You are here
On the Nature of Neural Causality in Large-Scale Brain Networks: Foundations, Modeling and Nonlinear Neurodynamics
- Date Issued:
- 2018
- Abstract/Description:
- We examine the nature of causality as it exists within large-scale brain networks by first providing a rigorous conceptual analysis of probabilistic causality as distinct from deterministic causality. We then use information-theoretic methods, including the linear autoregressive modeling technique of Wiener-Granger causality (WGC), and Shannonian transfer entropy (TE), to explore and recover causal relations between two neural masses. Time series data were generated by Stefanescu-Jirsa 3D model of two coupled network nodes in The Virtual Brain (TVB), a novel neuroinformatics platform used to model resting state large-scale networks with neural mass models. We then extended this analysis to three nodes to investigate the equivalence of a concept in probabilistic causality known as ‘screening off’ with a method of statistical ablation known as conditional Granger causality. Finally, we review some of the empirical and theoretical work of nonlinear neurodynamics of Walter Freeman, as well as metastable coordination dynamics and investigate what impact they have had on consciousness research.
Title: | On the Nature of Neural Causality in Large-Scale Brain Networks: Foundations, Modeling and Nonlinear Neurodynamics. |
133 views
79 downloads |
---|---|---|
Name(s): |
Mannino, Michael, author Bressler, Steven L., Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Center for Complex Systems and Brain Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2018 | |
Date Issued: | 2018 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 255 p. | |
Language(s): | English | |
Abstract/Description: | We examine the nature of causality as it exists within large-scale brain networks by first providing a rigorous conceptual analysis of probabilistic causality as distinct from deterministic causality. We then use information-theoretic methods, including the linear autoregressive modeling technique of Wiener-Granger causality (WGC), and Shannonian transfer entropy (TE), to explore and recover causal relations between two neural masses. Time series data were generated by Stefanescu-Jirsa 3D model of two coupled network nodes in The Virtual Brain (TVB), a novel neuroinformatics platform used to model resting state large-scale networks with neural mass models. We then extended this analysis to three nodes to investigate the equivalence of a concept in probabilistic causality known as ‘screening off’ with a method of statistical ablation known as conditional Granger causality. Finally, we review some of the empirical and theoretical work of nonlinear neurodynamics of Walter Freeman, as well as metastable coordination dynamics and investigate what impact they have had on consciousness research. | |
Identifier: | FA00013164 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2018. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Neuroinformatics Consciousness--Research Computational neuroscience |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013164 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |