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ABSTRACT 
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This research is concerned with analyzing a set of viral genomes to elucidate the 

underlying characteristics and determine the information-theoretic aspects of the genomic 

signatures. The goal of this study thereof, is tailored to address the following: (i) 

Reviewing various methods available to deduce the features and characteristics of 

genomic sequences of organisms in general, and particularly focusing on the genomes 

pertinent to viruses; (ii) applying the concepts of information-theoretics (entropy 

principles) to analyze genomic sequences; (iii) envisaging various aspects of 

biothermodynamic energetics so as to determine the framework and architecture that 

decide the stability and patterns of the subsequences in a genome; (iv) evaluating the 

genomic details using spectral-domain techniques; (v) studying fuzzy considerations to 

ascertain the overlapping details in genomic sequences; (vi) determining the common
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subsequences among various strains of a virus by logistically regressing the data obtained 

via entropic, energetics and spectral-domain exercises; (vii) differentiating informational 

profiles of coding and non-coding regions in a DNA sequence to locate aberrant (cryptic) 

attributes evolved as a result of mutational changes and (viii) finding the signatures of 

CDS of genomes of viral strains toward rationally conceiving plausible designs of 

vaccines. 

Commensurate with the topics indicated above, necessary simulations are proposed 

and computational exercises are performed (with MatLab
TM

 R2009b and other software 

as needed). Extensive data gathered from open-literature are used thereof and, simulation 

results are verified. Lastly, results are discussed, inferences are made and open-questions 

are identified for future research. 
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CHAPTER I 

INTRODUCTION 

1.1   General 

In the context of modern biological and medical sciences, there are compelling 

reasons to elucidate the genetic information of living systems. Specifically, information on 

human genomics is necessary for the purpose of understanding the underlying physico-

chemical attributes as well as the gene details useful for diagnostic and therapeutic efforts. 

In addition to knowing such genomic aspects of human (or animals, at large), it is 

necessary to elucidate the gene information of innumerable pathogens that cause adverse 

effects on living systems. Knowing their genetic features and molecular details is essential 

to formulate methods of preventive schedules against adverse influences from the universe 

of germs. In view of the above, knowing the intricacies of human genome and concurrently 

understanding the molecular biology of pathogens that may invade and embed into humans 

are imperative in deducing diagnostic and therapeutic options. Relevant efforts can 

facilitate the control and curative measures across innumerable diseases that prevail in the 

society. 
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In the sphere of grossly pervading, but immensely agonizing disease processes, a 

plethora of exercise in bioinformatics has been directed in evolving methods of 

comprehensive analyses to extract the underlying informatics. In past, relevant foundation 

laid by the Human Genome Project (HGP) [1.1] has enabled extensive explorations on the 

unlimited frontiers of microbiology, wherein skillful melding of biological know-how 

through tools of computer science, concepts of physics, methods of mathematics, 

techniques of statistics, avenues of clinical research etc. are diligently adopted. Further, 

fuelled by the sequencing of human genome via innumerable wet-lab studies along with 

supplementing computational strategies, exists today a host of databases created with 

brimming of information on nucleic acids, proteins, system-level biology, biochemical and 

biophysical details supported by relevant annotations [1.2 - 1.6] and descriptions as regard 

to a vast trove of biological species- small and big. 

Notwithstanding the abundance of such data prevailing, more and better 

understanding of biological details enabled by wet-lab instrumentation and super-

computing capabilities of modern times, have led to the quest of knowing the genomic 

blueprint at various strata of significance. This quest thereof has posed inquisitiveness of 

knowing something that is unknown yet. Rightly, as said in [1.7] “A remarkable landscape 

of opportunity lies before next generation of biologist” to explore the morsels of 

microbiology and envisage the intricacies of bioinformatics beneficial to living systems at 

large. Supplementing such opportune direction, are pedagogical principles of 

bioinformatics covering the major areas such as analyzing sequences of whole genomes 
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and/or  variations, exploring microarrays, portraying the patterns of proteomics and 

scything the systems biology as a whole.  

With such avenues of research unlimited, it is considered in the present research, a set 

of select topics viable for some novel analyses that could be eventually be adopted for 

rational vaccine design (RVD) considerations. Hence, the scope of the work can be 

specified as follows: 

1.2    Scope of the Research 

The topics of research advocated in the present study have the general scope of 

applying information-theoretic algorithms, energetics principle and spectral-domain 

concepts to analyze genome sequences in general. Further, these are applied exclusively on 

a set of viral genomic sequences so as to elucidate the underlying genomic characteristics 

viably useful for vaccine design applications. This conceived scope as above can be 

expanded as a gist of objectives listed in the following section. 

1.3    Objective of the Research 

The research performed and presented in this dissertation is centered on the following 

objectives commensurate with the scope outlined above: 

 Applying entropy considerations and formulating information-theoretic methods (in 

Shannon’s sense) so as to analyze genomic sequences. Hence, relevant concepts of 

statistical divergence and/or distance measures are invoked thereof and applied to 

the sequence analyses in question 
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 Using the concept of biothermodynamic energetics [1.8 - 1.10] in the framework of 

genetic stability, the buried details of subsequences in DNA and/or RNA 

architectures are determined 

 Fuzzy considerations in genomic information-theoretics [1.11] are studied for the 

purpose of ascertaining overlapping details in genomic sequences 

 The efforts of entropy and energetics-based analyses as above are supplemented 

further with the evaluation of corresponding details using spectral domain 

techniques [1.12 - 1.14] 

 The pursued analyses are aimed at knowing the following: (i) Differentiating the 

informational profiles of coding and non-coding regions in a DNA sequence [1.15]: 

(ii) detecting buried signals (such as, splice-junctions [1.16]) within a DNA; (iii) 

locating aberrant (cryptic) attributes that exists in DNA sequences [1.17] as a result 

of mutational changes; (iv) observing fuzzy details on overlapping subsequences 

(v) finding the signatures of CDS (coding DNA sequence) like CpG, TATA regions 

etc. and (vi) ascertaining the secondary structural details (such as hairpin bends, 

loops, bulges etc.) of ssDNA and/or RNA sequences via nearest-neighbor (NN) 

energetic profiles [1.8 - 1.10] 

 Deducing spectral domain peaks and troughs in the test sequences to determine the 

underlying spatial patterns [1.12 - 1.14] 
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 A focused study on viral DNA sequences of pathogens such as B19 [1.18] and 

dengue viruses  

  Exclusive analyses of multiple strains of a given virus (for example dengue virus) 

[1.19 - 1.22] so as to determine the common subsequences among them by 

logistically regressing the triple data mined from entropic, energetic and spectral-

domain evaluations [1.23] 

 Co-relating the details of the sequences from the multiple strains of a given virus 

(as above) for rational vaccine [1.24] design purposes 

Consistent with the objectives enumerated above, exhaustive background details and 

literature survey are gathered to supplement the research performed. The final objective 

refers to presenting the results of the research, deducing relevant inferences and listing 

open-questions for future research. 

1.4    Motivation 

This work is mainly and objectively motivated by the impetus to develop a multiple 

set of analyses of genomic sequences for concurrent comparison, logistic compilation (via 

regression) and robust mining of underlying details gathered in terms of different 

perspectives of analyses pursued. 

Traditionally, genomic sequence analysis is performed in three perspectives: (i) By 

considering the associated entropy features of the test sequence; (ii) by evaluating the 
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nearest-neighborhood interaction of base residues that presents the energetics profile across 

the sequence in question; and (iii) by elucidating the spectral features of the spatial 

disposition of sequence content. 

Inspired by the aforesaid and established methods, the motivated effort in the present 

study is to apply cohesively all the above (three) methods on a given sequence and 

determine the distinguishing details in each case, so that, these details can be collectively 

compiled to mine the subtle features of the test sequence exhaustively. In other words, it is 

surmised in the present study that one single version of the analysis may not suffice to 

portray the variety in gene structures. If one method is effective in showing certain unique 

details (of the sequence), the other methods may indicate certain other features. It is 

possible in such multiple analyses that the data acquired may overlap; but, non-overlapping 

details otherwise will also be obtained.  

Hence, the motivated research advocated and described in this dissertation focuses on 

elucidating subtle feature in the test sequences via cohesive data compilation through three 

methods mentioned earlier. Again, there are different versions of applying the notions of 

entropy, energetics and Fourier transform methods to genomic sequence analysis. In the 

present study certain novel concepts are improvised thereof to mine the details effectively 

and in pragmatic sense. Further, the cohesive data-mining (by the three methods pursued) is 

applied to a practical, health-related objective of the rational vaccine design. Relevant 

underlying motive is described below: 
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Considering the fact that a virus may be present in different guises, it has been a 

concern in immunological studies to find a common vaccine for the entire set of the 

serovar. In this regard, notwithstanding the associated wet-lab assertions, bio-informatics 

can indicate a viable avenue in deducing certain common features between multiple viral 

strains; and, such common features can be adopted as possible epitopal formats (across the 

entire set of the strains). Hence, relevant common vaccine design can be attempted based 

on the epitopal format ascertained. 

Motivated by the need to determine the common denominator across genomes of 

multiple viral strains, this study is extended to identify and apply different bioinformatic 

algorithms on the test genomic sequences in question. As stated earlier, though sequence 

analysis is a well-known topic in bioinformatics with feasible approaches and their 

variants, using appropriate algorithms in the context of genomes of multiple viral strains, as 

done in this study, is rather sparse. 

Further, as discussed earlier, pursuing one method of sequence analysis (applied to all 

test viral strains) may not possibly and comprehensively identify the prevailing common 

(and subtle) features between them. For example, perusal of the well-known method of 

entropy segmentation (information-theoretic based approach) will definitely yield results 

on any test sequence with significant accuracy (in view of the various related studies that 

exist in literatures and reviewed in [1.25]). However, whether the deduced information on 

the test sequence will enable knowing the common features between a set of sequences 

comprehensively (and accurately) is questionable.  
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As such, it is a motivated effort exercised in this dissertation to identify more than 

one independent sequence analyses and apply them on a set of test sequences (such as 

genomic sequences of the strains of a virus). Accordingly the entropy segmentation 

method, nearest-neighbor energetics approach and spectral domain analyses are 

independently applied to the test sequences; and, the results of these three independent 

studies are logistically combined to determine the existing common subsequence segments 

in all the genomic structures of multiple viral strains. Therefore, the motivation of knowing 

a common epitopal structure among the test viral strains is facilitated. 

In short, the motivated considerations of the present study can be enumerated as 

follows: 

 To apply cohesively, the three well-known methods of genomic sequence analysis 

(namely entropic, energetic and spectral-domain algorithms). Absence of such 

concurrent three-prong approach in practice forms the core motivation in pursuing 

this research 

 Tuning the aforesaid three algorithmic methods and applying them in context of 

multiple sequences so as to extract the underlying common features: Again 

existence of an exclusive scheme of combined methods to deduce distinguishable 

features across a set of sequences is sparse and offers a motivated push for research 

 Application of a robust technique envisaged in the context of distinguishing 

genomic features of multiple strains of a virus is rare: This lacuna has motivated to 

use the triple approach a above in viral genomic analyses 
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 Finding a common epitopal attribute among the genes of multiple strains of a given 

virus is a widely desired vaccine research effort: Relevant considerations offer a 

push to the study envisaged here 

1.5   Contributions: Outcomes of the Research 

            The salient outcomes of this research can be listed as follows: 

   Developing an exclusive framework to apply bioinformatic concepts in the 

context of viral genomes 

   Formulating a methodology using the existing concept of statistical divergence 

and ascertain the unique genomic structural details of single-stranded DNA of 

viruses. Hence, obtained are particulars as regard to splice-junctions (canonical 

and/or cryptic), structural details like hairpin bend, WC matching, bulges, loops 

etc. 

   Invoking the so-called nearest-neighbor energetic concepts on nucleotides and 

apply it to the test viral sequences 

   Representing the residues of test sequences via numerical chain of associated 

ionic interaction potential parameter and deduce the signatures of interest using 

Fourier transform analysis 

   Indicating a method to combine the results of the three aforesaid methods and 

conclude cohesively on highly probable protein details that exist in viral 

sequences toward vaccine synthesis 
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   Providing a review on rational vaccine design considerations 

   Identifying the scope for future research and enumerate possible open-questions 

 

1.6    Dissertation Organization and Closing Remarks 

In order to cohesively address the research efforts and the outcome, this dissertation is 

written with an organized set of chapters (tentative) as follows: 

 Chapter I:     Introduction - This (present) chapter provides an introduction to the 

topic of research pursued with the indication of relevant scope and objectives. The 

dissertation format is outlined 

 Chapter II:   Genomic Sequence Analysis: A Review- Chapter II presents a brief 

review on various methods available to deduce the features and characteristics of 

genomic sequences of organisms. Starting from the central dogma of microbiology, 

the genomic structure through the proteomic formation of organisms is briefly 

discussed and essential sequence features of practical interest are identified 

 Chapter III:  Viral Genomic Features – An outline on the characteristics of the 

genomes pertinent to viruses is furnished in this chapter. Hence, a review on the 

family of viral species is presented and the distinctions between them at 

microbiological levels are detailed. Corresponding single- and double-stranded 

DNA/RNA structures as well as their unique RNA features in the context of viral 

family are pointed out. In terms of such unique features, the underlying sequence 
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signatures of importance (such as, finding protein- forming amino acid chains) are 

identified for the purpose of analytical considerations and computational 

determinations 

 Chapter IV:  Entropy-based Viral Genomic Sequence Analysis- The objective 

of this chapter is to analyze viral genomic sequences using information-theoretic 

methods. Classically, information-theoretic methods (also known as entropy-based 

techniques) have been adopted in analyzing genomic/proteomic sequences of 

eukaryotic organisms such as human, yeast, bacteria etc. Relevant studies have also 

been indicated to ascertain viral genomic details. Notwithstanding the existence of 

such studies, presented in this work is an effort to determine more aggressive and 

broader information-theoretic formulations compatible for specific genomes such as 

those of viruses. The entropy features of a test sequence are reviewed in terms of 

various information-theoretic considerations and relevant formulations (such as the 

so-called Kullback-Leibler and other statistical distance/divergence measures). As 

an example, the CpG motifs are determined using Jensen-Shannon measure. Hence, 

the concepts of relative entropy, mutual information and information redundancy 

considerations are revisited.  

          Further, genomic sequences have substructures that are not crisply separated. 

Relevant overlapping features are viewed in terms of fuzzy considerations [1.11]. In 

this chapter, fuzzy splicing in precursor mRNA sequence is considered and 

prediction of aberrant splice junction in viral DNA context is indicated.  
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In addition, the analytical framework and computational details to specify 

the differential features (not otherwise obviously seen across DNA/ RNA or amino 

acid sequences) of multiple sequences are described in this chapter. Such 

differential properties are elucidated via Shannon’s information redundancy 

formulation applied to a complex system. Illustrative example and results thereof 

are furnished with reference to the dengue virus and its serovar. 

 Chapter V: Energetics-based Viral Genomic Sequence Analysis - The 

energetics aspect of viral sequences and its implications are discussed in this 

chapter. The gene structures are known to exhibit exclusive thermodynamic 

energetics profiles in order to organize themselves into stable structures. That is, the 

nucleotide alphabets of the DNA, namely {A, T, G, C} arrange themselves in 

posing a genetic statistics such that, they not only present negentropic details (in 

Shannon’s sense), but also, the associated chemistry (via Crick-Watson pairing 

A↔T and G↔C) renders a minimum global energy profile (at least sub-optimally) 

across the interacting neighbors. As such, genomic structures assume unique 

sequence patterns. Deducing the underlying features thereof in viral genomic 

structures with relevant algorithms (based on energetics consideration) is the topic 

exercised in this chapter.  

Further, the use of entropy-based segmentation method and energetics method are 

also addressed side-by-side in this chapter as regard to finding specific structural 

details of genomes. It refers to characterizing the subregions of genomic sequences 

such as loops and bulges described earlier in Chapter III. For example, considering 
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the ssDNA of Parvovirus B-19, relevant nucleotide positions wherein the loop, 

bulge, hairpin etc. are observed are determined via statistical measures and nearest-

neighbor (NN) based energetics approach. The results due to both methods are 

compared and discussed. 

 Chapter VI: Fourier Spectral Characteristics of Viral Genomes - This chapter 

discusses the spectral characteristics of viral genomic profiles. As indicated in 

earlier chapters, by virtue of entropy (information-specified) details and energetics-

dictated format of genomic structures, the associated residues form characteristic 

patterns along the stretch of the sequence. In addition, such spatial domain features 

would also correspondingly reflect another unique set of characteristics in a 

transformed domain, such as in the Fourier spectrum. Hence, described in this 

chapter is the avenue to apply Fourier spectral analysis to a set of viral sequences 

and the results are compiled 

 Chapter VII: A Metalearning Approach to Explore Viral Genomics: A 

Modular Framework of Data Mining - In virological context, a particular virus 

may prevail in different forms of serotypes (as in the case of dengue 1 to 4 viral 

strains) with common and distinct genomic features.  Finding such genomic details 

of a serogroup is useful in knowing related information for unique vaccine designs 

compatible for immunity across the viral diversity. For robust comparison of 

genomes of serovar of a virus in order to decide on their common and differential 

genomic details, proposed here is a set of sequence analyses exercised side-by-side 

via entropy, energetic and spectral-domain methods. Results obtained thereof with 
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dengue viral serotypes namely, DEN1, DEN2, DEN3 and DEN4 are presented. 

Hence, inferences on distinct as well as common features extracted are annotated 

and indicated for possible vaccine design applications 

 Chapter VIII: Viral Genomic Sequences and Vaccine Design Considerations – 

This chapter is presented to indicate the major scope of possible uses of 

bioinformatic analytical frameworks addressed. Specifically, relevant implications 

are identified vis-à-vis vaccine designs. As well known, the gene expression in a 

virus morphs to different patterns at the molecular (DNA/RNA) level across its 

different strains. These discernment features offer a viable opportunity to conceive 

a set of distinct vaccine designs usable to prevent the differentiable pathology likely 

to be caused by the strains concerned. In this study, it is hypothesized such diverse 

vaccines can be intelligently synthesized by considering the underlying DNA 

signature features of the various strains of a given virus. Essentially, the expression 

seen in each viral DNA/RNA structure as regard to its CDS, CpG, TATA box etc., 

sites of homology specified by the spatial-spectrum (Fourier domain) details, long-

range correlation of coding/noncoding segments and nearest-neighbor energetic-

interactions and stability-seeking bends/loop formation (in the case of single-strand 

DNA or in RNA sequences) are target data that can be profitably utilized in the 

strain-specific vaccine synthesis. As an example, the computed data on the 

distinguishable features pertinent to the RNA structures as ascertained by the 

authors via appropriate models are used in proposing a smart vaccine design 
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approach for the Dengue virus having four strains, namely DEN 1, DEN 2, DEN 3 

and DEN 4 with distinct RNA features. 

 Chapter IX: Inferential Conclusions and Open-questions for Future Research 

- This chapter is written to offer an overview of the dissertation. Also, essential 

conclusions are enumerated and discussed. Possible research items for future efforts 

are identified as open- questions 

 Chapter X: Executive Summary 

Thus this introduction chapter is written to outline the overall content of the 

dissertation and provides details on the scope of the research, underlying objectives and 

driving motivations. Further, organization of the dissertation is indicated with a format 

outline on the pursuing chapters. 
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CHAPTER II 

GENOMIC SEQUENCE ANALYSIS: A REVIEW 

2.1   General 

 In living systems, viewed at its most primitive level where meaningful information 

prevails and deciphered is the DNA molecule. This DNA (or deoxyribonucleic acid) entity 

is a giant, linear, polymeric molecule existent in all living systems. It consists of two 

polynucleotide chains wound helically about a long central axis.  The bases on opposite 

chains are joined through Hydrogen bonds with specified constraints. 

The linear polymeric bonds of DNA are based on four sub-units, namely, the bases 

Adenine (A), Guanine (G), Cytosine (C) and Thymine (T), linked in a chain through 

Phosphate (P) and Deoxyribose (R) bridges. DNA sequences represent very long strings -of 

the order of 104-109 base-pairs (also known as Watson-Crick (WC) pairs) of (A  T) and 

(G  C).  

The occurrence of base in the DNA sequence exhibits statistical ordering. That is, 

characteristic to every individual living system, random dispositions of bases along the 

DNA chains are unique and represent a meaningful message borne by statistical 

uncertainty. That is, a negentropy value can be attributed to the stochastical features of the 

DNA chain. 
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This negentropy value denotes specific genetic information possessed by the living 

system at the DNA level. (For mammals, the genetic information content realised via 

genetic coding is in the order of 1010 bits).  This extensively large framework of DNA 

complex renders the associated entities stochastically viable for representation in the 

information-theoretic plane. 

 The process of protein-making (known as translation) follows the central dogma of 

molecular biology illustrated in Figure 2.1. It involves first the transcribing of information 

in sections from the DNA strand into an intermediate polymer called messenger RNA (or 

mRNA), which is similar to DNA except that the sugar residue R is replaced with a slightly 

different one, namely Ribose R; and, a base called Uracil (U) replaces the Thymine (T) of 

the DNA. The genetic information contained originally in the DNA is carried forward 

when the bases are set in triplet forms (called codons). With the four {A, C, T, G} bases, 

the possible permuted triplets are 64 (4
3
) and they are grouped into 20 amino acids; and, 

each amino acid being the triplet of bases (or anticodons) bears the mapped genetic code of 

the DNA for its positioning the peptide chain. The transcription occurs at a specific site on 

one strand of DNA known as transcription initiation site, marked by a characteristic base 

sequence. The transcription proceeds through a specific chemical pairing namely, the WC-

paring (A  T/U) and (G  C) mentioned earlier. The transcription process, in essence, is 

an information retrieval technique from the original memory units of the DNA. In the next 

process of translation, the information contained in mRNA constraints the cell in what 

order amino acids be strung together in making of protein constituents with polypeptide 

chain.   
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Figure 2.1: Making of a protein: The central dogma of microbiology 

 The eventual (correct) translation of eukaryotic genomic data into a protein complex 

is, however, subject to the effects of mutations on the evolutionary conservation tree. Any 

underlying corruptions may manifest at the so-called splice-junctions that 

separate/delineate two subsequences in a DNA sequence, namely, the (genetic) 

information-bearing codon segment (called an exon) and the non-informative “junk” 

codon, also known as non-codon or intron. (Exons bear necessary information towards 

protein-making, whereas non-codons are non-informative and their genetic role has not 

been fully elucidated. Exons and introns appear randomly along the DNA sequence as 

shown in Figure 2.1. Codons tend to be typically no more than 200 characters long, while 

Exon: Information-bearing segment 

Intron: Non-informative segment 
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noncodons could be tens of thousands of characters in length. Thus in majority, introns 

prevail mostly in a typical eukaryotic gene. 

 Towards the process of translation, introns are first scissored out (in the transcription 

stage) from the sequence and the remaining exons are spliced together constituting the 

mRNA, which is rendered ready for translation into a protein complex (at the cell interior). 

Should any errors have occurred (due to mutations), they would give room to the 

possibility of evolving wrong or cryptic splice-junctions and lead to (imperfect) 

translations. That is, aberrant splice-junctions may result from mutational spectrum and 

would hamper the making of correct proteins. 

2.2   Biological Sequences Information 

 Classically, models of biological sequences have been developed based on principles 

of probability [2.1], [2.2] and the scope of such models has led to various algorithms like 

the use of Hidden Markov models (HMMs), score-matrices for determining sequence 

alignment etc. These efforts constitute the basic profile searches of genomic sequences to 

identify and determine the similarity/dissimilarity between phylogenetically related 

sequence families. Applying the heuristics of information theory and negentropy 

considerations (in Shannon’s sense) have been the classical topics of interest in 

bioinformatics. That is, bioinformatic algorithms in vogue largely rely on information-

theoretic notions of Shannon [2.3] in excerpting genomic details and in data-mining 

exercises pertinent to molecular biology. Most of the models of biological sequence 

analysis via computational techniques are essentially based on the characteristics of the 

DNAs/RNAs like their structures, chemistry etc. and their associated statistics. In this 
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thesis, a cohesive approach using three perspectives has proposed. They are (i) entropy and 

information considerations; (ii) energetics-profiles; and (iii) spectral domain characteristics 

algorithms. These three methods can complement each other in identifying the distinctions 

among test sequences. Such feature details obtained by a diverse set of analyses could 

enable distinguishing one DNA sequence from the other robustly in terms of the associated 

genomic information. It is envisaged that these three algorithms used cohesively will help 

to determine locally as well as globally the common and contrasting features of 

phylogenetically related, but, varying strains of a virus. 

