You are here
Cloud-based Skin Lesion Diagnosis System using Convolutional Neural Networks
- Date Issued:
- 2018
- Abstract/Description:
- Skin cancer is a major medical problem. If not detected early enough, skin cancer like melanoma can turn fatal. As a result, early detection of skin cancer, like other types of cancer, is key for survival. In recent times, deep learning methods have been explored to create improved skin lesion diagnosis tools. In some cases, the accuracy of these methods has reached dermatologist level of accuracy. For this thesis, a full-fledged cloud-based diagnosis system powered by convolutional neural networks (CNNs) with near dermatologist level accuracy has been designed and implemented in part to increase early detection of skin cancer. A large range of client devices can connect to the system to upload digital lesion images and request diagnosis results from the diagnosis pipeline. The diagnosis is handled by a two-stage CNN pipeline hosted on a server where a preliminary CNN performs quality check on user requests, and a diagnosis CNN that outputs lesion predictions.
Title: | Cloud-based Skin Lesion Diagnosis System using Convolutional Neural Networks. |
85 views
51 downloads |
---|---|---|
Name(s): |
Akar, Esad, author Furht, Borko, Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2018 | |
Date Issued: | 2018 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 55 p. | |
Language(s): | English | |
Abstract/Description: | Skin cancer is a major medical problem. If not detected early enough, skin cancer like melanoma can turn fatal. As a result, early detection of skin cancer, like other types of cancer, is key for survival. In recent times, deep learning methods have been explored to create improved skin lesion diagnosis tools. In some cases, the accuracy of these methods has reached dermatologist level of accuracy. For this thesis, a full-fledged cloud-based diagnosis system powered by convolutional neural networks (CNNs) with near dermatologist level accuracy has been designed and implemented in part to increase early detection of skin cancer. A large range of client devices can connect to the system to upload digital lesion images and request diagnosis results from the diagnosis pipeline. The diagnosis is handled by a two-stage CNN pipeline hosted on a server where a preliminary CNN performs quality check on user requests, and a diagnosis CNN that outputs lesion predictions. | |
Identifier: | FA00013150 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2018. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Skin Diseases--diagnosis Skin--Cancer--Diagnosis Diagnosis--Methodology Neural networks Cloud computing |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013150 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |