You are here

The role of BDNF in the survival and morphological development of adult-born olfactory neurons

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Olfactory Granule cells (GCs) are a population of inhibitory interneurons responsible for maintaining normal olfactory bulb (OB) function and circuitry. Through dendrodendritic synapses with the OBs projection neurons, the GCs regulate information sent to the olfactory cortices. Throughout adulthood, GCs continue to integrate into the OB and contribute to olfactory circuitry. However, only ~50% will integrate and survive longterm. Factors aiding in the survival and morphological development of these neurons are still being explored. The neurotrophin brain-derived neurotrophic factor (BDNF) aids in the survival and dendritic spine maturation/maintenance in several populations of CNS neurons. Investigators show that increasing BDNF in the adult-rodent SVZ stimulates proliferation and increases numbers of new OB GCs. However, attempts to replicate these experiments failed to find that BDNF affects proliferation or survival of adult-born granule cells (abGCs). BDNFs regulation of dendritic spines in the CNS is well characterized. In the OB, absence of BDNF’s receptor on abGCs hinders normal spine development and demonstrates a role for BDNF /TrkB signaling in abGCs development. In this study, we use transgenic mice over-expressing endogenous BDNF in the OB (TgBDNF) to determine how sustained increased in BDNF affect the morphology of olfactory GCs and the survival and development of abGCs. Using protein assays, we discovered that TgBDNF mice have higher BDNF protein levels in their OB. We employed a Golgi-cox staining technique to show that increased BDNF expression leads to an increase in dendritic spines, mainly the mature, headed-type spine on OB GCs. With cell birth-dating using 5-bromo-2’- deoxyuridine (BrdU), immunofluorescent cell markers, TUNEL staining and confocal microscopy, we demonstrate that over-expression of BDNF in the OB does not increase survival of abGCs or reduce cell death in the GC population. Using virally labeled abGCs, we concluded that abGCs in TgBDNF mice had similar integration patterns compared to wild-type (WT) mice, but maintained increases in apical headed-type spine density from 12 to 60 days PI. The evidence combined demonstrates that although increased BDNF does not promote cell survival, BDNF modifies GC morphology and abGC development through its regulation of dendritic spine development, maturation and maintenance in vivo.
Title: The role of BDNF in the survival and morphological development of adult-born olfactory neurons.
75 views
46 downloads
Name(s): McDole, Brittnee, author
Guthrie, Kathleen, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 163 p.
Language(s): English
Abstract/Description: Olfactory Granule cells (GCs) are a population of inhibitory interneurons responsible for maintaining normal olfactory bulb (OB) function and circuitry. Through dendrodendritic synapses with the OBs projection neurons, the GCs regulate information sent to the olfactory cortices. Throughout adulthood, GCs continue to integrate into the OB and contribute to olfactory circuitry. However, only ~50% will integrate and survive longterm. Factors aiding in the survival and morphological development of these neurons are still being explored. The neurotrophin brain-derived neurotrophic factor (BDNF) aids in the survival and dendritic spine maturation/maintenance in several populations of CNS neurons. Investigators show that increasing BDNF in the adult-rodent SVZ stimulates proliferation and increases numbers of new OB GCs. However, attempts to replicate these experiments failed to find that BDNF affects proliferation or survival of adult-born granule cells (abGCs). BDNFs regulation of dendritic spines in the CNS is well characterized. In the OB, absence of BDNF’s receptor on abGCs hinders normal spine development and demonstrates a role for BDNF /TrkB signaling in abGCs development. In this study, we use transgenic mice over-expressing endogenous BDNF in the OB (TgBDNF) to determine how sustained increased in BDNF affect the morphology of olfactory GCs and the survival and development of abGCs. Using protein assays, we discovered that TgBDNF mice have higher BDNF protein levels in their OB. We employed a Golgi-cox staining technique to show that increased BDNF expression leads to an increase in dendritic spines, mainly the mature, headed-type spine on OB GCs. With cell birth-dating using 5-bromo-2’- deoxyuridine (BrdU), immunofluorescent cell markers, TUNEL staining and confocal microscopy, we demonstrate that over-expression of BDNF in the OB does not increase survival of abGCs or reduce cell death in the GC population. Using virally labeled abGCs, we concluded that abGCs in TgBDNF mice had similar integration patterns compared to wild-type (WT) mice, but maintained increases in apical headed-type spine density from 12 to 60 days PI. The evidence combined demonstrates that although increased BDNF does not promote cell survival, BDNF modifies GC morphology and abGC development through its regulation of dendritic spine development, maturation and maintenance in vivo.
Identifier: FA00013159 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Brain-Derived Neurotrophic Factor
Olfactory Bulb
Olfactory Pathways
Neurons
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013159
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.