)| divides

21 · 6. Therefore, the result follows by Theorem 3.4.1.

(3) Assume that β is of type 11210. Then, without loss of generality, we have

α = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)(15, 16, 17, 18, 19, 20, 21), and

β = (1)(2, 7)(3, 6)(4, 5)(8, 15)(9, 21)(10, 20)(11, 19)(12, 18)(13, 17)(14, 16).

Let T = {2, 3, 6, 7} and B be the block containing T . Since T ∈ fix4(β), we

necessarily have B = {1, 2, 3, 6, 7}, which is a contradiction since the 4-set {1, 2, 3, 7}

is contained in both B and Bα = {1, 2, 3, 4, 7}.

Lemma 3.5.2. Let α ∈ Aut(D) be of order 5, and ∆ = {∆1,∆2,∆3,∆4} be the set

of α-orbits of size 5. Then, fix′(α) = B ∩∆, and |fix′(α)| = 2.

Proof: We have fix′(α) = B ∩ fix5(α) = B ∩∆. Since D has 1197 blocks, we

have |fix′(α)| ≡ 2 (mod 5), and hence the result follows.

Lemma 3.5.3. Let α ∈ G = Aut(D) be of order 5. Then, |NG(α)| divides 10.

Proof: An element of type 1154 cannot be normalized by an element of type

37 or 73. Therefore, by Theorems 3.3.2 and 3.4.1, |NG(α)| divides 20. Assume that

|NG(α)| = 20, and define ∆ as in Lemma 3.5.2. Then, by Lemma 3.4.2, a Sylow

2-subgroup of NG(α) acts transitively on ∆. Hence, either ∆ ⊂ B or ∆ ∩ B = ∅,

which contradicts Lemma 3.5.2.
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3.6 FURTHER RESULTS ON THE POSSIBLE AUTOMORPHISM

GROUP ORDERS

Lemma 3.6.1. |Aut(D)| is not divisible by 35.

Proof: Let G = Aut(D), and assume that 35 divides |G|. Let α ∈ G be of order

7, and n7 denote the number of Sylow 7-subgroups of G. By Lemma 3.5.1(2), we get

5 | n7. Note that 2k · 5 6≡ 1 (mod 7) for any k ≥ 0, and 2m · 3 · 5 6≡ 1 (mod 7) for any

m ∈ {1, 2}. Therefore, by Theorem 3.4.1, we necessarily have n7 = 15. Hence, by

Lemma 3.5.1(2), |NG(α)| divides 14. Therefore, |G| = 3 · 5 · 7 or |G| = 2 · 3 · 5 · 7. By

Theorem 2.0.6(4), |G| 6= 3 · 5 · 7, and hence by Theorem 2.0.6(5), |G| 6= 2 · 3 · 5 · 7.

Lemma 3.6.2. Let α ∈ Aut(D) be of order 7. Then 〈α〉 is normal in Aut(D) and

hence |Aut(D)| divides 42.

Proof: By Theorem 3.4.1 and Lemma 3.6.1, we get |Aut(D)| divides 22 · 3 · 7.

Then, the result follows by Sylow theorems and Lemma 3.5.1(2).

Lemma 3.6.3. D cannot have an automorphism group of order 60.

Proof: Assume that G ≤ Aut(D) and |G| = 60. By Lemma 3.4.2(2), any element

of order 2 in G is of type 11210. Therefore, by Theorem 3.3.2, for any ω ∈ G where

ω 6= 1, we have |fix(ω)| ≤ 1. Therefore, we get o(G) ≤ (21 + 59 · 1)/60 and hence

o(G) = 1, which is a contradiction since 21 does not divide 60.

Lemma 3.6.4. Let α ∈ Aut(D) be of order 5. Then 〈α〉 is normal in Aut(D) and

hence |Aut(D)| divides 10.

Proof: By Theorem 3.4.1 and Lemma 3.6.1, we get |Aut(D)| divides 22 · 3 · 5.

Let n5 be the number of Sylow 5-subgroups of Aut(D), and assume that 〈α〉 is not

normal in Aut(D). Then, we necessarily have n5 = 6, and hence by Lemma 3.6.3, we
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get |Aut(D)| = 30, which contradicts Theorem 2.0.6(4). Therefore, the result follows

by Lemma 3.5.3.

Lemma 3.6.5. D cannot have an automorphism group of order 12.

Proof: Assume that G ≤ Aut(D) and |G| = 12. By Theorem 3.3.2(2), the orbits

of G | X are of size 3, 6, or 12. Since 21 ≡ 3 (mod 6), G has at least one orbit of size

3. Let Y = {x, y, z} be such an orbit. Then, |Gx| = 12/3 = 4, and {y, z} is a union

of Gx-orbits on X, which contradicts Lemma 3.4.2(1).

Theorem 3.6.1. |Aut(D)| divides 22, 2 · 5, or 2 · 3 · 7.

Proof: Follows by Theorem 3.4.1 and Lemmas 3.6.1, 3.6.2, 3.6.4, and 3.6.5.

3.7 AUTOMORPHISM GROUPS OF ORDERS 14 AND 42

After proving Theorem 3.6.1, it is natural to consider groups of order 42 first.

By Lemma 3.5.1, there are only 2 possible automorphism groups of order 42. Using

an exhaustive computer search for each group, we prove Theorem 3.7.1. We omit

the details of this computation since we also consider groups of order 14 and prove

Theorem 3.7.2, which already imples Theorem 3.7.1 since any group of order 42 has

a subgroup of order 14.

Theorem 3.7.1. D cannot have an automorphism group of order 42.

Theorem 3.7.2. D cannot have an automorphism group of order 14.

In this section, we give the details for the proof of Theorem 3.7.2. By Lemma

3.5.1(1), the cyclic group C14 cannot be an automorphism group of D. So, let G be

isomorphic to the dihedral group D14. By Lemma 3.5.1(3), any element of order 2 in

G is of type 1329. Therefore, G is of type 73, and without loss of generality we can

say X = Z21 and G = 〈α, β〉 where xα = x+ 3 and xβ = 13x for all x ∈ X.
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We have |fix4(α)| = |fix5(α)| = 0, |fix4(β)| =
(
9
1

)(
3
2

)
+
(
9
2

)
= 63, and |fix5(β)| =(

9
1

)(
3
3

)
+
(
9
2

)(
3
1

)
= 117. Hence, there are 63 G-orbits of size 7, and

((
21
4

)
− 63 · 7

)
/14 =

396 G−orbits of size 14, and hence in total 459 G-orbits on
(
X
4

)
. Similarly, there are

117 G-orbits of size 7, and
((

21
5

)
− 117 · 7

)
/14 = 1395 G−orbits of size 14, and hence

in total 1512 G-orbits on
(
X
5

)
. We construct the 459× 1512 Kramer-Mesner matrix.

After deleting columns that contain entries greater than 1, we obtain a 459 × 1080

matrix. An exhaustive search for a solution using Theorem 3.1.1 with this matrix

is not feasible with our computer program. We develop a special form of Theorem

3.1.1.

Using the terminology of Theorem 3.1.1, suppose that r = r1 + r2 + ... + rm and

s = s1 + s2 + ...+ sn, and consider the matrix A as an m×n block matrix, where the

(p, q)th block is an rp × sq matrix, say Bp,q. Moreover, suppose that for any (p, q),

the column sum in Bp,q is constant. Define an m× n matrix B = (bp,q), where bp,q is

the constant column sum in Bp,q. Define an m-dimensional column vector r = (rp),

where rp is defined as above. Also define an n×n block matrix C, where the (q, q′)th

block is an sq′-dimensional row vector with all entries equal to δq,q′ . Here, δ is the

Kronecker delta function. Then, the following theorem is a consequence of Theorem

3.1.1. The proof is left to the reader.

Theorem 3.7.3. There exists a G-invariant t-(v, k, λ) design if and only if the fol-

lowing conditions hold:

(1) There exists an n-dimensional column vector v with positive integer entries

such that Bv = λr.

(2) There exists an s-dimensional column vector u with positive integer entries

such that Cu = v and Au = λj.
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In applying Theorem 3.7.3, we still need to find solutions of Au = λj as in

Theorem 3.1.1, that is, we need to search for a set of columns of A that add up to λj.

What Theorem 3.7.3 provides additionally is that if A can be expressed as a block

matrix with constant column sum in each block as described above, then solutions of

Bv = λr give a hint on the number of columns of A to be selected from each set of

sq columns for 1 ≤ q ≤ n.

Let A be the 459 × 1080 matrix constructed above. We say that the G-orbits

on
(
X
5

)
corresponding to the columns of A (which are obtained by removing those

columns that contain entries greater than 1) are admissible orbits. We try to express

A as a block matrix with constant column sum in each block. Define θ ∈ S = SX as

xθ = x + 7, and let Σ1, ...,Σ7 be the θ-orbits on X. For any Y ∈
(
X
4

)
∪
(
X
5

)
, define

ni = |Y ∩ Σi| for 1 ≤ i ≤ 7. Let m1, ...,m7 be a permutation of n1, ..., n7, where

mi ≥ mi+1 for 1 ≤ i ≤ 6, and suppose that k is the largest index such that mk > 0.

Then, if the G-orbit on
(
X
|Y |

)
containing Y is a small orbit (of size 7), we say that Y

is of type (m1,m2, ...,mk)S, and if that orbit is a big orbit (of size 14), we say that

Y is of type (m1,m2, ...,mk)B. Since G ∈ NS (θ), all sets in a G-orbit are of the same

type.

The set of G-orbits on
(
X
4

)
partitions into orbits of types (3, 1)B, (2, 2)S, (2, 2)B,

(2, 1, 1)S, (2, 1, 1)B, (1, 1, 1, 1)S, and (1, 1, 1, 1)B. Using a computer program, we

see that these sets of orbits are of sizes 9, 9, 9, 27, 189, 27, and 189, respectively.

Similarly, the set of admissible G-orbits on
(
X
5

)
partitions into orbits of types (3, 1, 1)S,

(3, 1, 1)B, (2, 2, 1)S, (2, 2, 1)B, (2, 1, 1, 1)B, (1, 1, 1, 1, 1)S, and (1, 1, 1, 1, 1)B, where

these sets of orbits are of sizes 9, 63, 27, 99, 558, 27, and 252 respectively.

We partition these sets of G-orbits further. Let ∆1, ∆14, ∆15, Γ1, Γ2, Γ12,

and Γ13 be the sets of G-orbits of types (3, 1)B, (1, 1, 1, 1)S, (1, 1, 1, 1)B, (3, 1, 1)S,

(3, 1, 1)B, (1, 1, 1, 1, 1)S, and (1, 1, 1, 1, 1)B, respectively. For any G-orbit of type
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(2, 2)S, (2, 2)B, (2, 2, 1)S, or (2, 2, 1)B, any set Y in the orbit satisfies Y ∩ Σi =

{x, x + 7}, and Y ∩ Σj = {y, y + 7} for some 1 ≤ i, j ≤ 7. If Y is of type (2, 2)S or

(2, 2, 1)S, then x ≡ y (mod 3). If Y is of type (2, 2)B or (2, 2, 1)B, then x 6≡ y (mod

3), and without loss of generality suppose that y ≡ x + 1 (mod 3). Let ∆2-∆4, ∆5-

∆7, Γ3-Γ5, and Γ6-Γ8 be the sets of G-orbits of types (2, 2)S, (2, 2)B, (2, 2, 1)S, and

(2, 2, 1)B, for x ≡ 0, 1, 2 (mod 3), respectively. We define ∆8, ...,∆13, and Γ9, ...,Γ11

as the sets of G-orbits of types (2, 1, 1)S, (2, 1, 1)B, and (2, 1, 1, 1)B in a similar way.

One can see that, if the matrix A is considered as a 15×13 block matrix according to

this partitioning, then the column sum is a constant in each block of A. This can also

be verified easily by using a computer program. Using the terminology of Theorem

3.7.3, we obtain the 15× 13 matrix B as given below.
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

1 2 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 0 0 2 0 2 3 0 0 0 0

0 1 0 2 0 2 2 0 0 3 0 0 0

0 1 0 0 2 0 2 2 0 0 3 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 2 2 2 2 5


Moreover, we get the vectors r = (rp) = (9, 3, 3, 3, 3, 3, 3, 9, 9, 9, 63, 63, 63, 27, 189)T

and (sq) = (9, 63, 9, 9, 9, 33, 33, 33, 186, 186, 186, 72, 252). The equation Bv = r has a

unique solution, namely v = (vq) = (9, 0, 3, 3, 3, 3, 3, 3, 15, 15, 15, 27, 9)T . Therefore,

while searching for a solution of Au = j, we basically need to search for 108 mutually

orthogonal columns out of 1080 columns of A, where we select exactly vq columns

from the set of sq columns corresponding to the orbits in Γq, for 1 ≤ q ≤ 13. Since

v1 = s1 = 9, all of the first 9 columns are selected, and since v2 = 0, none of the next 63

columns are selected. We order the remaining columns of A according to the ordering

Γ3,Γ6,Γ8,Γ9,Γ4,Γ7,Γ10,Γ5,Γ11,Γ12,Γ13, and perform an 11-step backtracking search.

We know that the second derived designs D0,7, D7,14, and D0,14 have to be Steiner
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triple systems of order 19. The ordering of the columns guarantee that these 3 Steiner

triple systems are formed in the 4th, 7th, and 9th steps respectively. Because of this,

the program reaches the 5th step rarely, and even if it reaches the 5th step, then it

reaches the 8th step rarely, and so on. This makes the program run much faster. We

also make use of Lemma 3.1.1. In the first step, there are 27 solutions, and NS (G)

has 6 orbits on these 27 solutions. We consider only one solution from each orbit.

We perform the 11-step exhaustive search which shows that there exists no solution.

Therefore, we get Theorem 3.7.2 and hence Theorem 3.7.1.

Theorem 3.7.4. |Aut(D)| ∈ {1, 2, 3, 4, 5, 6, 7, 10, 21}.

Proof: Follows by Theorems 3.6.1, 3.7.1 and 3.7.2.

3.8 TYPES OF THE POSSIBLE AUTOMORPHISM GROUPS

The isomorphism classes and orbit sizes of the possible automorphism groups of

orders 2, 3, 4, 5, and 7 are given by Theorem 3.3.2 and Lemma 3.4.2. In addition, by

Theorem 3.3.2, an automorphism group of order 21 is necessarily of type 211. In this

section, we specify the types of the possible automorphism groups of orders 6 and 10.

Lemma 3.8.1. Let G = Aut(D) be of order 6. Then,

(1) G ∼= C6 and G is of type 3163, or

(2) G ∼= D6 and G is of type 3362.

Proof: (1) follows by Theorem 3.3.2. For (2), let G ∼= D6. Since all elements of

order 2 are conjugate in G, we get o(G) = (21+3·1)/6 = 4 or o(G) = (21+3·3)/6 = 5,

that is G is of type 3163 or 3362. Assume that G is of type 3163. Then, any element of

order 2 in G have one fixed point, and without loss of generality, we have G = 〈α, β〉
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where α = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21), and

β = (1)(2, 3)(4, 7)(5, 9)(6, 8)(10, 13)(11, 15)(12, 14)(16, 19)(17, 21)(18, 20).

Let T = {2, 3, 4, 7}, T ′ = {2, 3, 5, 9}, and B and B′ be the blocks containing T

and T ′, respectively. Since T, T ′ ∈ fix4(β), we necessarily have B = {1, 2, 3, 4, 7}

and B′ = {1, 2, 3, 5, 9}, which is a contradiction since B′ and Bα = {1, 2, 3, 5, 8} both

contain the 4-set {1, 2, 3, 5}.

Lemma 3.8.2. Let G = Aut(D) be of order 10. Then,

(1) G ∼= C10 and G is of type 11102, or

(2) G ∼= D10 and G is of type 1152101 or 11102.

Proof: (1) follows by Theorem 3.3.2. For (2), let G ∼= D10. By Lemma 3.5.2,

the non-trivial orbits of G are of size 5 or 10. If G is of type 1154, then the elements

of order 2 in G have 5 fixed points, which contradicts Theorem 3.3.2(1). Then, the

result follows.

We summarize all results in the following theorem.

Theorem 3.8.1. Suppose that an S(4, 5, 21), say D, exists, and let G = Aut(D).

Then, exactly one of the following holds:

(1) |G| = 1,

(2) G ∼= C2 and G is of type 1329 or 11210.

(3) G ∼= C3 and G is of type 37.

(4) G ∼= C4 and G is of type 1145.

(5) G ∼= V4 and G is of type 1145.

(6) G ∼= C5 and G is of type 1154.
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(7) G ∼= C6 and G is of type 3163.

(8) G ∼= D6 and G is of type 3362.

(9) G ∼= C7 and G is of type 73.

(10) G ∼= C10 and G is of type 11102.

(11) G ∼= D10 and G is of type 1152101 or 11102.

(12) G ∼= C21 and G is of type 211.

(13) G ∼= C3
7 and G is of type 211.

3.9 CONCLUDING REMARKS

By Theorem 3.8.1, the largest possible automorphism group of an S(4, 5, 21) is

of order 21. Interestingly, making an exhaustive search for an S(4, 5, 21) with an

automorphism group of order 19 or 14 require less computation time than a search for

an S(4, 5, 21) with an automorphism group of order 21. In Section 3.3, we considered

a group of order 19. Since such a group has 2 fixed points, we were able to consider

the first and second derived designs and reduce the computation time. In Section 3.7,

we considered the dihedral group of order 14. Since the elements of order 2 have fixed

4-sets and fixed 5-sets, we get a lot of restrictions on the possible number of orbits

of each type in the design. These restrictions allowed us to perform an exhaustive

search.

The Kramer-Mesner matrix for a group G of order 21 is a 285× 969 matrix. In G,

neither an element of order 7 nor an element of order 3 have fixed points, fixed 4-sets

or fixed 5-sets, that is, G necessarily acts regularly on X and semiregularly on
(
X
4

)
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and
(
X
5

)
. Therefore, we cannot use the ideas used in Section 3.3. Also it is harder to

get restrictions on the structure of the design as in Section 3.7.

Automorphism groups of orders 10 or less are even harder to consider. Further

analyses and computation techniques are required for making an exhaustive search for

an S(4, 5, 21), with any one of the groups given in Theorem 3.8.1 as an automorphism

group.
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CHAPTER 4

ON LARGE SETS OF PROJECTIVE PLANES OF ORDERS 3 AND 4

4.1 BASIC RESULTS

The following well known theorem may be found in [5, 28].

Theorem 4.1.1. Any automorphism of a projective plane fixes as many points as it

fixes blocks.

The following theorem is a consequence of Theorem 4.1.1.

Theorem 4.1.2. Let L be a large set of projective planes of order n, and let α ∈

Aut(L). Then, |fix(α)| · |fix′(α)| = |fixn+1(α)|.

Proof: A design not fixed by α contains no block fixed by α, and by Theorem

4.1.1 the number of blocks fixed by α in any design fixed by α is precisely |fix(α)|.

Let G ≤ SX . Let {∆1, ...,∆r} be the collection of all orbits of G acting on the

family of all t-(v, k, λ) designs with point set X, and {Γ1, ...,Γs} the collection of all

orbits of G|
(
X
k

)
. Define an incidence matrix M = (mij) by:

mij = |B ∩ Γj| · |∆i|/|Γj|

where D = (X,B) is any particular design in orbit ∆i. Thus, mij is the number

of blocks of design D belonging to the orbit Γj, modified by the normalizing factor

|∆i|/|Γj|, or equivalently mij is the number of designs in ∆i containing a particular

k-set B ∈ Γj as a block. The following theorem provides a way of constructing

G-invariant large sets.
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Theorem 4.1.3. [21] There exists a G-invariant large set of t-(v, k, λ) designs if and

only if there exists an r-dimensional {0, 1} row vector u such that uM = j, where j

is the s-dimensional row vector of all 1’s.

Note that any rows of M that contain entries greater than 1 can be deleted, since

the corresponding entry of u must be zero in any solution of uM = j.

The following lemmas will also be used in the construction and classification of

G-invariant large sets in later sections.

Lemma 4.1.1. Suppose that D = (X,B) is a t-(v, k, λ) design which is unique up

to isomorphism. Let P ≤ G = Aut(D) be a Sylow p-subgroup of S = SX , and

nP be the number of P-invariant t-(v, k, λ) designs with point set X. Then, nP =

|NS (P)|/|NG(P)|.

Proof: Let n be the number of pairs (P ′,D), where P ′ is a Sylow p-subgroup of

S, and D is a P ′-invariant t-(v, k, λ) design. Since D is unique up to isomorphism, S

acts transitively on the family of all t-(v, k, λ) designs with point set X. Thus, there

are |S|/|G| distinct t-(v, k, λ) designs on X, and the full automorphism group of each

one has |G|/|NG(P)| Sylow p-subgroups. Therefore, n = |S|/|NG(P)|. On the other

hand, there are |S|/|NS (P)| Sylow p-subgroups of S, and since Sylow subgroups are

conjugate, each one is an automorphism group of precisely nP designs. Therefore,

n = nP · |S|/|NS (P)|, and the result follows.

Lemma 4.1.2. Let P be a Sylow p-subgroup of S = SX , and suppose that L1 =

(X,B1) and L2 = (X,B2) are P-invariant large sets LS[N ](t, k, v). Then, L1 and L2

are isomorphic if and only if there exists α ∈ NS (P) such that (L1)
α = L2.

Proof: The “if” part is trivial. For the “only if” part, suppose that L1 and L2

are isomorphic. Then, (L1)
β = L2 for some β ∈ S. Therefore, (L1)

βPβ−1
= L1 and
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hence βPβ−1 is a Sylow p-subgroup of Aut(L1). Hence, there exists σ ∈ Aut(L1)

such that σβPβ−1σ−1 = P . So, σβ ∈ NS (P) and (L1)
σβ = L2.

4.2 PROJECTIVE PLANES OF ORDER 3

It is well known that, up to isomorphism, there is a unique projective plane of order

3, denoted by PG(2, 3), whose full automorphism group is PGL(3, 3) of order 5, 616.

Throughout this section, let X = Z13, S = SX , and define α, β, γ, ρ, σ, τ, µ, ν ∈ S as

α : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), i.e. xα = x+ 1,

β : (0)(1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7), i.e. xβ = 2x,

γ : (0)(2)(3)(8)(12)(1, 9)(4, 6)(5, 11)(7, 10),

ρ : (0)(2)(8)(9)(12)(1, 3)(4, 11)(5, 10)(6, 7),

σ : (0)(1)(3)(9)(2, 4, 10)(5, 6, 8)(7, 11, 12),

τ : (0)(1)(3)(9)(2, 8, 12)(4, 5, 7)(6, 11, 10),

µ : (0)(1)(2)(3)(9)(4, 10)(5, 11)(6, 7)(8, 12),

ν : (0)(1)(2)(8)(12)(3, 9)(4, 10)(5, 6)(7, 11).

Let D1 = (X,B1) be the projective plane of order 3 developed by the action of 〈α〉

on the base block {0, 1, 3, 9}. Note that G = Aut(D1) = 〈α, β4, γ, ρ, σ, τ, µ, ν〉 ∼=

PGL(3, 3). It is well known that G is doubly transitive on X. Here, we have

G0 = 〈β4, γ, ρ, σ, τ, µ, ν〉, |G0| = 5, 616/13 = 432, G [0,1] = 〈σ, τ, µ, ν〉, and |G [0,1]| =

432/12 = 36. Moreover, G [0,1] has two orbits on X \ {0, 1}. These orbits are {3, 9}

and {2, 4, 5, 6, 7, 8, 10, 11, 12}. We have G [0,1,3] = 〈σ, τ, µ〉, |G [0,1,3]| = 36/2 = 18,

G [0,1,2] = 〈µ, ν〉, and |G [0,1,2]| = 36/9 = 4.

Note that NS (α) = 〈α, β〉, and NG(α) = 〈α, β4〉. Hence, |NS (α)| = 13 · 12 and

|NG(α)| = 13 · 3. Therefore, by Lemma 4.1.1, the number of 〈α〉-invariant projective

planes of order 3 with point set X is precisely 4. One of these planes is D1, and the
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other three can be constructed by the action of 〈α〉 on the base blocks {0, 1, 4, 6},

{0, 1, 5, 11}, and {0, 1, 8, 10}. Let us call these planes D2 = (X,B2), D3 = (X,B3),

and D4 = (X,B4) respectively.

Let L = (X,B) be a putative large set LS[55](2, 4, 13) of projective planes of order

3. In [10], Chouinard II states without proving that any element of prime order in

Aut(L) must be either an element of order 5 fixing 3 points, or an element of order

11 or 13. This statement is in fact incorrect. Elements of order 3 are missing. In this

chapter we construct large sets of projective planes of order 3 having an automorphism

of order 3. We now prove the following statement :

Lemma 4.2.1. Let ω ∈ Aut(L) be of prime order p. Then, exactly one of the

following holds:

(i) p = 3, |fix(ω)| = 1 and |fix′(ω)| = 4.

(ii) p = 5, |fix(ω)| = 3 and |fix′(ω)| = 0.

(iii) p = 11, |fix(ω)| = 2 and |fix′(ω)| = 0.

(iv) p = 13, |fix(ω)| = 0 and |fix′(ω)| = 3.

Proof: If |fix′(ω)| = 0, then p | 55. If p = 5, then |fix(ω)| ≡ 3 (mod 5). If

|fix(ω)| > 3, then |fix5(ω)| > 0 and therefore by Theorem 4.1.2, |fix′(ω)| > 0, a

contradiction. Therefore, we get (ii). If p = 11, we clearly get (iii).

If |fix′(ω)| > 0, then ω is an automorphism of PG(2, 3). Note that an element

of prime order in PGL(3, 3) is of type 1524, 1433, 1134, or 131. If ω is of type 1524

then |fix(ω)| = 5 and |fix5(ω)| = 51, while if ω is of type 1433 then |fix(ω)| = 4

and |fix5(ω)| = 13. Both cases contradict Theorem 4.1.2. If ω is of type 1134, then

|fix5(ω)| = 4 and by Theorem 4.1.2, |fix′(ω)| = 4, so we get (i). If ω is of type 131,

then |fix′(ω)| ≡ 3 (mod 55). Since there are only 4 projective planes of order 3, with

point set X, fixed by a specific permutation of order 13, we get (iv).

In [10], Chouinard II constructs all C11-invariant LS[55](2, 4, 13), and shows that,
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up to isomorphism, there are precisely 15 such large sets. Here, we construct all

C13-invariant LS[55](2, 4, 13) using Theorem 4.1.3, and classify them using Lemma

4.1.2.

Let α, β be as above, and L be the collection of all 〈α〉-invariant LS[55](2, 4, 13).

Since a projective plane of order 3 is unique up to isomorphism, there are in total

13!/5, 616 = 1, 108, 800 distinct projective planes of order 3 on X. Four of these

planes are fixed by α, namely D = {D1,D2,D3,D4} given above. Hence, α has

(1, 108, 800− 4)/13 = 85, 292 orbits of size 13 on the family of all projective planes of

order 3 on X. Let Π = {∆1, ...,∆85292} be the collection of these orbits. By Lemma

4.2.1, for any large set L = (X,B) ∈ L, we have B = {Bi,Bj,Bk}∪∆m∪∆n∪∆q∪∆r,

where 1 ≤ i, j, k ≤ 4, and 1 ≤ m,n, q, r ≤ 85, 292.

Recall that NS (α) = 〈α, β〉. Also note that β acts transitively on D, and hence

on
(D
3

)
. Therefore, by Lemma 4.1.2, we can choose i = 1, j = 2, and k = 3, and

search for 4 appropriate orbits from Π.

Note that α has
(
13
4

)
/13 = 55 orbits of size 13 on

(
X
4

)
. Let {Γ1, ...,Γ55} be the

collection of these orbits. B1, B2, and B3 are themselves 3 of these 55 orbits. We first

construct the 85, 292 × 55 matrix M as in Theorem 4.1.3. Then, we modify M by

deleting rows of M that contain entries greater than 0 on the columns labeled by B1,

B2, and B3, or entries greater than 1 in any column, and finally deleting the columns

labeled by B1, B2, and B3. We end up with a 10, 314 × 52 matrix M whose entries

are 0’s or 1’s, and the row sum is 13. We look for {0, 1} vectors u which are solutions

of uM = j, where j is the 52-dimensional row vector of all 1’s. In other words, we

search for 4 mutually orthogonal rows of M which necessarily add up to j. Using an

exhaustive computer search, we obtain exactly 5 solutions. The action of β on these

5 solutions yields in total 20 solutions (including the large sets containing D4), that

is, we get that |L| = 20. Since α fixes each one of these large sets, by Lemma 4.1.2,
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to classify these large sets it is sufficient to look at the action of β on L. It turns out

that β has one orbit of size 12 and two orbits of size 4 on L. Therefore, we get the

following theorem.

Theorem 4.2.1. Up to isomorphism, there are precisely three C13-invariant large sets

LS[55](2, 4, 13). One large set from each isomorphism is given in Table 4.1, where we

give permutations ω1, ω2, ω3, ω4 ∈ S, such that D1, D2, D3 together with the 〈α〉-orbits

of (D1)
ωi for i ∈ {1, 2, 3, 4} form a large set LS[55](2, 4, 13).

Table 4.1: Isomorphism classes of C13-invariant LS[55](2, 4, 13)

ω1 = (0)(1)(2, 4, 5, 12, 9, 3)(6, 11, 7, 8)(10)

L1 ω2 = (0)(1)(2, 3)(4, 9)(5)(6, 7, 8, 12, 10, 11)

ω3 = (0)(1)(2, 3)(4, 8, 6)(5, 11, 10, 9)(7, 12)

ω4 = (0)(1)(2, 3)(4, 7, 12, 11)(5, 10, 8, 9, 6)

ω1 = (0)(1)(2, 4, 6, 5, 9, 3)(7, 12, 11, 10, 8)

L2 ω2 = (0)(1)(2, 3)(4, 11, 10, 12, 8, 7, 9, 5)(6)

ω3 = (0)(1)(2, 3)(4, 10, 12, 11, 9, 7, 8, 5, 6)

ω4 = (0)(1)(2, 3)(4, 8, 6, 12)(5)(7)(9, 11)(10)

ω1 = (0)(1)(2, 4, 7, 9, 3)(5, 11, 6, 8, 10, 12)

L3 ω2 = (0)(1)(2, 3)(4, 11, 6, 7, 8, 5, 10, 12, 9)

ω3 = (0)(1)(2, 3)(4, 8, 7, 6, 12, 9, 5, 10, 11)

ω4 = (0)(1)(2, 3)(4, 8, 11, 12, 5, 7)(6)(9, 10)

Using a computer search, we also determine the full automorphism groups of the

large sets given in Theorem 4.2.1, as well as the 15 large sets constructed by Chouinard

II in [10].
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Theorem 4.2.2. (1) Aut(L1) = 〈α〉 ∼= C13,

(2) Aut(L2) = Aut(L3) = 〈α, β4〉 ∼= C3
13, and

(3) Aut(L) ∼= C11 for any C11-invariant large set L.

Now let L′ be a putative LS[55](2, 4, 13), which is not isomorphic to the 18 large

sets constructed thus far, that is, which does not have an automorphism of order 11 or

13. In the following two lemmas, we give further results on the possible automorphism

groups of L′ for future use.

Lemma 4.2.2. Let P ≤ Aut(L′) where |P| = pk, p ∈ {3, 5}, and k ≥ 1. Then,

k = 1.

Proof: First let p = 3. Orbits of P on X are of size 1, 3, or 9. If P has more

than one fixed point, then P has an element of order 3 fixing more than one point,

which contradicts Lemma 4.2.1. Therefore, P has exactly one fixed point. Since

12 ≡ 3 (mod 9), P has at least one orbit of size 3. Let Y be such an orbit and y ∈ Y .

Then, Py fixes more than one point and by the above argument, |Py| = 1. Therefore,

|P| = |Py| · |Y | = 3. The case p = 5 follows by similar arguments.

Lemma 4.2.3. |Aut(L′)| ∈ {1, 3, 5}.

Proof: By assumption on L′ and Lemmas 4.2.1 and 4.2.2, |Aut(L′)| divides

15. Since an element of type 1134 and an element of type 1352 cannot commute,

|Aut(L′)| 6= 15.

4.3 PROJECTIVE PLANES OF ORDER 4

The problem of existence or non-existence of a large set of projective planes of

order n = 4 is much harder than the case n = 3. It is well known that, up to

36



isomorphism, there is a unique projective plane of order 4, denoted by PG(2, 4),

whose full automorphism group is PΓL(3, 4) of order 120, 960. Thus, there are in

total 21!/120, 960 = 422, 378, 820, 864, 000 distinct projective planes of order 4 on a

particular set of 21 points. Our goal is to construct 969 mutually disjoint planes

among these 422,378,820,864,000 planes. In this section, we give some results on

the possible automorphisms of such a large set, and construct 912 mutually disjoint

planes.

Throughout this section, let L = (X,B) be a putative large set LS[969](2, 5, 21).

It is known that the elements of prime order in PΓL(3, 4) acting on the point set of

PG(2, 4) have types 1727, 1528, 1635, 1336, 37, 1154, and 73. Using similar arguments

with the proofs of Lemmas 4.2.1 and 4.2.2, we can get the following two lemmas. We

omit the proofs.

Lemma 4.3.1. Let ω ∈ Aut(L) be of prime order p. Then, exactly one of the

following holds:

(i) p = 2, |fix(ω)| = 7, and |fix′(ω)| = 59.

(ii) p = 3, and |fix(ω)| = 0.

(iii) p = 3, |fix(ω)| = 3, and |fix′(ω)| = 6.

(iv) p = 5, |fix(ω)| = 1, and |fix′(ω)| = 4.

(v) p = 7, and |fix(ω)| = 0.

(vi) p = 17, |fix(ω)| = 4, and |fix′(ω)| = 0.

(vii) p = 19, |fix(ω)| = 2, and |fix′(ω)| = 0.

Lemma 4.3.2. Let P ≤ Aut(L) where |P| = pk, p prime, and k ≥ 1. Then, either

p = 3 and k ≤ 3, or p ∈ {2, 5, 7, 17, 19} and k = 1.

To construct an LS[969](2, 5, 21) with a prescribed automorphism group, we want

to choose a group as large as possible. We try to use the largest possible normalizer
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of an element of order 19, since 19 is the largest possible prime. Throughout this

section, let X = Z19 ∪ {∞1,∞2}, S = SX , and define α, β ∈ S as

xα = x+ 1, xβ = 4x for x ∈ Z19, and

(∞i)
α = (∞i)

β =∞i for i ∈ {1, 2}.

Let G = 〈α, β〉. Note that β ∈ NS (α), and G ∼= C9
19. Also, by Lemma 4.3.1, G is the

largest possible subgroup of NS (α) which can be an automorphism group of L.

Assume that L is G-invariant. Let Y = {{x, y, z,∞1,∞2} | {x, y, z} ∈
(Z19

3

)
},

and O be the collection of all α-orbits on
(
X
5

)
. Note that |Y | =

(
19
3

)
= 969. We have

|O| =
(
21
5

)
/19 = 1071, where Y is the union of 969/19 = 51 of these 1071 orbits.

Since β ∈ NS (α), β acts on O and hence on Y . Therefore, G acts on Y . Each plane

in L has exactly one block containing the points ∞1 and ∞2, that is, |B ∩ Y | = 1 for

all B ∈ B. Therefore, the action of G on B is determined by its action on Y .

Note that fix(β) = {0,∞1,∞2}, and β has 2 orbits of size 9 on X, namely

{1, 4, 16, 7, 9, 17, 11, 6, 5} and {2, 8, 13, 14, 18, 15, 3, 12, 10}. Thus, |fix5(β)| = 0. We

also have fix(β3) = {0,∞1,∞2}, and β3 has 6 orbits of size 3 on X, namely T1 =

{1, 7, 11}, T2 = {4, 9, 6}, T3 = {16, 17, 5}, T4 = {2, 14, 3}, T5 = {8, 18, 12}, and

T6 = {13, 15, 10}. Thus, fix5(β
3) = {Ka,i : a ∈ fix(β3) and 1 ≤ i ≤ 6}, where

Ka,i = (Ti ∪ fix(β3)) \ {a}. Therefore, |fix5(β3)| = 18 and |fix5(β3) ∩ Y | = 6.

Note that these 18 fixed blocks of β3 are in 18 distinct orbits in O. The action of

β on fix5(β
3) has 6 orbits of size 3, namely {Ka,i, Ka,i+1, Ka,i+2} for i ∈ {1, 4} and

a ∈ fix(β), where 2 of these orbits are contained in Y , namely those for a = 0.

Therefore, the action of β on O has 6 orbits of size 3, and hence (1071−6 ·3)/9 = 117

orbits of size 9, where Y contains 2 of the small orbits and hence (51 − 2 · 3)/9 = 5

of the large orbits. Therefore, G |
(
X
5

)
has in total 123 orbits (117 large orbits of size

19 · 9 = 171, and 6 small orbits of size 19 · 3 = 57), where Y is the union of 5 large
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orbits and 2 small orbits.

Let Σ1, ...,Σ7 be the orbits of G | Y , and Γ1, ...,Γ116 be the remaining orbits

of G |
(
X
5

)
, where Σ6,Σ7, and Γ113, ...,Γ116 are the small orbits. Let B6 = K0,1,

B7 = K0,4, K∞1,1, K∞1,4, K∞2,1, and K∞2,4 be orbit representatives for Σ6, Σ7, Γ113,

Γ114, Γ115, and Γ116 respectively. Also, one can verfiy that B1 = {0, 1, 2,∞1,∞2},

B2 = {0, 1, 3,∞1,∞2}, B3 = {0, 2, 3,∞1,∞2}, B4 = {0, 1, 4,∞1,∞2}, and B5 =

{0, 3, 4,∞1,∞2} form a set of orbit representatives for Σ1, ...,Σ5. Hence, {B1, ..., B7}

is a full set of orbit representatives for G | Y .

Since the action of G on B is determined by its action on Y , G necessarily has 5

large design orbits (of size 171), say Φ1, ...,Φ5, and 2 small design orbits (of size 57),

say Φ6 and Φ7. Note that, for 1 ≤ i ≤ 7, there exists a unique plane Di = (X,Bi) ∈

Φi such that Bi ∈ Bi. Define a 116-dimensional row vector r(Di) = (rij), where

rij = |Bi ∩ Γj| · |(Bi)G|/|Γj|. One can now see that, by Theorem 4.1.3, the existence

of a G-invariant LS[969](2, 5, 21) is equivalent to the existence of 7 planes D1, ...,D7

containing the blocks B1, ..., B7 respectively, such that r(D1) + ...+ r(D7) = j.

We only need to consider the planes Di = (X,Bi) where r(Di) is a {0, 1}-vector.

Therefore, |Bi ∩ Γj| ≤ |Γj|/|(Bi)G| for 1 ≤ i ≤ 7 and 1 ≤ j ≤ 116.

For i ∈ {1, 2, 3, 4, 5}, we have |(Bi)G| = 171. Hence, rij = 0 for j ∈ {113, ..., 116},

and rij = 1 for exactly 20 values of j ∈ {1, ..., 112}.

For i ∈ {6, 7}, we have |(Bi)G| = 57. Hence, |Bi∩Γj| ∈ {0, 1} for j ∈ {113, ..., 116},

and |Bi ∩ Γj| ∈ {0, 3} for j ∈ {1, ..., 112}. Since Bi is fixed by β3, the plane Di is

necessarily fixed by β3. By Theorem 4.1.1, Di contains exactly 3 fixed blocks of

β3. One of these fixed blocks is Bi. Since Di contains exactly one block containing

{0,∞2}, that block is necessarily in Γ113 ∪ Γ114. Similarly, since Di contains exactly

one block containing {0,∞1}, the third fixed block of β3 is necessarily in Γ115 ∪ Γ116.

Therefore rij = 1 for exactly one j ∈ {113, 114} and one j ∈ {115, 116}. The remaining
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18 blocks of Di are in large orbits and they form 6 orbits of size 3 under β3. Therefore,

|Bi ∩ Γj| = 3, and hence rij = 1 for exactly 6 values of j ∈ {1, ..., 112}.

For 1 ≤ i ≤ 7, using the action of SX on a particular projective plane of order

4, we can easily construct the family, say ∆i, of all projective planes Di of order 4

satisfying the conditions given in the above three paragraphs. Let ni = |∆i|. For

1 ≤ i ≤ 7, we define an ni × 116 matrix Mi whose rows are the row vectors r(Di) of

the planes in ∆i. Note that the row sums are 20 in M1, ...,M5, and 8 in M6 and M7.

The existence of a G-invariant LS[969](2, 5, 21) is now equivalent to the existence of

7 mutually orthogonal rows (one from each matrix Mi), which necessarily add up to

the 116-dimensional vector of all 1’s.

Unfortunately, for i ∈ {1, 2, 3, 4, 5}, ni is over 50 billion, and it is hard to store the

matrices Mi and make an exhaustive computer search. Instead, we first construct

a random plane D1 ∈ ∆1. For 2 ≤ i ≤ 7, define an n′i × 96 matrix M′
i by taking

only the rows of Mi which are orthogonal to r(D1), and then deleting the columns

corresponding to the 1’s in r(D1). We observe that, for i ∈ {2, 3, 4, 5}, n′i is around

800 million which is still too large. We construct a random plane D2 ∈ ∆2 such that

r(D1) and r(D2) are orthogonal. Then, similar to the above process, for 3 ≤ i ≤ 7,

define an n′′i × 76 matrix M′′
i by taking only the rows of M′

i which are orthogonal to

r(D2), and then deleting the columns corresponding to the 1’s in r(D2). We see that,

for i ∈ {3, 4, 5}, n′′i is around 4 million. We continue the process by constructing a

random plane D3 ∈ ∆3 such that r(D3) is orthogonal to r(D1) and r(D2), and then

constructing an n′′′i × 56 matrix M′′′
i for i ∈ {4, 5, 6, 7} as above. We observe that n′′′4

and n′′′5 are around 2000, while n′′′6 and n′′′7 are around 100. Then, we search for 4

mutually orthogonal rows, one from each matrix M′′′
i for i ∈ {4, 5, 6, 7}, and we repeat

this process for different choices of (D1,D2,D3). For all choices of (D1,D2,D3), we

get at least 2 orthogonal rows, one from M′′′
4 and one from M′′′

5 , which yields in total
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5 large orbits and hence 5 · 171 = 855 mutually disjoint planes. For some choices of

(D1,D2,D3), we get 3 mutually orthogonal rows, which yields in total 5 large orbits

and 1 small orbit, and hence 5 · 171 + 57 = 912 mutually disjoint projective planes of

order 4. We get the following theorem, which improves the lower bound for D(2, 5, 21)

given by Kramer and Magliveras.

Theorem 4.3.1. D(2, 5, 21) ≥ 912.

We present one set of 912 mutually disjoint planes in Table 4.2, where we denote

∞1 and∞2 as 19 and 20. We give permutations ω1, ..., ω6, such that the union of the

G-orbits on the planes Di = Dωi form the set of 912 mutually disjoint planes, where D

is the projective plane of order 4 developed by the permutation (0, 1, 2, ..., 18, 19, 20)

on the base block {0, 1, 4, 14, 16}. The set of 912 mutually disjoint planes given in

Table 4.2 is maximal, that is the remaining blocks which form a 2-(21, 5, 57) design

contains no 2-(21, 5, 1) design in it.

Table 4.2: 912 mutually disjoint projective planes of order 4

ω1 = (0, 8, 3, 7, 10, 12, 17, 13, 4, 1, 5, 2, 16, 14, 18)(6, 11)(9, 15)(19)(20)

ω2 = (0, 8, 4, 1, 5, 2, 15, 9, 11, 6, 17, 14, 18)(3, 7, 12, 16, 10, 13)(19)(20)

ω3 = (0, 7, 12, 17, 10, 6, 8, 5, 2, 15, 16, 14, 18)(1, 4)(3, 11, 9, 13)(19)(20)

ω4 = (0, 7, 13, 2, 14, 18)(1, 11, 12, 15, 17, 4)(3, 9)(5, 8, 16, 10)(6)(19)(20)

ω5 = (0, 13, 15, 8, 12, 17, 1, 11, 7, 10, 2, 14, 18)(3, 6, 5, 4)(9)(16)(19)(20)

ω6 = (0, 9, 10, 15, 18)(1, 5, 3, 13, 17, 8, 14, 11, 16, 4, 2)(6, 12, 7)(19)(20)

Out of more than 1026 choices for (D1,D2,D3), we tried 100 choices. We obtained

813 sets of 855 mutually disjoint planes, and 7 sets of 912 mutually disjoint planes.

We believe that a C9
19-invariant LS[969](2, 5, 21) does exist. However, an exhaustive
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search for such a large set does not seem to be feasible. Further analyses could be

made to choose D1, D2 and D3 in such a way that they are more likely to be extended

to a large set.
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CHAPTER 5

(K5 \ E)-DESIGNS OF ORDERS 27, 135, 162, AND 216

5.1 BASIC RESULTS

For a graph G, we denote an edge between the points x and y as [x, y]. An edge

[x, x] is also called a loop. Let d(x,G) denote the degree of x in the graph G.

We denote by [x1, x2, ..., xn], the graph on the points {x1, x2, ..., xn} which consists

of the edges [xi, xj] for 1 ≤ i < j ≤ n where multiple edges are counted. Also we de-

note by [x1, x2, ..., xn | y1, y2, ..., yr] the graph on the points {x1, x2, ..., xn, y1, y2, ..., yr}

which consists of the edges [xi, xj] for 1 ≤ i < j ≤ n and [xk, ym] for 1 ≤ k ≤ n and

1 ≤ m ≤ r.

Example 5.1.1. (1) [1, 1, 2] is the graph on the points {1, 2} which contains the

edge [1, 1] once and the edge [1, 2] twice.

(2) [1, 2 | 3, 3] is the graph on the points {1, 2, 3} which contains the edge [1, 2]

once, and each one of the edges [1, 3] and [2, 3] twice.

(3) The graph [1, 2, 3 | 4, 5] is isomorphic to K5 \ e, where the points 1, 2 and 3

have degree 4 and the points 4 and 5 have degree 3.

Throughout this chapter, let V = V (K27), E = E(K27), and D be a putative

(K5 \ e)-design of order 27. Note that D has
(
27
2

)
/9 = 39 blocks. For x ∈ V ,

let ax = |{B ∈ D | d(x,B) = 4}| and bx = |{B ∈ D | d(x,B) = 3}|. Since

d(x,K27) = 26, we get 4ax + 3bx = 26, which has two non-negative integer solutions.
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Either (ax, bx) = (2, 6) or (ax, bx) = (5, 2). Define V1 = {x ∈ V | (ax, bx) = (2, 6)}

and V2 = {x ∈ V | (ax, bx) = (5, 2)}.

Lemma 5.1.1. |V1| = 6 and |V2| = 21.

Proof: If we count the total number of occurences of the points as points of degree

3, we get 78 = 2 · 39 = |{(B, x) | B ∈ D, d(x,B) = 3}| =
∑

x∈V bx · x = 6|V1|+ 2|V2|.

Since |V1|+ |V2| = 27, the result follows.

Lemma 5.1.2. Let α ∈ Aut(D). Then,

(1) (Vi)
α = Vi for i ∈ {1, 2}.

(2) If B = [a, b, c | d, e] ∈ fix′(α), then {a, b, c}α = {a, b, c} and {d, e}α = {d, e}.

(3) If x, y ∈ fix(α), x 6= y, and B is the block containing [x, y], then B ∈ fix′(α).

Proof: (1) and (2) are obvious, and (3) follows since Bα contains [x, y].

Lemma 5.1.3. Let α ∈ Aut(D) be of odd prime order p. Then, p = 3 and fix(α) =

fix′(α) = ∅.

Proof: We consider 3 cases on |fix(α)|.

Case 1: |fix(α)| ≥ 2.

Let x, y ∈ fix(α), x 6= y, and B be the block containing the edge [x, y]. By

Lemma 5.1.2 (3), we get Bα = B. Then, since p is odd and at least one of the points

x and y have degree 4 in B, by Lemma 5.1.2 (2), B is pointwise fixed. Therefore

the set of blocks containing an edge between fixed points form a (K5 \ e)-design of

order |fix(α)|. By Theorem 1.0.3, the only possibility is that |fix(α)| = 19, but then

p | 27− 19 = 8, which is a contradiction since p is odd.

Case 2: |fix(α)| = 1.
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Let fix(α) = {x}. If x ∈ V1, then by Lemma 5.1.2 (1), we have p | 6− 1 = 5 and

p | 21, contradiction. If x ∈ V2, then p | 6 and p | 21− 1 = 20, contradiction.

Case 3: |fix(α)| = 0.

We have p | 6 and p | 21 and therefore p = 3.

Finally, assume that α fixes a block, say [a, b, c | d, e]. Then, d, e ∈ fix(α),

contradiction. Therefore, fix′(α) = ∅ as well.

We now consider 3-groups acting on D.

Lemma 5.1.4. Let P ≤ Aut(D) such that |P | = 3k. Then, k ≤ 1.

Proof: By Lemma 5.1.2 (1), P acts on V1. For all x ∈ V1 we have |Px| = 1, since

otherwise Px contains an element of order 3 which fixes x (contradiction to Lemma

5.1.3). Therefore P acts semiregularly on V1, and hence |P | divides 6.

Theorem 5.1.1. |Aut(D)| divides 2k3 for some k ≥ 0.

Proof: Follows by Lemmas 5.1.3 and 5.1.4.

5.2 AUTOMORPHISMS OF ORDER 3

Our goal is to construct D using an automorphism group which is as large as

possible. In this section we first analyze how D could be constructed using an auto-

morphism of order 3, say α.

Throughout this chapter, let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, U1 = {1, 2}, U2 = U \U1,

and define V such that V = {xi | x ∈ U, i ∈ Z3}, Vj = {xi | x ∈ Uj, i ∈ Z3} for

j ∈ {1, 2}. By Lemma 5.1.3, we can define α such that (xi)
α = xi+1 for all xi ∈ V .

Let K ′ be the graph, with V (K ′) = U , which contains the edge [x, x] exactly once

for all x ∈ U , and the edge [x, y] exactly 3 times for all x, y ∈ U , x 6= y. We will

denote these 3 edges between the points x and y as [x, y]0, [x, y]1 and [x, y]2.
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Let E ′ = E(K ′). Define φ : (V,E) → (U,E ′) as (xi)
φ = x, [xi, xj]

φ = [x, x], and

[xi, yk]
φ = [x, y]k−i for xi, xj, yk ∈ V , x 6= y.

For a block B = [xi, yj, zk | tm, un] ∈ D, let C = Bφ be the graph consisting of

the images under φ of the edges of B. We denote C as [x, y, z | t, u], but as long as

C is refered as the image under φ of the block B, we understand that for example if

x 6= y then the edge [x, y] occuring in C is indeed the edge [x, y]j−i. When talking

about the block C without refering it as the image under φ of a block B, we just say

that the edge [x, y] occurs in C.

Let H1 = [1, 1, 2 | 3, 4], H2 = [1, 2, 3 | 1, 2], H3 = [1, 2, 3 | 1, 4], H4 = [1, 2, 3 | 4, 4],

H5 = [1, 2, 3 | 4, 5], and H = {H1, H2, H3, H4, H5}.

Proposition 5.2.1. Let D1 be a (K5 \ e)-design of order 27. Then, (D1)
φ is a

(K ′,H)-decomposition.

Proof: Let D′1 = (D1)
φ. Note that Eφ = E ′, and B1 and B2 are in the same

block orbit of α if and only if (B1)
φ = (B2)

φ. Then, the result follows by counting

the edges and noting that a block of D′1 cannot contain a loop more than once and a

non-loop edge more than three times.

By labeling the edges between the points x and y as [x, y]0, [x, y]1 and [x, y]2,

we make sure that the converse of Proposition 5.2.1 is also true, i.e. we have the

following:

Proposition 5.2.2. Let D′1 = {Ci | 1 ≤ i ≤ 13} be a (K ′,H)-decomposition. Define

Bi for 1 ≤ i ≤ 13 in such a way that |V (Bi)| = 5, (Bi)
φ = Ci and that for x, y ∈ U ,

x 6= y, each of the edges [x, y]0, [x, y]1, and [x, y]2 occurs exactly once in D′1. Then

D1 = ({Bi | 1 ≤ i ≤ 13})〈α〉 is an α-invariant (K5 \ e)-design of order 27.

Proof: Let [xj, yk] ∈ E. If x = y and hence j 6= k, let Ci ∈ D′1 be the block

containing the edge [x, x]. Then since |V (Bi)| = 5, the edge [xj, xk] occurs exactly
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once in (Bi)
〈α〉. If x 6= y, then let Ci′ ∈ D′1 be the block containing the edge [x, y]k−j.

Then, the edge [xj, yk] occurs exactly once in (Bi′)
〈α〉.

In general determining whether a graph decomposition exists or not is an NP-

complete problem, see [13]. By prescribing an automorphism of order 3, the problem

of finding a (K5 \ e)-design of order 27 reduces to the problem of finding a (K ′,H)-

decomposition and then inserting subscripts appropriately, but it seems like even the

problem of finding a (K ′,H)-decomposition is large enough to attack by a generic

algorithm. Instead, we try to construct (K5 \ e)-designs of order 27 using a larger

automorphism group. By Theorem 5.1.1, in order to understand how a bigger group

can act on 27 points and 39 blocks, we study automorphisms of order 2 first.

5.3 AUTOMORPHISMS OF ORDER 2

Let β ∈ Aut(D) be of order 2. If β has r orbits of size 2 in V1 and s orbits of size

2 in V2, we say that β is of type (r, s). Let each point in fix(β) and each point not in

fix(β) be denoted by a bullet (•) and a circle (◦) respectively. By Lemma 5.1.2 (2)

a block in fix′(β) is of type Fi, and by Lemma 5.1.2 (3) a block not in fix′(β) is of

type Ni for some 1 ≤ i ≤ 4 (see Table 5.1).

Table 5.1: Types of blocks with respect to an automorphism of order 2

Type F1 F2 F3 F4

Block [•, •, • | •, •] [•, •, • | ◦, ◦] [◦, ◦, • | •, •] [◦, ◦, • | ◦, ◦]

Type N1 N2 N3 N4

Block [◦, ◦, ◦ | ◦, ◦] [◦, ◦, ◦ | •, ◦] [◦, ◦, ◦ | •, •] [◦, ◦, • | ◦, ◦]

Note that all blocks in a block orbit of β are of the same type. For 1 ≤ i ≤ 4, let

fi and ni denote the number of orbits with blocks of types Fi and Ni respectively.
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Lemma 5.3.1. Let x ∈ (V \ fix(β)) and y = xβ. Let B1 be the block containing the

edge [x, y], and B1 6= B2 ∈ D such that d(x,B2) = 4. Then,

(1) B1 ∈ fix′(β) and d(x,B1) = d(y,B1) = 4.

(2) B2 /∈ fix′(β).

Proof: (1) Since (B1)
β contains the edge [x, y] as well, we have (B1)

β = B1. We

also have d(x,B1) = d(xβ, (B1)
β) = d(y,B1) and therefore d(x,B1) = d(y,B1) = 4.

(2) Assume that (B2)
β = B2. Then d(y,B2) = d(yβ, (B2)

β) = d(x,B2) = 4, and

hence B2 contains the edge [x, y], contradiction.

Lemma 5.3.2. Let β be of type (r, s) and k = 27− 2(r + s) = |fix(β)|. Then,

(1) f1 + f2 + f3 + f4 + 2n1 + 2n2 + 2n3 + 2n4 = 39

(2) f3 + f4 = r + s

(3) 9f1 + 3f2 + 2f3 =
(
k
2

)
(4) f3 + 5f4 + 18n1 + 12n2 + 6n3 + 10n4 =

(
2(r+s)

2

)
(5) 2f4 + 9n1 + 6n2 + 3n3 + 5n4 = (r + s)(r + s− 1)

(6) 2f3 + 2f4 + 6n1 + 6n2 + 6n3 + 4n4 = 4r + 10s

(7) 3n1 + 3n2 + 3n3 + 2n4 = r + 4s

(8) 3f1 + 3f2 + 2n4 = 117− 5r − 11s

(9) f2 + f4 + 2n1 + n2 + 2n4 = 6r + 2s

(10) f1 + f3 + n2 + 2n3 = 39− 6r − 2s
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Proof: (1) is the number of blocks and (2) follows by Lemma 5.3.1.

(3) and (4) follow by counting the number of edges [x, y] for x, y ∈ fix(β) and the

number of edges [z, t] for z, t /∈ fix(β), and then (5) follows from (2) and (4).

(6) follows by counting the pairs (x,B) for x /∈ fix(β) and d(x,B) = 4, and then (7)

and (8) follow from (1), (2) and (6).

(9) follows by counting the pairs (x,B) for x /∈ fix(β) and d(x,B) = 3, and then

(10) follows from (1) and (9).

Lemma 5.3.3. Let β be of type (r, s). Then, 5 ≤ r + s ≤ 11.

Proof: First assume that s = 0. Then, 1 ≤ r ≤ 3. Let x ∈ (V1 \ fix(β))

and y = xβ. Let B1 be the block containing the edge [x, y]. Since ax = 2 (recall

the definitions above Lemma 5.1.1), there exists a block, say B2 6= B1, such that

d(x,B2) = 4. By Lemma 5.3.1 (2), B2 /∈ fix′(β). If two non-fixed points a, b ∈ V (B2)

belong to the same orbit of β, then d(a,B2) = d(b, B2) = 3 by Lemma 5.3.1 (1).

Therefore, if B2 is of type N1 or N2, then B2 contains points from at least 4 distinct

orbits of size 2, and if B2 is of type N3 or N4, then B2 contains points from at least

3 distinct orbits of size 2. Therefore r = 3 and n1 = n2 = 0. Then, by Lemma

5.3.2 (7) we get n3 = 1 and n4 = 0, and then by Lemma 5.3.2 (5) we get 2f4 = 3,

contradiction. Therefore s > 0.

Let z ∈ (V2 \ fix(β)) and t = zβ. Let B3 be the block containing the edge [z, t],

and ∆ = {B ∈ D | d(z,B) = 4, B 6= B3}. Since az = 5, we have |∆| = 4, and by

Lemma 5.3.1 (2), we have ∆∩ fix′(β) = ∅. Therefore |V (B) \ (fix(β)∪{z})| ≥ 2 for

all B ∈ ∆ and hence there are at least 8 non-fixed points besides z and t. Therefore,

r + s ≥ 5.

Let k = |fix(β)|. If k = 1 then by Lemma 5.3.2 (2), we get f3 + f4 = 13, which

is impossible since the unique fixed point cannot belong to 13 blocks. Assume that
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k = 3. Then f3 + f4 = 12 and by Lemma 5.3.2 (3), we get f1 = f3 = 0, f2 = 1, and

hence f4 = 12. Let B4 be the block of type F2, u be a non-fixed point in B4, and B5

be the block of type F4 such that d(u,B5) = 4. Then, B4 and B5 contain in total

4 edges of the form [u, v] for v ∈ fix(β), contradiction. Therefore k ≥ 5 and hence

r + s ≤ 11.

5.4 AUTOMORPHISM GROUPS OF ORDER 6

We now use the tools derived in the previous sections to construct (K5 \e)-designs

of order 27 with an automorphism group of order 6. We first consider the dihedral

group D6.

Theorem 5.4.1. D6 � Aut(D).

Proof: Let α and β be automorphisms of D of order 3 and 2 respectively and

suppose that βαβ = α−1. Define α as in Section 5.2, i.e. (xi)
α = xi+1 for all xi ∈ V .

Then without loss, β|V1 = (10)(11, 12)(20)(21, 22) or β|V1 = (10, 20)(11, 22)(12, 21).

Case 1: If β|V1 = (10)(11, 12)(20)(21, 22), let B1 be the block containing the edge

[10, 20]. At least one of the points 10 or 20 have degree 4 in B1, without loss say

10. Let B2 be the block containing the edge [11, 12]. By Lemma 5.1.2 (3) B1 ∈

fix′(β), and by Lemma 5.3.1 (1) B2 ∈ fix′(β) and d(11, B2) = d(12, B2) = 4.

Therefore, (B2)
α, (B2)

α−1
/∈ fix′(β) since ((B2)

α)β = (B2)
βαβ = (B2)

α−1
. We also

have d(10, (B2)
α) = d(12, B2) = 4 and d(10, (B2)

α−1
) = d(11, B2) = 4. Therefore,

B1, (B2)
α and (B2)

α−1
are 3 distinct blocks containing the point 10 as a point of

degree 4, which contradicts the definition of V1.

Case 2: If β|V1 = (10, 20)(11, 22)(12, 21), let B3 and B4 be the blocks containing

[10, 20] and [11, 22] respectively. As in Case 1, Bi ∈ fix′(β) and (Bi)
αj

/∈ fix′(β)

for i ∈ {3, 4} and j ∈ {1, 2}. By Lemma 5.1.2 and definition of V1, there is ex-

50



actly one non-fixed block containing 12 as a point of degree 4. Since d(12, (B3)
α−1

) =

d(12, (B4)
α) = 4, we need to have (B3)

α−1
= (B4)

α and hence (B3)
α = B4, contradic-

tion.

We now consider the cyclic group C6. We will make a case by case analysis

so called isomorph rejection and construct all (K5 \ e)-designs of order 27 with an

automorphism of order 6, classify them up to isomorphism and determine their full

automorphism groups. The results we obtain which are the main results of this

chapter are the following theorems.

Theorem 5.4.2. Suppose that C6 ≤ Aut(D). Then, D ∼= Di,j,k =
(
Di,j[1,5] ∪ D

j,k
[6,9]

)〈ω〉
for some i, 1 ≤ i ≤ 6, j ∈ {0, 1} and k ∈ {1, 2}, where Di,j[1,5] and Dj,k[6,9] are as in

Table 5.2, and ω is defined as (xm)ω = (xδ)m−1 where δ = (1, 2)(3, 4)(5, 6)(7)(8)(9).

Theorem 5.4.3. The designs given in Theorem 5.4.2 are pairwise non-isomorphic.

Theorem 5.4.4. Aut(D) ∼= C6 for any design D given in Theorem 5.4.2.

One can check that for each (i, j, k), if we develop the given base blocks in Table

5.2 with the group generated by ω, we obtain a (K5 \ e)-design of order 27. In order

to classify all C6-invariant (K5 \ e)-designs of order 27 and prove the above theorems,

we first derive a few more lemmas.

Let α be defined as (xi)
α = xi+1, σ ∈ Aut(D) be of order 6, and β = σ3. By

Lemma 5.1.3 and without loss we can define σ such that σ2 = α and for all xi ∈ V ,

if (xi)
β = yj then i = j. Note that the point orbits and block orbits of σ are of sizes

6 or 3, and all blocks in a block orbit of σ are of the same type (see Table 5.1).

Recall from Proposition 5.2.1 that Dφ is a (K ′,H)-decomposition.

Proposition 5.4.1. Let D1 be a (K5 \ e)-design of order 27, and σ be as above.

Define λ ∈ SU such that φλ = βφ. Then, λ is an automorphism of order 2 of Dφ1 .
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Table 5.2: C6-invariant (K5 \ e)-designs of order 27

D1,j
[1,5] D2,j

[1,5]

B1,j
1 = [70, 80, 91 | 3j, 4j] B2,j

1 = [70, 81, 92 | 3j, 4j]

B1,j
2 = [71, 72, 91 | 50, 60] B2,j

2 = [72, 90, 92 | 50, 60]

B1,j
3 = [1j, 2j, 80 | 71, 72] B2,j

3 = [1j, 2j, 71 | 72, 80]

B1,j
4 = [3j, 4j, 82 | 81, 92] B2,j

4 = [3j, 4j, 82 | 80, 91]

B1,j
5 = [50, 60, 90 | 81, 92] B2,j

5 = [50, 60, 81 | 71, 91]

D3,j
[1,5] D4,j

[1,5]

B3,j
1 = [80, 82, 91 | 3j, 4j] B4,j

1 = [80, 82, 91 | 3j, 4j]

B3,j
2 = [71, 81, 91 | 50, 60] B4,j

2 = [72, 90, 92 | 50, 60]

B3,j
3 = [1j, 2j, 71 | 72, 80] B4,j

3 = [1j, 2j, 71 | 72, 80]

B3,j
4 = [3j, 4j, 70 | 81, 92] B4,j

4 = [3j, 4j, 70 | 81, 92]

B3,j
5 = [50, 60, 90 | 72, 92] B4,j

5 = [50, 60, 81 | 71, 91]

D5,j
[1,5] D6,j

[1,5]

B5,j
1 = [81, 82, 92 | 3j, 4j] B6,j

1 = [70, 81, 92 | 3j, 4j]

B5,j
2 = [71, 72, 91 | 50, 60] B6,j

2 = [71, 81, 91 | 50, 60]

B5,j
3 = [1j, 2j, 80 | 71, 72] B6,j

3 = [1j, 2j, 71 | 72, 80]

B5,j
4 = [3j, 4j, 70 | 80, 91] B6,j

4 = [3j, 4j, 82 | 80, 91]

B5,j
5 = [50, 60, 90 | 81, 92] B6,j

5 = [50, 60, 90 | 72, 92]

Dj,k[6,9]

Bj,k
6 = [40, 50, 6j+1 | 10, 41] Bj,k

8 = [50, 51, 80 | 12, 21−j]

Bj,k
7 = [31−j, 42, 70 | 1j, 50] Bj,k

9 = [1j+k, 31−j, 9j+1 | 1j−k, 2j]
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Proof: Let D′1 = Dφ1 . First note that λ is well-defined since for x ∈ U , if

(x0)
β = y0, then xλ = (xi)

φλ = (xi)
βφ = (yi)

φ = y is independent of the choice of i.

The order of λ is clearly 2. To show that λ is an automorphism of D′1, let C ∈ D′1

and B ∈ Cφ−1
. Then, Cλ = Bφλ = Bβφ = (Bβ)φ ∈ D′1.

Conversely, we have the following.

Proposition 5.4.2. Let λ be an automorphism of order 2 of a (K ′,H)-decomposition

D′1, and suppose that λ has precisely m block orbits in D′1. Let {Ci | 1 ≤ i ≤ m} be

a set of representatives for block orbits of λ. Define σ : V → V as (xm)σ = (xλ)m−1,

and let β = σ3. For 1 ≤ i ≤ m, define Bi in such a way that |V (Bi)| = 5, (Bi)
φ = Ci

(and so (Bi)
βφ = (Ci)

λ) and that for x, y ∈ U , x 6= y, each of the edges [x, y]0,

[x, y]1 and [x, y]2 occurs exactly once in D′1. Then, D1 = ({Bi | 1 ≤ i ≤ m})〈σ〉 is a

(K5 \ e)-design of order 27 with σ as an automorphism of order 6.

Proof: Note that σ satisfies σ2 = α and βφ = φλ. Clearly the order of σ is 6,

and the result follows by definition of Bi and Proposition 5.2.2.

Roughly speaking, in order to construct all (K5 \ e)-designs of order 27 with an

automorphism of order 6, it is sufficient to construct all (K ′,H)-decompositions with

an automorphism λ of order 2 which may possibly be extended to a (K5 \ e)-design

of order 27 by inserting subscripts to the points appropriately. In order to satisfy

the conditions of Proposition 5.4.2, the only things we need to make sure are that

the subscripts are inserted in such a way that for x, y ∈ U , x 6= y, each of the edges

[x, y]0, [x, y]1 and [x, y]2 occur exactly once in D′1, and the subscripts are inserted the

same way to each block in a block orbit of λ.

In what follows, let D′ = Dφ, and σ, α, β and λ be as defined above. If λ has r′

orbits of size 2 in U1 and s′ orbits of size 2 in U2, we say that λ is of type (r′, s′).

Lemma 5.4.1. λ is of type (0, 2), (0, 3), (1, 1) or (1, 2).
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Proof: Note that if λ is of type (r′, s′), then β is of type (3r′, 3s′). Then the

result follows by Lemma 5.3.3.

As for β, we denote a fixed point of λ by a bullet (•), and a non-fixed point of

λ by a circle (◦). Moreover let a star (*) denote an arbitrary point. Define types of

blocks of D′ as in Table 5.1. Note that for any B ∈ D, Bφ is of the same type as B.

For 1 ≤ i ≤ 4, let f ′i and n′i denote the number of λ-orbits of blocks of type Fi and

Ni in D′ respectively. Then, fi = 3f ′i , ni = 3n′i, and we get the following corollary

of Lemma 5.3.2.

Lemma 5.4.2. Let λ be of type (r′, s′) and k′ = 9− 2(r′ + s′) = |fix(λ)|. Then,

(1) f ′1 + f ′2 + f ′3 + f ′4 + 2n′1 + 2n′2 + 2n′3 + 2n′4 = 13

(2) f ′3 + f ′4 = r′ + s′

(3) 9f ′1 + 3f ′2 + 2f ′3 = k′(3k′−1)
2

(4) 2f ′4 + 9n′1 + 6n′2 + 3n′3 + 5n′4 = (r′ + s′)(3r′ + 3s′ − 1)

(5) 3n′1 + 3n′2 + 3n′3 + 2n′4 = r′ + 4s′

(6) 3f ′1 + 3f ′2 + 2n′4 = 39− 5r′ − 11s′

(7) f ′2 + f ′4 + 2n′1 + n′2 + 2n′4 = 6r′ + 2s′

(8) f ′1 + f ′3 + n′2 + 2n′3 = 13− 6r′ − 2s′

For xi ∈ V , B ∈ D and C = Bφ, if d(xi, B) = 4, we say that x occurs at left in

C, and if d(xi, B) = 3, we say that x occurs at right in C. For x ∈ U , let a′x and b′x

denote the number of occurences of x at left and right in D′ respectively. Also, for

1 ≤ i ≤ 4, let fi,x,1 and ni,x,1 denote the number of occurences of x at left in a block

of type Fi and Ni respectively. Similarly, let fi,x,2 and ni,x,2 denote the number of

occurences of x at right in a block of type Fi and Ni respectively.
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Lemma 5.4.3. Let λ be of type (r′, s′), and k′ = 9− 2(r′ + s′) = |fix(λ)|. Then,

(1) If x /∈ fix(λ), then f3,x,1 + f4,x,1 = 1.

(2) If x ∈ U1 then (a′x, b
′
x) = (2, 6), and if x ∈ U2 then (a′x, b

′
x) = (5, 2).

(3) If x ∈ fix(λ), then f1,x,1 + f2,x,1 + f3,x,1 + f4,x,1 + n4,x,1 = a′x.

(4) If x ∈ fix(λ), then f1,x,2 + f3,x,2 + n2,x,2 + n3,x,2 = b′x.

(5) If x /∈ fix(λ), then n1,x,1 + n2,x,1 + n3,x,1 + n4,x,1 = a′x − 1.

(6) If x /∈ fix(λ), then f2,x,2 + f4,x,2 + n1,x,2 + n2,x,2 + n4,x,2 = b′x.

(7) If x ∈ fix(λ), then 4f1,x,1 + 3f1,x,2 + 2f2,x,1 + 2f3,x,1 + f3,x,2 = 3k′ − 1.

Proof: (1) follows by Lemma 5.3.1 and (2) follows by the definitions of V1

and V2. Then, (3)-(6) follow by counting the occurences of x at left and right, and

finally (7) follows by counting the occurences of x in the edges of the form [x, y] for

y ∈ fix(λ).

Proposition 5.4.3. Suppose that 1λ = 2. Let D′1,2 be the set of blocks covering the

edges [x, y] for x, y ∈ {1, 2}. Then,

(1) D′1,2 = {[1, 2, • | 1, 2]}, or

(2) D′1,2 = {[1, 2, • | ∗, ∗], [1, ◦, ∗ | 1, 2], [2, ◦, ∗ | 1, 2]}.

Proof: Let C1 be the block containing the points 1 and 2 at left (see Lemma

5.4.3 (1)). By Lemma 5.4.3 (5), each of the points 1 and 2 occur exactly once at

left in a nonfixed block, say in C2 = [1, ◦, ∗ | ∗, ∗] and (C2)
λ = [2, ◦, ∗ | ∗, ∗]. The

only blocks which can cover the edges [x, y] for x, y ∈ {1, 2} are C1, C2 and (C2)
λ.

If C1 = [1, 2, • | 1, 2], all such edges are covered and we get D′1,2 = {C1}, otherwise

C1 = [1, 2, • | z, t] where z, t /∈ {1, 2} and hence we need to have C2 = [1, ◦, ∗ | 1, 2].
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Proposition 5.4.4. Let x, y and z be 3 distinct points in U . Then D′ cannot contain

two blocks C1 and C2, where [x, y | z, z] is a subgraph of C1, and [x, y, z] is a subgraph

of C2.

Proof: Without loss of generality, suppose that one of the blocks, say B2 ∈

(C2)
φ−1

, contains [x0, y0, z0] as a subgraph (otherwise relabel y′s and z′s by shift-

ing their indices). Let B1 be the block in (C1)
φ−1

containing x0, i.e. containing

[x0, yi | zj, zk] as a subgraph. Then since the edges [x, y]0 and [x, z]0 occur in C2,

we have i ∈ {1, 2} and {j, k} = {1, 2}, but then [y, z]0 occurs in both C1 and C2,

contradiction.

LetKn denote the set of all graphs of the form [a1, a2, ..., an]. (Note that Kn ∈ Kn.)

Proposition 5.4.5. Let J be the graph with V (J) = {x, y, z, t}, which contains the

edge [a, a] once for all a ∈ V (J), the edges [x, y] and [z, t] twice, and the edge [a, b]

three times for all a ∈ {x, y} and b ∈ {z, t}. Let Σ = {B2, B
∗
2 , B3, B

∗
3 , B4, B

∗
4} be

a (K2 ∪ K3 ∪ K4)-decomposition of J , where the permutation τ = (x, y)(z, t) is an

automorphism of Σ, Bk ∈ Kk and B∗k = (Bk)
τ for k ∈ {2, 3, 4}. Moreover suppose

that the points x and y occur 4 times, and the points z and t occur 5 times in Σ.

Then, Σ is isomorphic to the decomposition given in Table 5.3.

Table 5.3: (K2 ∪K3 ∪K4)-decomposition of J

B2 = [z, z] B3 = [x, y, z] B4 = [x, x, z, t]

B∗2 = [t, t] B∗3 = [x, y, t] B∗4 = [y, y, z, t]

Proof: A point a ∈ V (J) cannot occur more than twice in {Bi, B
∗
i }, since

otherwise the edges [c, d] for c, d ∈ {a, aλ} occur at least 6 times in total. Therefore,

each point occurs twice in {B4, B
∗
4}, and the point z occurs at least once in {B2, B

∗
2}.

Counting the edges [a, b] for a, b ∈ {x, y}, we see that x occurs twice in {B3, B
∗
3}, and
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hence z occurs twice in {B2, B
∗
2} and once in {B3, B

∗
3}. Therefore, without loss, Σ is

as in Table 5.4, where the last row indicates the missing points in each column.

Table 5.4: (K2 ∪K3 ∪K4)-decomposition of J (partial)

B2 = [∗, z] B3 = [∗, ∗, z] B4 = [x, ∗, ∗, z]

B∗2 = [∗, t] B∗3 = [∗, ∗, t] B∗4 = [y, ∗, ∗, t]

zt xxyy xyzt

We have B4 = [x, a, b, z], where a ∈ {x, y} and b ∈ {z, t}. Also (a, b) 6= (x, z),

since otherwise [x, z] occurs 4 times in B4. In all other cases the edges [x, z] and [y, z]

occur twice in {B4, B
∗
4}, and hence B3 = [x, y, z]. Therefore, the edge [x, x] occurs in

B4, and hence B4 = [x, x, z, t]. Finally, the edge [z, z] occurs in B2 and we get the

result.

Proof of Theorem 5.4.2: We consider the four cases for the type of λ (see

Lemma 5.4.1).

Case 1: λ is of type (0, 2).

By Lemma 5.4.2 (5), n′4 ≡ 1 (mod 3), and hence by Lemma 5.4.2 (4), n′4 = 1,

n′1 = n′2 = 0, and f ′4 = n′3 = 1, which contradicts Lemma 5.4.2 (5).

Case 2: λ is of type (0, 3), say λ = (1)(2)(3, 4)(5, 6)(7, 8)(9).

By Lemma 5.4.2 (3), f ′1 ≤ 1.

Case 2.1: f ′1 = 1.

Then f ′2 = 1 and f ′3 = 0. Let fix(λ) = {x, y, z}, and C1 and C2 be the blocks of

types F1 and F2 respectively. Necessarily C1
∼= H2, say C1 = [x, y, z | x, y]. Then the

remaining edges on {x, y, z} occur in C2, which is impossible.

Case 2.2: f ′1 = 0.

By Lemma 5.4.2 (6), f ′2 ≤ 2, and so by Lemma 5.4.2 (3), f ′3 ≥ 3. Therefore,

by Lemma 5.4.2 (2), f ′3 = 3 and f ′4 = 0. So, by Lemma 5.4.2 (3), f ′2 = 2 and by
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Lemma 5.4.2 (6), n′4 = 0. Since f ′1 = f ′4 = n′4 = 0, by Lemma 5.4.3 (3), we have

f2,9,1 + f3,9,1 = 5 which contradicts Lemma 5.4.3 (7).

Case 3: λ is of type (1, 1), say λ = (1, 2)(3, 4)(5)(6)(7)(8)(9).

By Lemma 5.4.2 (5), n′4 = 1. Then, by Lemma 5.4.2 (4), n′1 = n′2 = 0, and

f ′4 = n′3 = 1. By Lemma 5.4.2 (2), f ′3 = 1, by Lemma 5.4.2 (8), f ′1 = 2, and finally

by Lemma 5.4.2 (1), f ′2 = 5. Therefore, D′ is as in Table 5.5.

Table 5.5: Case 3

Types F1, F3 and F4 Type F2 Types N3 and N4

C1 = [•, •, • | •, •] C3 = [•, •, • | ◦, ◦] C10 = [◦, ◦, ◦ | •, •]

C2 = [•, •, • | •, •] C4 = [•, •, • | ◦, ◦] (C10)
λ = [◦, ◦, ◦ | •, •]

C5 = [•, •, • | ◦, ◦] C11 = [◦, ◦, • | ◦, ◦]

C8 = [◦, ◦, • | •, •] C6 = [•, •, • | ◦, ◦] (C11)
λ = [◦, ◦, • | ◦, ◦]

C9 = [◦, ◦, • | ◦, ◦] C7 = [•, •, • | ◦, ◦]

By Lemma 5.4.3 (5), n3,1,1 + n4,1,1 = 1. If n3,1,1 = 0, then the blocks C10 and

(C10)
λ contain in total 6 edges of the form [x, y] where x, y ∈ {3, 4}, but there are

only 5 such edges. Therefore, n3,1,1 = 1, say C10 = [1, ◦, ◦ | •, •]. By Lemma 5.4.3 (1),

one of the edges [3, 4] occurs in C8 or C9 and the remaining 4 edges of the form [x, y]

for x, y ∈ {3, 4} occur in the last column. Therefore, n4,3,2 = 0 and n4,1,2 = 2. If the

edge [3, 3] occurs in a block of type N3, say in C10, then we have C10 = [1, 3, 3 | •, •]

and C11 = [3, 4, • | ◦, ◦]. But then the edge [1, 3] occurs 4 times in {C10, C11, (C11)
λ},

contradiction. Therefore, the edge [3, 3] occurs in a block of type N4, say in C11, and

hence C10 = [1, 3, 4 | •, •] and C11 = [3, 3, • |1, 2]. Let z be a fixed point occuring

in C10. Note that z cannot occur twice in C10 and z cannot occur in C11, since

otherwise the edge [3, z] occurs more than 3 times. Therefore, without loss, we have

C10 = [1, 3, 4 | 5, 6] and C11 = [3, 3, 7 |1, 2]. Also by Proposition 5.4.3, we have
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C9 = [1, 2, • | 1, 2] and hence C8 = [3, 4, • | •, •]. Finally by Lemma 5.4.3 (6), D′ is

as in Table 5.6.

Table 5.6: Case 3 (continued)

Type F1, F3 and F4 Type F2 Types N3 and N4

C1 = [•, •, • | •, •] C3 = [•, •, • | 1, 2] C10 = [1, 3, 4 | 5, 6]

C2 = [•, •, • | •, •] C4 = [•, •, • | 1, 2] (C10)
λ = [2, 3, 4 | 5, 6]

C5 = [•, •, • | 1, 2] C11 = [3, 3, 7 | 1, 2]

C8 = [3, 4, • | •, •] C6 = [•, •, • | 3, 4] (C11)
λ = [4, 4, 7 | 1, 2]

C9 = [1, 2, • | 1, 2] C7 = [•, •, • | 3, 4]

Counting the occurences of the edge [1, 7], we see that C9 cannot contain the point

7. Therefore, C9 contains 5,6,8 or 9.

Case 3.1: C9 contains 5 or 6, without loss say 5.

Then the blocks C1, ..., C9 are as in Table 5.7, where the numbers in the last row

indicate the points missing in the corresponding column. The values in the first and

third columns also indicate which points occur at left and which ones occur at right.

We get these values in the second and third columns by counting the edges [x, y] for

x ∈ {1, 3} and y ∈ {5, 6, 7, 8, 9}. Then the values in the first column, and then the

points which occur at right in the third column, follow by counting the number of

occurences of each fixed point in D′.

The edge [7, 7] needs to occur in the first column. Therefore the block, say C1,

which contains 7 at left also has to contain 7 at right once, and therefore C2 contains 7

at right once. Then we need to have C1 = [7, 5, 6 | 7, •] and C2 = [5, 5, 6 | 7, •], which

contradicts Proposition 5.4.4 since the graphs [5, 6 | 7, 7] and [5, 6, 7] are subgraphs

of C1 and C2 respectively.

Case 3.2: C9 contains 8 or 9, without loss say 8.
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Table 5.7: Case 3.1 (The blocks C1, ..., C9)

Type F1 Blocks with 1 and 2 Blocks with 3 and 4

C1 = [•, •, • | •, •] C3 = [•, •, • | 1, 2] C6 = [•, •, • | 3, 4]

C2 = [•, •, • | •, •] C4 = [•, •, • | 1, 2] C7 = [•, •, • | 3, 4]

C5 = [•, •, • | 1, 2] C8 = [3, 4, • | •, •]

C9 = [1, 2, 5 | 1, 2]

[555667 | 7789] 667888999 [5678899 | 89]

Then the blocks C1, ..., C9 are as in Table 5.8. The edge [7, 7] needs to occur in

the first column, say in C1. So, C1 = {7, 7, • | •, •} or C1 = {7, •, • | 7, •}.

Table 5.8: Case 3.2 (The blocks C1, ..., C9)

Type F1 Blocks with 1 and 2 Blocks with 3 and 4

C1 = [•, •, • | •, •] C3 = [•, •, • | 1, 2] C6 = [•, •, • | 3, 4]

C2 = [•, •, • | •, •] C4 = [•, •, • | 1, 2] C7 = [•, •, • | 3, 4]

C5 = [•, •, • | 1, 2] C8 = [3, 4, • | •, •]

C9 = [1, 2, 8 | 1, 2]

5566777889 556678999 567888999

Case 3.2.1: C1 = {7, 7, • | •, •}.

All occurences of 5 and 6 in the first column have to be at left. So, without loss,

say C1 = {7, 7, 5 | •, •} and C2 = {5, 6, 6 | 7, •}. The point 8 cannot occur twice in

C1, and so C1 = {7, 7, 5 | 8, 9}, C2 = {5, 6, 6 | 7, 8}, and hence C8 = [3, 4, • | 7, 9].

Moreover, the edge [5, 5] has to occur in the second column, say in C3. So, the blocks

C1, ..., C9 are as in Table 5.9.

Counting the edges [5, x] for x ∈ {6, 7, 8, 9}, we get C3 = [5, 5, 9 | 1, 2] and say C6 =

[5, 6, 8 | 3, 4]. Also, since the edge [6, 6] occurs in C2, we need to have C4 = [6, •, • | 1, 2]
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Table 5.9: Case 3.2.1 (The blocks C1, ..., C9)

Type F1 Blocks with 1 and 2 Blocks with 3 and 4

C1 = {7, 7, 5 | 8, 9} C3 = [5, 5, • | 1, 2] C6 = [•, •, • | 3, 4]

C2 = {5, 6, 6 | 7, 8} C4 = [•, •, • | 1, 2] C7 = [•, •, • | 3, 4]

C5 = [•, •, • | 1, 2] C8 = [3, 4, • | 7, 9]

C9 = [1, 2, 8 | 1, 2]

6678999 5688899

and C5 = [6, •, • | 1, 2]. But then, the edge [6, 8] occurs 4 times, contradiction.

Case 3.2.2: C1 = {7, •, • | 7, •}.

The points 5 and 6 occur twice at left in the first column. Assume that C1 =

{7, 5, 6 | 7, •}. Then, C2 = [5, 6, • | •, •], which contradicts Proposition 5.4.4 since

the graph [5, 6 | 7, 7] is a subgraph of C1, and C2 contains the point 7 (and hence has

the subgraph [5, 6, 7]). Therefore, C1 contains only one of the points 5 and 6, without

loss, say 5. Then, C1 = {7, 5, • | 7, •} and C2 = [5, 6, 6 | 7, •]. Therefore the edge

[5, 8] occurs twice and the edge [5, 9] occurs once in the first column. The edge [5, 5]

needs to occur in the second column and counting the edges [5, x] for x ∈ {6, 7, 8, 9},

we get say C3 = [5, 5, 9 | 1, 2] and C6 = [5, 6, 8 | 3, 4]. Also, since the edge [6, 6] occurs

in C2, the blocks C1, ..., C9 are as in Table 5.10.

Counting the edges [6, x] for x ∈ {7, 8, 9}, we see that the missing edges containing

6 are one [6, 7], two [6, 8]’s and three [6, 9]’s. Since one [6, 7], one [6, 8] and two [6, 9]’s

occur in the second column, therefore the remaining one [6, 8] and one [6, 9] need to

occur in C2, which is impossible.

Case 4: λ is of type (1, 2), say λ = (1, 2)(3, 4)(5, 6)(7)(8)(9).

