You are here

Machine Learning Algorithms with Big Medicare Fraud Data

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Healthcare is an integral component in peoples lives, especially for the rising elderly population, and must be affordable. The United States Medicare program is vital in serving the needs of the elderly. The growing number of people enrolled in the Medicare program, along with the enormous volume of money involved, increases the appeal for, and risk of, fraudulent activities. For many real-world applications, including Medicare fraud, the interesting observations tend to be less frequent than the normative observations. This difference between the normal observations and those observations of interest can create highly imbalanced datasets. The problem of class imbalance, to include the classification of rare cases indicating extreme class imbalance, is an important and well-studied area in machine learning. The effects of class imbalance with big data in the real-world Medicare fraud application domain, however, is limited. In particular, the impact of detecting fraud in Medicare claims is critical in lessening the financial and personal impacts of these transgressions. Fortunately, the healthcare domain is one such area where the successful detection of fraud can garner meaningful positive results. The application of machine learning techniques, plus methods to mitigate the adverse effects of class imbalance and rarity, can be used to detect fraud and lessen the impacts for all Medicare beneficiaries. This dissertation presents the application of machine learning approaches to detect Medicare provider claims fraud in the United States. We discuss novel techniques to process three big Medicare datasets and create a new, combined dataset, which includes mapping fraud labels associated with known excluded providers. We investigate the ability of machine learning techniques, unsupervised and supervised, to detect Medicare claims fraud and leverage data sampling methods to lessen the impact of class imbalance and increase fraud detection performance. Additionally, we extend the study of class imbalance to assess the impacts of rare cases in big data for Medicare fraud detection.
Title: Machine Learning Algorithms with Big Medicare Fraud Data.
160 views
17 downloads
Name(s): Bauder, Richard Andrew, author
Khoshgoftaar, Taghi M., Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 153 p.
Language(s): English
Abstract/Description: Healthcare is an integral component in peoples lives, especially for the rising elderly population, and must be affordable. The United States Medicare program is vital in serving the needs of the elderly. The growing number of people enrolled in the Medicare program, along with the enormous volume of money involved, increases the appeal for, and risk of, fraudulent activities. For many real-world applications, including Medicare fraud, the interesting observations tend to be less frequent than the normative observations. This difference between the normal observations and those observations of interest can create highly imbalanced datasets. The problem of class imbalance, to include the classification of rare cases indicating extreme class imbalance, is an important and well-studied area in machine learning. The effects of class imbalance with big data in the real-world Medicare fraud application domain, however, is limited. In particular, the impact of detecting fraud in Medicare claims is critical in lessening the financial and personal impacts of these transgressions. Fortunately, the healthcare domain is one such area where the successful detection of fraud can garner meaningful positive results. The application of machine learning techniques, plus methods to mitigate the adverse effects of class imbalance and rarity, can be used to detect fraud and lessen the impacts for all Medicare beneficiaries. This dissertation presents the application of machine learning approaches to detect Medicare provider claims fraud in the United States. We discuss novel techniques to process three big Medicare datasets and create a new, combined dataset, which includes mapping fraud labels associated with known excluded providers. We investigate the ability of machine learning techniques, unsupervised and supervised, to detect Medicare claims fraud and leverage data sampling methods to lessen the impact of class imbalance and increase fraud detection performance. Additionally, we extend the study of class imbalance to assess the impacts of rare cases in big data for Medicare fraud detection.
Identifier: FA00013108 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Medicare fraud
Big data
Machine learning
Algorithms
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013108
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.