By Lemma 5.4.2 (3), f ′1 ≤ 1, and as in Case 2.1, f ′1 = 1 is not possible. Therefore,

by Lemma 5.4.2 (3) and 5.4.2 (2), (f ′1, f
′
2, f

′
3, f

′
4) = (0, 4, 0, 3) or (f ′1, f

′
2, f

′
3, f

′
4) =
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Table 5.10: Case 3.2.2 (The blocks C1, ..., C9)

Type F1 Blocks with 1 and 2 Blocks with 3 and 4

C1 = {7, 5, • | 7, •} C3 = [5, 5, 9 | 1, 2] C6 = [5, 6, 8 | 3, 4]

C2 = {5, 6, 6 | 7, •} C4 = [6, •, • | 1, 2] C7 = [•, •, • | 3, 4]

C5 = [6, •, • | 1, 2] C8 = [3, 4, • | •, •]

C9 = [1, 2, 8 | 1, 2]

889 7899 788999

(0, 2, 3, 0).

Case 4.1: (f ′1, f
′
2, f

′
3, f

′
4) = (0, 4, 0, 3).

By Lemma 5.4.2 (6), n′4 = 0, and then by Lemma 5.4.2 (1) and 5.4.2 (7), we

have (n′1, n
′
2, n

′
3, n

′
4) = (1, 1, 1, 0) or (n′1, n

′
2, n

′
3, n

′
4) = (0, 3, 0, 0). Therefore, D′ is as in

Table 5.11, where among the points denoted by a star in the third column, 6 of them

are fixed points and 6 of them are non-fixed points.

Table 5.11: Case 4.1

Type F2 Type F4 Types N1, N2 and N3

C1 = [•, •, • | ◦, ◦] C5 = [◦, ◦, • | ◦, ◦] C8 = [◦, ◦, ◦ | ∗, ∗]

C2 = [•, •, • | ◦, ◦] C6 = [◦, ◦, • | ◦, ◦] (C8)
λ = [◦, ◦, ◦ | ∗, ∗]

C3 = [•, •, • | ◦, ◦] C7 = [◦, ◦, • | ◦, ◦] C9 = [◦, ◦, ◦ | ∗, ∗]

C4 = [•, •, • | ◦, ◦] (C9)
λ = [◦, ◦, ◦ | ∗, ∗]

C10 = [◦, ◦, ◦ | ∗, ∗]

(C10)
λ = [◦, ◦, ◦ | ∗, ∗]

Since the edges [x, x] for x ∈ fix(λ) have to occur in the first column, we need

to have, say C1 = [7, 7, • | ◦, ◦], C2 = [8, 8, • | ◦, ◦], C3 = [9, 9, • | ◦, ◦], and therefore

C4 = [7, 8, 9 | ◦, ◦]. Without loss, say the third fixed point in C1 is 8. Then, C2 and C3
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contain 9 and 7 respectively. Also, by Lemma 5.4.3 (1), we have say C5 = [1, 2, • | ◦, ◦],

C6 = [3, 4, • | ◦, ◦] and C7 = [5, 6, • | ◦, ◦]. Then, by Lemma 5.4.3 (3), each of the

points 7, 8 and 9 occur exactly once in the second column, without loss, say in C5,

C6, and C7 respectively. Moreover, by Lemma 5.4.3 (5), the point 1 needs to occur

exactly once at left in the third column, say in C8. Therefore, D′ is as in Table 5.12.

Table 5.12: Case 4.1 (continued)

Type F2 Type F4 Types N1, N2 and N3

C1 = [7, 7, 8 | ◦, ◦] C5 = [1, 2, 7 | ◦, ◦] C8 = [1, ◦, ◦ | ∗, ∗]

C2 = [8, 8, 9 | ◦, ◦] C6 = [3, 4, 8 | ◦, ◦] (C8)
λ = [2, ◦, ◦ | ∗, ∗]

C3 = [9, 9, 7 | ◦, ◦] C7 = [5, 6, 9 | ◦, ◦] C9 = [◦, ◦, ◦ | ∗, ∗]

C4 = [7, 8, 9 | ◦, ◦] (C9)
λ = [◦, ◦, ◦ | ∗, ∗]

C10 = [◦, ◦, ◦ | ∗, ∗]

(C10)
λ = [◦, ◦, ◦ | ∗, ∗]

By Proposition 5.4.3, there are 2 cases for the blocks C5 and C8.

Case 4.1.1: C5 does not contain 1 or 2 at right and C8 = [1, ◦, ◦ | 1, 2].

The edges [1, x] for x ∈ {7, 8, 9} occur 9 times in total, and one of these edges is

contained in C5. The remaining 8 edges need to occur in the first two columns (except

for the block C5). Therefore we get 3f2,1,2 + f4,1,2 = 8, and hence f2,1,2 = f4,1,2 = 2.

But then, each of the edges [1, x] for x ∈ {7, 8, 9} occur exactly once in the second

column and needs to occur exactly 2 times in the first column, which is a contradiction

since there exists no pair of blocks in the first column covering each x ∈ {7, 8, 9} twice.

Case 4.1.2: C5 = [1, 2, 7 | 1, 2] and C8 does not contain 1 or 2 at right.

The missing points occuring at left in the third column are 3, 4, 5 and 6 (each

occuring 4 times). Let a, b, and d be the total number of occurences of the points 1

and 2 at right in {C1, C2, C3, C4}, {C6, C7}, and {C9, (C9)
λ, C10, (C10)

λ} respectively,
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a′, b′, c′, and d′ be the total number of occurences of the points 3, 4, 5 and 6 at right in

{C1, C2, C3, C4}, {C6, C7}, {C8, (C8)
λ} and {C9, (C9)

λ, C10, (C10)
λ} respectively, and

c′′ and d′′ be the total number of occurences of the points 7, 8 and 9 at right in

{C8, (C8)
λ} and {C9, (C9)

λ, C10, (C10)
λ} respectively. Clearly, a + a′ = 8, b + b′ = 4,

c′+c′′ = 4, and d+d′+d′′ = 8. Also, since a point in U1 and U2 occur at right 6 times

and 2 times respectively, we have a+ b+ d = 10, a′+ b′+ c′+ d′ = 8, and c′′+ d′′ = 6.

There are 3
(
4
2

)
+ 4 = 22 edges of the form [x, y] where x, y ∈ {3, 4, 5, 6}, and 16

of these edges are contained in blocks {C6, C7} ∪ {Ci, (Ci)λ | 8 ≤ i ≤ 10}, in such

a way that both x and y occur at left. Therefore, the remaining 6 edges occur in

such a way that one of x and y occurs at left and the other one occurs at right.

Therefore, we get 2b′ + 2c′ + 3d′ = 6. Note that since {3, 4} and {5, 6} are orbits of

λ, therefore b′, c′, and d′ are all even. Therefore, b′ = c′ = 0, d′ = 2, and we get

(a, a′, b, b′, c′, c′′, d, d′, d′′) = (2, 6, 4, 0, 0, 4, 4, 2, 2). Let {x, y, z, t} = {3, 4, 5, 6} such

that {x, y} = {3, 4} or {x, y} = {5, 6}. Then, D′ is as in Table 5.13.

Table 5.13: Case 4.1.2

Type F2 Type F4 Types N1, N2 and N3

C1 = [7, 7, 8 | ◦, ◦] C5 = [1, 2, 7 | 1, 2] C8 = [1, ◦, ◦ | •, •]

C2 = [8, 8, 9 | ◦, ◦] C6 = [3, 4, 8 | 1, 2] (C8)
λ = [2, ◦, ◦ | •, •]

C3 = [9, 9, 7 | ◦, ◦] C7 = [5, 6, 9 | 1, 2] C9 = [◦, ◦, ◦ | ∗, ◦]

C4 = [7, 8, 9 | ◦, ◦] (C9)
λ = [◦, ◦, ◦ | ∗, ◦]

C10 = [◦, ◦, ◦ | ∗, z]

(C10)
λ = [◦, ◦, ◦ | ∗, t]

123456xy [3333444455556666 | 1122778899]

Note that the subgraphs of the blocks in the third column of Table 5.13 on the

points {3, 4, 5, 6} satisfy the conditions of Proposition 5.4.5. Therefore, according to
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whether the point marked by a ∗ in C9 is fixed or not, there are 2 cases for these

blocks which are given in Table 5.14. The missing points in each case are 1122778899.

Table 5.14: Cases 4.1.2.1 and 4.1.2.2 (Blocks of types N1, N2 and N3)

Case 4.1.2.1 Case 4.1.2.2

C8 = [1, z, z | •, •] C8 = [1, z, z | •, •]

(C8)
λ = [2, t, t | •, •] (C8)

λ = [2, t, t | •, •]

C9 = [x, y, z | •, ◦] C9 = [x, y, z | ◦, ◦]

(C9)
λ = [x, y, t | •, ◦] (C9)

λ = [x, y, t | ◦, ◦]

C10 = [x, x, t | ◦, z] C10 = [x, x, t | •, z]

(C10)
λ = [y, y, z | ◦, t] (C10)

λ = [y, y, z | •, t]

Since the edge [1, z] occurs once in {C6, C7} and twice in C8, the edge [1, z] cannot

occur in the blocks in Table 5.14. In the first case, the point 1 needs to occur in (C9)
λ

and C10, but then the edge [1, x] occurs 4 times, contradiction. In the second case,

the point 1 needs to occur twice in (C9)
λ, which contradicts Proposition 5.4.4, since

the graphs [x, y | 1, 1] and [x, y, 1] are subgraphs of (C9)
λ and C6 (or C7) respectively.

Case 4.2: (f ′1, f
′
2, f

′
3, f

′
4) = (0, 2, 3, 0).

By Lemma 5.4.2 (6), n′4 = 3, and then by Lemma 5.4.2 (1) and 5.4.2 (7), we have

(n′1, n
′
2, n

′
3, n

′
4) = (1, 0, 0, 3). Therefore, D′ is as in Table 5.15.

We first consider the blocks of types N1 and N4. By Proposition 5.4.3, the block

of type N1 or N4 containing the point 1 at left contains the points 1 and 2 at right.

For i ∈ {1, 4}, (j, k) ∈ {(0, 0), (0, 1), (0, 2), (1, 2)}, let mi,j,k be the number of blocks

Ct for 6 ≤ t ≤ 9 such that Ct is of type Ni and the point 1 occurs j times at left and

k times at right in {Ct, (Ct)λ}. Also let m′ be the number of occurences of the point

1 at right in a block of type F2. Clearly, we have

(1) m1,0,0 +m1,0,1 +m1,0,2 +m1,1,2 = 1,
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Table 5.15: Case 4.2

Types F2 and F3 Type N1 Type N4

C1 = [•, •, • | ◦, ◦] C6 = [◦, ◦, ◦ | ◦, ◦] C7 = [◦, ◦, • | ◦, ◦]

C2 = [•, •, • | ◦, ◦] (C6)
λ = [◦, ◦, ◦ | ◦, ◦] (C7)

λ = [◦, ◦, • | ◦, ◦]

C3 = [◦, ◦, • | •, •] C8 = [◦, ◦, • | ◦, ◦]

C4 = [◦, ◦, • | •, •] (C8)
λ = [◦, ◦, • | ◦, ◦]

C5 = [◦, ◦, • | •, •] C9 = [◦, ◦, • | ◦, ◦]

(C9)
λ = [◦, ◦, • | ◦, ◦]

(2) m4,0,0 +m4,0,1 +m4,0,2 +m4,1,2 = 3, and

(3) m1,1,2 +m4,1,2 = 1. (see Proposition 5.4.3)

Counting the occurences of the point 1 at right, we get

(4) m1,0,1 +m4,0,1 + 2m1,0,2 + 2m4,0,2 + 2m1,1,2 + 2m4,1,2 +m′ = 6

and hence by (3) and (4), we get

(5) m1,0,1 +m4,0,1 + 2m1,0,2 + 2m4,0,2 +m′ = 4.

Counting the edges [1, x] for x ∈ fix(λ), we get

(6) m4,0,1 + 2m4,0,2 + 3m4,1,2 + 3m′ = 6,

and hence by (5), (6), and (1) we get

(7) 3m4,1,2 + 2m′ = m1,0,1 + 2m1,0,2 + 2 ≤ 4.

By (3), m1,1,2 ≤ 1. Assume that m1,1,2 = 1. Then we have, say C6 = [1, ◦, ◦ | 1, 2].

By (1), we get m1,0,0 = m1,0,1 = m1,0,2 = 0, and then by (7), we get m′ = 1. So,

say C1 = [•, •, • | 1, 2] and C2 = [•, •, • | 3, 4]. Then, counting the edges [3, x] for

x ∈ fix(λ), we get n4,3,1 + n4,3,2 = 3, and then counting the occurences of the point

3, we get n1,3,1 = 2. Therefore C6 = [1, 3, 4 | 1, 2], which now contradicts Proposition

5.4.4 since C6 and (C6)
λ contain the subgraphs [3, 4 | 1, 1] and [3, 4, 1] respectively.

Therefore m1,1,2 = 0 and hence m4,1,2 = 1.
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Then, by (7), we get m′ = 0, m1,0,2 = 0 and m1,0,1 = 1, and then by (1) we get

m1,0,0 = 0. Finally, by (2) and (6), we get m4,0,0 = 0, and m4,0,1 = m4,0,2 = 1.

Moreover, for y ∈ {3, 4, 5, 6}, assume that f2,y,2 = 2. Then, counting edges [y, x]

for x ∈ fix(λ), we get n4,y,1 = n4,y,2 = 0. But then counting the occurences of y at

left, we get n1,y,1 = 4, contradiction. Therefore, f2,y,2 = 1 for all y ∈ {3, 4, 5, 6}.

Also, for x ∈ fix(λ), by Lemma 5.4.3 (4), we get f3,x,2 = 2, and then by Lemma

5.4.3 (7), f2,x,1 + f3,x,1 = 3. Finally, by Lemma 5.4.3 (3), n4,x,1 = 2. Therefore,

without loss, D′ is as in Table 5.16, where {a, b} = {1, 2}.

Table 5.16: Case 4.2 (continued)

Type F2 and F3 Type N1 Type N4

C1 = [•, •, • | 3, 4] C6 = [◦, ◦, ◦ | 1, ◦] C7 = [◦, ◦, 7 | 1, ◦]

C2 = [•, •, • | 5, 6] (C6)
λ = [◦, ◦, ◦ | 2, ◦] (C7)

λ = [◦, ◦, 7 | 2, ◦]

C3 = [1, 2, • | •, •] C8 = [◦, ◦, 8 | 1, a]

C4 = [3, 4, • | •, •] (C8)
λ = [◦, ◦, 8 | 2, b]

C5 = [5, 6, • | •, •] C9 = [1, 3, 9 | 1, 2]

(C9)
λ = [2, 4, 9 | 1, 2]

Note that the subgraphs of the blocks of types N1 and N4 on the points {3, 4, 5, 6}

satisfy the conditions of Proposition 5.4.5 (with {x, y} = {3, 4} and {z, t} = {5, 6}).

Therefore, without loss, say C8 = [5, 5, 8 | 1, a] and hence a = 2.

By Proposition 5.4.5, the missing points in C6 are either 3356 or 4456, and the

missing points in C7 are either 345 or 346. Counting the edges [1, 3], we see that

the missing points in C6 are 4456. Without loss, the point 5 occurs at right either

in C6 or C7. In the first case, we get C6 = [4, 4, 6 | 1, 5] and then counting the

edges [1, c] for c ∈ {3, 4, 5, 6}, we get C7 = [3, 5, 7 | 1, 4]. In the second case, we

get C7 = [3, 4, 7 | 1, 5] and then counting the edges [1, c] for c ∈ {3, 4, 5, 6}, we get
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C6 = [4, 5, 6 | 1, 4]. Therefore {Ci | 6 ≤ i ≤ 9} = D′k[6,7] ∪ D′[8,9] for some k ∈ {1, 2}

(see Table 5.17).

Table 5.17: Case 4.2 (Two cases for the blocks C6, ..., C9)

D′1[6,7] D′2[6,7] D′[8,9]

C6 = [4, 4, 6 | 1, 5] C6 = [4, 5, 6 | 1, 4] C8 = [5, 5, 8 | 1, 2]

C7 = [3, 5, 7 | 1, 4] C7 = [3, 4, 7 | 1, 5] C9 = [1, 3, 9 | 1, 2]

Now we consider the blocks of types F2 and F3. For 1 ≤ i ≤ 5, let C∗i be the

subgraph of Ci on the fixed points of λ, and D∗ = {C∗1 , C∗2 , C∗3 , C∗4 , C∗5}. We will show

that D∗ ∼= D∗j for some 1 ≤ j ≤ 6 (see Table 5.18).

Table 5.18: Case 4.2 (Six cases for the blocks C∗1 , ..., C
∗
5 )

D∗1 D∗2 D∗3 D∗4 D∗5 D∗6

[7, 7, 8] [7, 7, 8] [7, 7, 9] [7, 7, 9] [7, 7, 8] [7, 8, 9]

[7, 8, 9] [7, 8, 9] [7, 8, 8] [7, 8, 8] [8, 9, 9] [7, 8, 9]

[8 | 8, 9] [8 | 8, 9] [8 | 7, 9] [8 | 7, 9] [7 | 8, 9] [7 | 7, 8]

[9 | 7, 7] [9 | 7, 8] [9 | 7, 8] [9 | 8, 8] [8 | 8, 9] [8 | 8, 9]

[9 | 8, 9] [9 | 7, 9] [9 | 8, 9] [9 | 7, 9] [9 | 7, 7] [9 | 7, 9]

Let x ∈ fix(λ). Recall that f3,x,2 = 2 and f2,x,1 + f3,x,1 = 3. (See the paragraph

above Table 5.16.) If x occurs 3 times at left in {C3, C4, C5}, then the edge [x, x]

occurs twice, contradiction. Therefore, either {C∗1 , C∗2} contains one point say 7 three

times, one point say 8 twice, and hence the point 9 once, or {C∗1 , C∗2} contains all

three points twice.

If {C∗1 , C∗2} contains 777889, then {C∗1 , C∗2} is either as in D∗1 and D∗2 or as in D∗3

and D∗4. In both cases, 8 occurs once and 9 occurs twice at left in {C∗3 , C∗4 , C∗5}. Then,

if we count the edges [8, 8], [9, 9], [7, 8], [8, 9] and [7, 9], we get D∗1, D∗2, D∗3 and D∗4.
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If {C∗1 , C∗2} contains 778899, then {C∗1 , C∗2} is either as in D∗5 or as in D∗6. In both

cases, each point occurs once at left in {C∗3 , C∗4 , C∗5}, and the block containing the

point 8 at left is either [8 | 8, 7] or [8 | 8, 9], and without loss, we can say it is [8 | 8, 9].

Then, counting the remaining edges, we get D∗5 and D∗6. Therefore, D∗ ∼= D∗j for some

1 ≤ j ≤ 6 as claimed. Note that D∗i � D∗j for i 6= j.

Now if we count the edges [a, x] for a ∈ {1, 3, 5} and x ∈ fix(λ), we see that

the fixed points in {C3}, {C1, C4} and {C2, C5} are 778, 788899 and 778999 re-

spectively. Then, looking for such configurations for D∗, one can see from Table

5.18 that, if we let θ and π be the permutations (7, 8, 9) and (7, 9) respectively,

then D∗ ∈ {(D∗1)πθ, (D∗1)π, (D∗2)θ
2
, (D∗2)θ, (D∗3)π, (D∗5)θ

2
, (D∗5)πθ,D∗6}, where for the case

D∗ = (D∗3)π, there are 2 choices for the blocks {C4, C5}. Note that the cases

D∗ = (D∗6)θ and D∗ = (D∗6)θ
2

are included since (D∗6)θ = D∗6. These 9 cases for

the blocks {Ci | 1 ≤ i ≤ 5} are given in Table 5.19, where 3 of these cases are not

possible for the following reasons: If D∗ = (D∗1)π or D∗ = (D∗5)θ
2
, then the blocks

{C2, C5} contradict Proposition 5.4.4, and if D∗ = (D∗3)π and C4 = [3, 4, 8 | 7, 9], then

the blocks {C1, C4} contradict Proposition 5.4.4. Therefore, D′ = D′j[1,5]∪D
′k
[6,7]∪D′[8,9]

for some j ∈ {1, 2, 3, 4, 5, 6} and k ∈ {1, 2} (see Tables 5.17 and 5.19).

Now for each of these 12 cases, we try to extend D′ to D by inserting subscripts.

For 1 ≤ i ≤ 9, let Bi ∈ D be such that (Bi)
φ = Ci and that the conditions of

Proposition 5.4.2 are satisfied (see the remarks below Proposition 5.4.2). During the

process of inserting subscripts to the points, for x ∈ U and Ci ∈ D′, we are free to

choose the subscripts for all occurences of x in Bi without any loss, if

(1) The point x occurs twice at left or once in Ci and no subscript is inserted to

a point in Ci yet (since we can choose Bi as the block in (Ci)
φ−1

where the

subscript(s) of x in Bi are as required), or
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Table 5.19: Case 4.2 (Nine cases for the blocks C1, ..., C5 (Only six cases
are possible))

If D∗ = (D∗1)πθ If D∗ = (D∗1)π If D∗ = (D∗2)θ
2

D′1[1,5] (not possible) D′2[1,5]

C1 = [7, 8, 9 | 3, 4] C1 = [8, 9, 9 | 3, 4] C1 = [7, 8, 9 | 3, 4]

C2 = [7, 7, 9 | 5, 6] C2 = [7, 8, 9 | 5, 6] C2 = [7, 9, 9 | 5, 6]

C3 = [1, 2, 8 | 7, 7] C3 = [1, 2, 7 | 7, 8] C3 = [1, 2, 7 | 7, 8]

C4 = [3, 4, 8 | 8, 9] C4 = [3, 4, 8 | 7, 8] C4 = [3, 4, 8 | 8, 9]

C5 = [5, 6, 9 | 8, 9] C5 = [5, 6, 7 | 9, 9] C5 = [5, 6, 8 | 7, 9]

If D∗ = (D∗2)θ If D∗ = (D∗3)π (1) If D∗ = (D∗3)π (2)

D′3[1,5] (not possible) D′4[1,5]

C1 = [8, 8, 9 | 3, 4] C1 = [8, 8, 9 | 3, 4] C1 = [8, 8, 9 | 3, 4]

C2 = [7, 8, 9 | 5, 6] C2 = [7, 9, 9 | 5, 6] C2 = [7, 9, 9 | 5, 6]

C3 = [1, 2, 7 | 7, 8] C3 = [1, 2, 7 | 7, 8] C3 = [1, 2, 7 | 7, 8]

C4 = [3, 4, 7 | 8, 9] C4 = [3, 4, 8 | 7, 9] C4 = [3, 4, 7 | 8, 9]

C5 = [5, 6, 9 | 7, 9] C5 = [5, 6, 7 | 8, 9] C5 = [5, 6, 8 | 7, 9]

If D∗ = (D∗5)θ
2

If D∗ = (D∗5)πθ If D∗ = D∗6

(not possible) D′5[1,5] D′6[1,5]

C1 = [7, 8, 8 | 3, 4] C1 = [8, 8, 9 | 3, 4] C1 = [7, 8, 9 | 3, 4]

C2 = [7, 9, 9 | 5, 6] C2 = [7, 7, 9 | 5, 6] C2 = [7, 8, 9 | 5, 6]

C3 = [1, 2, 7 | 7, 8] C3 = [1, 2, 8 | 7, 7] C3 = [1, 2, 7 | 7, 8]

C4 = [3, 4, 8 | 9, 9] C4 = [3, 4, 7 | 8, 9] C4 = [3, 4, 8 | 8, 9]

C5 = [5, 6, 9 | 7, 8] C5 = [5, 6, 9 | 8, 9] C5 = [5, 6, 9 | 7, 9]
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(2) The point x occurs twice at left or once in Ci and no subscript is inserted to x

or y = xλ in any block of D′ yet (since we can relabel xt’s and yt’s by shifting

their indices), or

(3) The point x occurs once at left and once at right in Ci and no subscript is

inserted to any point in any block of D′ yet (since we can choose the subscript

of x occuring at left, say as t, and then if necessary relabel the points by

switching zt+1 and zt−1 for all z ∈ U and replacing σ by σ−1).

We now consider the 2 cases for {C6, C7}.

Case 4.2.1: {C6, C7} = D′1[6,7] (see Table 5.17).

Say B6 = [40, 41, 60 | 10, 5i] for some i ∈ Z3. Then the edges [5, 6]−i and [5, 6]i

occur in C6 and (C6)
λ respectively, and hence i 6= 0. Say B7 = [3∗, 50, 70 | 1∗, 4∗].

Since the edges [3, 5]0, [3, 5]2, [4, 5]i and [4, 5]i−1 occur in {C6, (C6)
λ}, we get B7 =

[32, 50, 70 | 1j, 42−i] for some j ∈ Z3. Say B8 = [50, 51, 80 | 1∗, 2∗]. Since the edges

[1, 5]−j and [2, 5]0 occur in C7 and (C6)
λ, we get B8 = [50, 51, 80 | 1j−1, 22]. Then

the edges [1, 8]1−j and [1, 8]1 occur in C8 and (C8)
λ respectively, and hence j 6= 0.

Say B9 = [1∗, 3∗, 90 | 1∗, 20]. Since the edges [2, 3]0 and [2, 3]1 occur in (C6)
λ, we get

B9 = [1k, 32, 90 | 1m, 20] for some k,m ∈ Z3. Since the edge [1, 3]2−j occurs in C7, we

get k 6= j and m 6= j. Also, since the edge [1, 9]0 occurs in (C9)
λ, we get k 6= 0 and

m 6= 0. Since j 6= 0, we get k = m, contradiction since a point cannot occur more

than once in a block.

Case 4.2.2: {C6, C7} = D′2[6,7] (see Table 5.17).

Say B6 = [40, 50, 6i | 10, 41] for some i ∈ Z3. Then the edges [5, 6]i and [5, 6]−i

occur in C6 and (C6)
λ respectively, and hence i 6= 0. Say B7 = [3∗, 4∗, 70 | 1∗, 50].

Since the edges [4, 5]0, [4, 5]2, [3, 5]i and [3, 5]i−1 occur in {C6, (C6)
λ}, we get B7 =

[32−i, 42, 70 | 1j, 50] for some j ∈ Z3. Say B8 = [50, 51, 80 | 1∗, 2∗]. Since the edges
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[1, 5]0 and [2, 5]i occur in C6 and (C6)
λ, we get B8 = [50, 51, 80 | 12, 22−i]. Say B9 =

[1p, 32−i, 9i | 1q, 2r] for some p, q, r ∈ Z3. Since the edge [1, 3]2−i−j occurs in C7, we

have p 6= j and q 6= j. Also, since the edge [1, 9]i−r occurs in (C9)
λ, we get p 6= r

and q 6= r. Since p 6= q, we need to have r = j. Since the edges [1, 4]0, [1, 4]2−j and

[1, 4]2−i−j occur in {C6, C7, (C9)
λ}, we get j 6= 2 and 2− i− j = j − 2, i.e. i = j + 1,

and hence B9 = [1j+k, 31−j, 9j+1 | 1j−k, 2j] for some k ∈ {1, 2}. Therefore, we get

Dj,k[6,9] in Theorem 5.4.2.

We now consider the 6 cases for D′[1,5] = {Ct | 1 ≤ t ≤ 5} (see Table 5.19), and

complete the construction. Counting the edges of the form [x, y]m for x /∈ fix(λ) and

y ∈ fix(λ) in the blocks {Ct, (Ct)λ | 6 ≤ t ≤ 9}, we see that the edges [x, y]m for x ∈

{1, 2} and ym ∈ {71−j, 72−j, 8−j}, for x ∈ {3, 4} and ym ∈ {7−j, 80, 81, 82, 91−j, 92−j},

and for x ∈ {5, 6} and ym ∈ {71, 72, 81, 90, 91, 92} need to occur in D′[1,5].

Say B1 = [∗, ∗, ∗ | 3j, 4j], B2 = [∗, ∗, ∗ | 50, 60], B3 = [1j, 2j, ∗ | ∗, ∗], B4 =

[3j, 4j, ∗ | ∗, ∗], and B5 = [50, 60, ∗ | ∗, ∗]. Then, {B3}, {B1, B4} and {B2, B5} contain

the points {71, 72, 80}, {70, 80, 81, 82, 91, 92}, and {71, 72, 81, 90, 91, 92} respectively. For

1 ≤ i ≤ 6, define Di,j[1,5] such that
(
Di,j[1,5]

)φ
= D′i[1,5] (see Table 5.19). Then, we get

Table 5.20 where m,n, p, u, v ∈ {1, 2} and q, r ∈ {0, 1, 2}.

Then, looking at the edges [x, y]t for each pair x, y ∈ fix(λ), we get the constraints

given on Table 5.21. For example, for the case D[1,5] = D2,j
[1,5], the edges [7, 8]t occur for

t ∈ {q,−m, 1 + p}, and hence −m 6= 1 + p, i.e. m+ p 6= 2, and q−m+ 1 + p = 0,

i.e. q = m − p − 1. The edges [7, 9]t occur for t ∈ {n, r − 1, r + 1}, and hence

r = n. Finally, the edges [8, 9]t occur for t ∈ {n − q,−n − q − u, r + 1}, and hence

n − q 6= −n − q − u, i.e. n 6= u, and (n − q) + (−n − q − u) + (r + 1) = 0, i.e.

q + r = u− 1. We get the constraints for the other cases using similar arguments.

One can now see from the constraints in Table 5.21 that the following holds:

If D[1,5] = D1,j
[1,5], then (n, q, r, u, v) = (1, 0, 1, 2, 2).
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Table 5.20: Case 4.2.2 (Six cases for the blocks B1, ..., B5)

D1,j
[1,5] D2,j

[1,5]

B1,j
1 = [70, 8q, 9n | 3j, 4j] B2,j

1 = [70, 8q, 9n | 3j, 4j]

B1,j
2 = [71, 72, 9r | 50, 60] B2,j

2 = [7p, 9r, 9r+1 | 50, 60]

B1,j
3 = [1j, 2j, 80 | 71, 72] B2,j

3 = [1j, 2j, 7m | 7−m, 80]

B1,j
4 = [3j, 4j, 8q+u | 8q−u, 9−n] B2,j

4 = [3j, 4j, 8q+u | 8q−u, 9−n]

B1,j
5 = [50, 60, 9r+v | 81, 9r−v] B2,j

5 = [50, 60, 81 | 7−p, 9r−1]

D3,j
[1,5] D4,j

[1,5]

B3,j
1 = [8q, 8q+1, 9n | 3j, 4j] B4,j

1 = [8q, 8q+1, 9n | 3j, 4j]

B3,j
2 = [7p, 81, 9r | 50, 60] B4,j

2 = [7p, 9r, 9r+1 | 50, 60]

B3,j
3 = [1j, 2j, 7m | 7−m, 80] B4,j

3 = [1j, 2j, 7m | 7−m, 80]

B3,j
4 = [3j, 4j, 70 | 8q−1, 9−n] B4,j

4 = [3j, 4j, 70 | 8q−1, 9−n]

B3,j
5 = [50, 60, 9r+v | 7−p, 9r−v] B4,j

5 = [50, 60, 81 | 7−p, 9r−1]

D5,j
[1,5] D6,j

[1,5]

B5,j
1 = [8q, 8q+1, 9n | 3j, 4j] B6,j

1 = [70, 8q, 9n | 3j, 4j]

B5,j
2 = [71, 72, 9r | 50, 60] B6,j

2 = [7p, 81, 9r | 50, 60]

B5,j
3 = [1j, 2j, 80 | 71, 72] B6,j

3 = [1j, 2j, 7m | 7−m, 80]

B5,j
4 = [3j, 4j, 70 | 8q−1, 9−n] B6,j

4 = [3j, 4j, 8q+u | 8q−u, 9−n]

B5,j
5 = [50, 60, 9r+v | 81, 9r−v] B6,j

5 = [50, 60, 9r+v | 7−p, 9r−v]
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Table 5.21: Constraints for m, n, p, q, r, u, and v

If D[1,5] = D1,j
[1,5] then If D[1,5] = D2,j

[1,5] then If D[1,5] = D3,j
[1,5] then

q = 0 m+ p 6= 2 p 6= m+ 1

r = n q = m− p− 1 q = m+ p

n 6= u r = n+ p+ 1 p 6= v

q + r = u− v + 1 n 6= u r = v − n

q + r = u− 1 q + r = n− 1

If D[1,5] = D4,j
[1,5] then If D[1,5] = D5,j

[1,5] then If D[1,5] = D6,j
[1,5] then

m+ p 6= 2 q = 1 p 6= m+ 1

q = m− p r = −n q = m+ p− 1

r = p− n+ 1 q + r = n− v − 1 p 6= v

q + r = n r = n+ v

n 6= u

q + r = u+ 1

If D[1,5] = D2,j
[1,5], then (m,n, p, q, r, u) = (1, 2, 2, 1, 2, 1).

If D[1,5] = D3,j
[1,5], then (m,n, p, q, r, v) = (1, 1, 1, 2, 1, 2).

If D[1,5] = D4,j
[1,5], then (m,n, p, q, r) = (1, 1, 2, 2, 2).

If D[1,5] = D5,j
[1,5], then (n, q, r, v) = (2, 1, 1, 2).

If D[1,5] = D6,j
[1,5], then (m,n, p, q, r, u, v) = (1, 2, 1, 1, 1, 1, 2).

Therefore, we get Theorem 5.4.2.

We now show that the designs given in Theorem 5.4.2 are pairwise non-isomorphic

and then determine the full automorphism group of these designs.

Lemma 5.4.4. For i, i′ ∈ {1, 2, 3, 4, 5, 6}, j, j′ ∈ {0, 1} and k, k′ ∈ {1, 2}, suppose

that ψ is an isomorphism from Di,j,k to Di′,j′,k′ such that (10)
ψ = 10. Then, ψ = 1

and (i, j, k) = (i′, j′, k′).
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Proof: The blocks in Di,j,k containing the point 10 are given in Table 5.22.

Table 5.22: The set of blocks containing the point 10

Ai,j1 =
(
Bi,j

3

)ω−2j

= [10, 20, ∗ | ∗, ∗]

Aj,k2 =
(
Bj,k

9

)ω−2j−2k

= [10, 31+j−k, 91−k | 1k, 2k]

Aj3 = Bj
6 = [40, 50, 6j+1 | 10, 41]

Aj4 =
(
Bj

7

)ω−2j

= [31+j, 42−j, 7−j | 10, 5−j]

Aj5 =
(
Bj

8

)ω2

= [51, 52, 81 | 10, 22−j]

Aj6 =
(
Bj

8

)ω2j+1

= [6j−1, 6j, 8j−1 | 2j+1, 10]

Aj,k7 =
(
Bj,k

9

)ω2k−2j

= [1−k, 31+k+j, 9k+1 | 10, 2k]

Aj,k8 =
(
Bj,k

9

)ω3−2j

= [2k, 41+j, 91 | 2−k, 10]

Since (V1)
ψ = V1 and d(10, B) = d(10, B

ψ) for all B ∈ Di,j,k, therefore ψ maps

Ai,j1 → Ai
′,j′

1 and hence (20)
ψ = 20. Also, {Aj,k7 , Aj,k8 } → {A

j′,k′

7 , Aj
′,k′

8 } and hence

{1−k, 2k} → {1−k′ , 2k′} and {2k, 2−k} → {2k′ , 2−k′}. Therefore, we get (xk)
ψ = xk′

and (x−k)
ψ = x−k′ for all x ∈ {1, 2}, and hence Aj,k8 → Aj

′,k′

8 . Therefore, {41+j, 91} →

{41+j′ , 91}. Similarly, looking at the blocks containing 20, we get {31+j, 91} →

{31+j′ , 91}, and hence (31+j, 41+j, 91)→ (31+j′ , 41+j′ , 91). Then if we look at the blocks

containing the points 1k, 2k, 1−k and 2−k, we see that (91+k, 91−k) → (91+k′ , 91−k′)

and (x1+j+k, x1+j−k) → (x1+j′+k′ , x1+j′−k′) for all x ∈ {3, 4}. We also have that

Aj,k2 → Aj
′,k′

2 . Therefore, (4m)ψ = 4m for m ∈ Z3, and hence j′ = j and k′ = k.

Therefore, (xm)ψ = xm for all x ∈ {1, 2, 3, 4, 9} and m ∈ Z3. Now, looking at the

blocks containing 3m for m ∈ Z3, one can see that we also have (xm)ψ = xm for all

x ∈ {5, 6, 7} and m ∈ Z3. Finally, since
(
Aj5, A

j
6

)
→
(
Aj5, A

j
6

)
, we see that (8m)ψ = 8m

for all m ∈ Z3. Therefore, ψ = 1 and hence i′ = i.

Proof of Theorem 5.4.3: Suppose that there is an isomorphism ψ from Di,j,k

to Di′,j′,k′ . Since (V1)
ψ = V1 and the automorphism ω given in Theorem 5.4.2 is
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transitive on V1, we can choose ψ such that (10)
ψ = 10. Then, the result follows by

Lemma 5.4.4.

Proof of Theorem 5.4.4: Let G = Aut(Di,j,k). We have 〈ω〉 ≤ G and hence

(10)
G = V1. By Lemma 5.4.4, |G10 | = 1 and so |G| = |G10| · |(10)

G| = 6.

5.5 (K5 \ E)-DESIGNS OF ORDERS 135, 162 AND 216

Finally, we give the construction of (K5 \ e)-designs of orders 135, 162 and 216. It

was already known by G. Ge and A. C. H. Ling that the existence of these designs are

implied by the existence of a (K5 \ e)-design of order 27. The recursive constructions

given in this section are their work [14]. We are just filling in the holes.

A G-decomposition of the complete multipartite graph, which has exactly ui parts

of size gi for 1 ≤ i ≤ s, is called a G-group divisible design of type gu11 g
u2
2 ...g

us
s , and

denoted as G-GDD. A transversal design TD(k, n) is a Kk-GDD of type nk.

Lemma 5.5.1. [14] There exists a (K5 \ e)-GDD of type 9k for all k ≥ 5.

Theorem 5.5.1. [1] There exists a TD(q + 1, q) for any prime power q.

Lemma 5.5.2. [5] Suppose that there exists a TD(4,m). Then, if there exists a

(K5 \ e)-GDD of type T , then there exists a (K5 \ e)-GDD of type mT .

Corollary 5.5.1. There exists a (K5 \ e)-GDD of type 27k for all k ≥ 5.

Proof: By Theorem 5.5.1, there exists a TD(4, 3). Then, the result follows by

Lemmas 5.5.1 and 5.5.2.

Theorem 5.5.2. There exist (K5 \ e)-designs of orders 135, 162 and 216.

Proof: Starting with a (K5 \ e)-GDD of type 27k for k ∈ {5, 6, 8} and filling in

the holes with a (K5 \ e)-design of order 27, we get the result.
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CHAPTER 6

SOME KS,T -DESIGNS

6.1 MAIN RECURSIVE CONSTRUCTIONS

We denote a complete bipartite graph with parts {a1, ..., as} and {b1, ..., bt} as

{a1, ..., as : b1, ..., bt}.

The following two propositions are standard constructions which can be found in

[5]. Even so, we give the proofs since they are simple.

Proposition 6.1.1. Let G be a graph. Suppose that there exist G-designs of orders

u and v, and a G-decomposition of Ku−1,v−1. Then, there exists a G-design of order

u+ v − 1.

Proof: Let A and B be disjoint sets of size u− 1 and v − 1 respectively, and let

x /∈ A ∪ B. We obtain a G-design of order u + v − 1 on the vertex set A ∪ B ∪ {x}

as follows. By assumption the complete graph with vertex set A∪ {x}, the complete

graph with vertex set B ∪ {x}, and the complete bipartite graph with bipartition

(A,B) all have G-decompositions, and the result follows.

Proposition 6.1.2. There exists a Ks,t-decomposition of Kps,qt for all positive inte-

gers s, t, p and q.

Proof: Let A = {a1, ..., aps} and B = {b1, ..., bqt} be the parts of Kps,qt. The

blocks {ais+1, ..., ais+s : bjt+1, ..., bjt+t} for 0 ≤ i < p, 0 ≤ j < q form the desired

decomposition.
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Corollary 6.1.1. Suppose that there exist Ks,t-designs of orders u and v for some

u ≡ 1 (mod s) and v ≡ 1 (mod t). Then, there exists a Ks,t-design of order u+ v− 1.

Proof: If u = 1 or v = 1, the result is trivial. Otherwise, it follows by Proposi-

tions 6.1.1 and 6.1.2.

The following lemma is a basic result from number theory and we omit the proof.

Lemma 6.1.1. Let s, t, and m be positive integers such that gcd(s, t)|m and m ≥ st.

Then, there exist nonnegative integers p and q such that m = ps+ qt.

Proposition 6.1.3. Let s, t, m and k be positive integers such that gcd(s, t)|m and

m ≥ st. Then, there exists a Ks,t-decomposition of Km,kst.

Proof: Let Km,kst have bipartition (A,B) with |A| = m and |B| = kst. By

Lemma 6.1.1, there exist nonnegative integers p and q such that m = ps + qt. Say

A = A1 ∪ A2 where |A1| = ps and |A2| = qt. If p = 0 or q = 0, the result follows

immediately by Proposition 6.1.2. Otherwise, by Proposition 6.1.2, the complete

bipartite graphs with bipartitions (A1, B) and (A2, B) both have Ks,t-decompositions,

and the result follows.

The following theorem is the main result of this chapter.

Theorem 6.1.1. Let s, t ≥ 1. If there exists a Ks,t-design of order N , then there

exists a Ks,t-design of order n for all n ≡ N (mod 2st) and n ≥ N .

Proof: Suppose that there exists a Ks,t-design of order N . If N = 1, then

the claim is true by Theorem 1.0.4. Let N > 1, and let k be a positive integer. By

Theorem 1.0.5, we have N ≥ 2st > st. Also, by the third necessary condition, we have

gcd(s, t)|(N − 1). Therefore, by Proposition 6.1.3, there exists a Ks,t-decomposition

of KN−1,2kst. Also, by Theorem 1.0.4, there exists a Ks,t-design of order 2kst + 1.

Therefore, the result follows by Proposition 6.1.1.
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6.2 SOME APPLICATIONS OF THEOREM 6.1.1

Theorem 6.1.1 is a powerful tool for constructing infinite families of Ks,t-designs.

The spectrum problem is already completely solved for the case s = 1. For s, t ≥ 2,

to provide a complete solution for the spectrum problem, it is suffient to construct

a Ks,t-design of order n for all values of n that satisfy the necessary conditions and

also satisfy 2st + 1 < n ≤ 4st (see also Theorems 1.0.4 and 1.0.5). We give direct

constructions of these designs for the graphs K2,5, K2,6, K3,4, K2,7 and K3,5, except for

when n ∈ {3st, 4st}. For these exceptional cases, we construct a Ks,t-design for the

next smallest order in the congruence classes, namely a Ks,t-design of order n + 2st,

and hence leave five isolated orders unresolved. The necessary conditions for the 5

graphs are listed in Table 6.1.

Table 6.1: Necessary conditions for the existence of Ks,t-designs

Graph Necessary Conditions

K2,5 n ≡ 0, 1, 5, 16 (mod 20)

K2,6 n ≡ 1, 9 (mod 24)

K3,4 n ≡ 0, 1, 9, 16 (mod 24)

K2,7 n ≡ 0, 1, 8, 21 (mod 28)

K3,5 n ≡ 0, 1, 6, 10 (mod 15)

For the direct constructions, we use cyclic groups which act semiregularly on

blocks and either act semiregularly on points or fix one point and act semiregularly

on the remaining points.

For p, q ≥ 2, let Sp,q = {xi : x ∈ {1, 2, ..., p} , i ∈ Zq}. Define ρp,q : Sp,q → Sp,q

and ρ∞p,q : Sp,q ∪ {∞} → Sp,q ∪ {∞} as ρp,q(xi) = ρ∞p,q(xi) = xi+1 and ρ∞p,q(∞) =∞.

Theorem 6.2.1. There exists a K2,5-design of order n for all n ∈ {25, 36, 60}.
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Proof: For n = 25, take V = S5,5 and develop the following 6 blocks with ρ5,5:

{10, 20 : 11, 12, 21, 22, 30} {10, 30 : 31, 32, 40, 43, 44} {10, 40 : 20, 33, 34, 41, 42}

{10, 20 : 50, 51, 52, 53, 54} {30, 40 : 21, 22, 23, 24, 50} {50, 51 : 32, 34, 42, 44, 52}.

For n = 36, take V = S4,9 and develop the following 7 blocks with ρ4,9:

{14, 20 : 11, 12, 13, 32, 33} {10, 21 : 22, 23, 24, 25, 30} {10, 31 : 14, 32, 33, 34, 35}

{20, 21 : 10, 35, 37, 46, 48} {10, 20 : 31, 41, 42, 43, 44} {10, 30 : 40, 45, 46, 47, 48}

{30, 40 : 20, 41, 42, 43, 44}.

For n = 60, apply Corollary 6.1.1 with u = 25 and v = 36.

Theorem 6.2.2. There exists a K2,6-design of order 33.

Proof: Take V = S3,11 and develop the following 4 blocks with ρ3,11:

{10, 11 : 12, 15, 24, 26, 33, 39} {12, 21 : 15, 24, 20, 31, 38, 39}

{11, 27 : 20, 22, 29, 32, 35, 36} {20, 30 : 10, 31, 32, 33, 34, 35}.

Theorem 6.2.3. There exists a K3,4-design of order n for all n ∈ {33, 40, 72}.

Proof: For n = 33, take V = S3,11 and develop the following 4 blocks with ρ3,11:

{10, 11, 20 : 13, 30, 32, 34} {10, 20, 24 : 11, 14, 16, 21}

{10, 20, 35 : 22, 24, 26, 36} {10, 20, 30 : 35, 37, 38, 39}.

For n = 40, take V = S3,13 ∪ {∞} and develop the following 5 blocks with ρ∞3,13:

{10, 11, 20 : 12, 14, 21, 23} {10, 20, 21 : 16, 25, 30, 32} {10, 15, 23 : 31, 38, 310, 312}

{20, 30, 32 : 19, 33, 34, 38} {10, 24, 33 : 15, 26, 210,∞}.

For n = 72, apply Corollary 6.1.1 with u = 40 and v = 33.

Theorem 6.2.4. There exists a K2,7-design of order n for all n ∈ {36, 49, 84}.

Proof: For n = 36, take V = S4,9 and develop the following 5 blocks with ρ4,9:

{10, 20 : 11, 21, 22, 30, 31, 32, 40} {10, 31 : 12, 15, 16, 25, 26, 27, 41}
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{20, 33 : 10, 15, 16, 24, 26, 37, 48} {10, 21 : 42, 43, 44, 45, 46, 47, 48}

{30, 40 : 31, 32, 33, 41, 42, 43, 44}.

For n = 49, take V = S7,7 and develop the following 12 blocks with ρ7,7:

{10, 30 : 11, 21, 22, 23, 24, 25, 26} {10, 46 : 12, 20, 31, 32, 33, 34, 35}

{13, 50 : 10, 41, 42, 43, 44, 45, 46} {10, 60 : 30, 51, 52, 53, 54, 55, 56}

{20, 46 : 21, 22, 23, 30, 40, 41, 42} {30, 60 : 31, 32, 33, 40, 61, 62, 63}

{20, 30 : 50, 51, 52, 53, 54, 55, 56} {10, 20 : 60, 61, 62, 63, 64, 65, 66}

{10, 20 : 70, 71, 72, 73, 74, 75, 76} {30, 40 : 70, 71, 72, 73, 74, 75, 76}

{40, 70 : 50, 61, 62, 63, 64, 65, 66} {50, 70 : 51, 52, 53, 60, 71, 72, 73}.

For n = 84, apply Corollary 6.1.1 with u = 49 and v = 36.

Theorem 6.2.5. There exists a K3,5-design of order n ∈ {36, 40, 46, 51, 55, 75, 90}.

Proof: For n = 36, let V = S5,7 ∪ {∞}. Develop the following 6 blocks with ρ∞5,7:

{∞, 31, 41 : 10, 20, 30, 40, 50} {10, 20, 40 : 11, 14, 33, 42, 44}

{20, 31, 33 : 36, 43, 46, 55, 56} {10, 26, 30 : 15, 20, 22, 50, 51}

{10, 11, 23 : 25, 30, 35, 53, 56} {40, 42, 56 : 12, 22, 50, 53, 54}.

For n = 40, take V = S3,13 ∪ {∞} and develop the following 4 blocks with ρ∞3,13:

{10, 11, 30 : 12, 14, 16, 20, 22} {10, 11, 12 : 25, 28, 211, 31, 34}

{25, 27, 35 : 20, 23, 28, 31, 36} {10, 22, 33 : 35, 36, 38, 310,∞}.

For n = 46, take V = S2,23 and develop the following 3 blocks with ρ2,23:

{10, 11, 20 : 13, 15, 17, 19, 111} {11, 20, 21 : 12, 22, 24, 26, 28}

{20, 22, 24 : 10, 18, 114, 117, 213}.

For n = 51, take V = S3,17 and develop the following 5 blocks with ρ3,17:

{10, 14, 30 : 15, 16, 17, 18, 20} {10, 15, 31 : 27, 28, 29, 210, 211}

{10, 15, 29 : 34, 35, 36, 37, 38} {17, 20, 21 : 22, 24, 26, 28, 34}

{22, 30, 32 : 14, 33, 34, 37, 38}.
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For n = 55, take V = S5,11 and develop the following 9 blocks with ρ5,11:

{11, 26, 27 : 10, 24, 20, 39, 46} {10, 38, 39 : 20, 22, 24, 28, 42}

{10, 30, 44 : 31, 32, 33, 34, 35} {11, 13, 15 : 31, 44, 55, 56, 50}

{10, 17, 50 : 12, 14, 25, 36, 40} {10, 20, 30 : 21, 46, 47, 48, 49}

{20, 40, 50 : 41, 42, 43, 44, 45} {20, 25, 36 : 51, 52, 53, 54, 55}

{31, 40, 50 : 51, 52, 53, 54, 55}.

For n ∈ {75, 90}, apply Corollary 6.1.1 with u = 40 and v ∈ {36, 51}.

Finally, applying Theorem 6.1.1 to the designs given in Theorems 6.2.1-6.2.5,

we obtain an almost complete solution for the spectrum problem for the complete

bipartite graphs with fewer than 18 edges, leaving 5 orders in total unsolved. We

summarize all known results on the spectrum of Ks,t, for s, t ≥ 2, in Table 6.2.

Table 6.2: The Known Results on The Spectrum of Ks,t for s, t ≥ 2

Possible

st Graph Spectrum Exceptions References

2k K2a,2k−a n ≡ 1 (mod 2k+1)∗ ∅ Thm 1.0.4

6 K2,3 n ≡ 0, 1, 4, 9 (mod 12)∗∗ ∅ [4]

9 K3,3 n ≡ 1 (mod 9)∗∗ ∅ [16]

10 K2,5 n ≡ 0, 1, 5, 16 (mod 20)∗∗ n = 40 Thms 1.0.4, 6.1.1, 6.2.1

12 K2,6 n ≡ 1, 9 (mod 24)∗∗ ∅ Thms 1.0.4, 6.1.1, 6.2.2

K3,4 n ≡ 0, 1, 9, 16 (mod 24)∗∗ n = 48 Thms 1.0.4, 6.1.1, 6.2.3

14 K2,7 n ≡ 0, 1, 8, 21 (mod 28)∗∗ n = 56 Thms 1.0.4, 6.1.1, 6.2.4

15 K3,5 n ≡ 0, 1, 6, 10 (mod 15)∗∗ n ∈ {45, 60} Thms 1.0.4, 6.1.1, 6.2.5

∗ For all k ≥ 2 and 1 ≤ a ≤ k/2

∗∗ There does not exist a Ks,t-design of order n for 1 < n ≤ 2st (Thm 1.0.5)
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