2.3    Entropy Considerations of Genomic Structures 

 Relevant to genomic sequence, entropy implies probabilistic (uncertainty) aspects of 

nucleotides distributed spatially along the sequence length. Inasmuch as the sequence is a 

mix of codon and non-codon parts, the appearance of the nucleotides {A, T, G, C} will be 

inherently random, but the Shannon information of the underlying genetic code would 

remain in the coding sequence segments (CDS). Relevant entropy aspects of coding and 

non-coding regions in non-viral DNA sequences have been studied, for example, in [2.4 -

2.6]. It is attempted here to apply similar analytical considerations to a viral 

ssDNA/ssRNA.  Finding the delineating border of separation between codon and noncodon 

regions in a massive stretch of a DNA chain is a bioinformatic problem. Essentially, the  

focused efforts thereof, refers to entropy characterization of genomic details such as, 

differentiating informational profile of coding and non-coding regions in a DNA sequence, 

detecting buried signal (such as splice-junctions) within the DNA, elucidating aberrant 

(cryptic) attributes introduced in the DNA sequence (as a result of mutational changes),  
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finding fuzzy aspects of overlapping bioinformatic details, knowing the locations of 

characteristic subsequence (such as CpG islands, TATA box), information  redundancy 

measures (IR) etc. Further, applying the concept of fuzzy logic has shown promising trend 

in bioinformatics and the door is ajar for more and advanced research. 

 In bioinformatics, the major interest lies in analyzing genomic and proteomic 

sequence details. The following algorithmic/computational considerations can be identified 

thereof is described briefly here (and in details in Chapter IV). 

2.3.1 Use of Fisher Discrimination 

 The Fisher discriminant metric (F-measure) is based on a linear discrimination 

function with a set of coefficients optimized on the basis of statistical features of a data 

collection. It can be used as a scoring metric to contrast statistical subsets (possessing 

relative uncertainty) in a data set. That is, the concept of Fisher discriminant function can 

be applied to classify (or distinguish) a pair of data sets. Fisher-metric can be applied to the 

test sequence so as to delineate the codon and noncodon parts. It involves constructing a set 

of discrimination matrices vis-à-vis the subsets of data in the parts to be discriminated. F- 

metric is useful in identifying the motifs such as TATA-boxes in the DNA sequence. 

2.3.2. Use of Complexity Measure 

 Another approach due to Neelakanta et al. [2.7] uses the concept of information 

redundancy in complex systems and defines a complexity metric that is adopted to 

differentiate codon/noncodon segments. 
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2.3.3. Use of Hamming Distance 

 In this method the random structure of a DNA base composition is represented by a 

binary sting and comparison is made between a pair of the sequences via modulo-2 (XOR) 

operation. A test DNA string thereof is compared against a random binary string and the 

dissimilarity is assessed in terms of the Hamming distance (or the count of 1’s in the 

resulting (XOR)-ed string.) 

 Suppose S depicts a vector representing the binary-coded DNA sequence; NS 

denotes the vector corresponding to the binary-coded complementary DNA sequence; and, 

R is a vector of a random binary sequence. Performing the modulo-2 operations, namely, S 

  R and NS   R result in a set of two Hamming distance populations (that is, counts of 

1’s in each resultant vector). By determining the statistical contrast between these two 

populations, it leads to an implicit index of comparison of S against NS (or vice versa). 

2.3.4. Use of Csiszár Measure 

  Yet another non-parametric symmetric divergence measure belongs to the class of 

Csiszár’s f-divergences, which are more general than the KL version. Details on such 

measures are available in [2.8]. Without any loss of generality, all the f-divergences due to 

Csiszár can be adopted in genomic analyses pursuits. The KL measure is a subset of this 

Csiszár family of cross-entropy functionals given by:   [pc  F(pc/pnc)] or [pnc  F(pnc/pc)], 

where F(.) is a doubly differentiable convex function [2.8]. A host of measures thereof can 

be specified by proper choice of F(.). Popularly, the KL-measure, the Jensen-Shannon (JS) 

measure etc. have been used in bioinformatics contexts. 
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2.3.5. Fuzzy Attributes of Genomic Sequences 

 The large data spaces of bioinformatics can be in many instances overlapping. Such 

imprecise domains possess unique difficulties when the underlying details are extracted. 

This is because of the non-specificity of the values and sharplessness of the boundaries of 

activity variables that can be described mostly in linguistic norms of fuzziness or grey 

facts. With fuzzy attributes prevailing in bioinformatic contexts, a multi-value logic has to 

be appropriately built, making the grey truth into complex schemes of formal reasoning. 

 Exclusive applications of fuzzy logic in bioinformatics are indicated in [2.4] and can be 

summarised as follows: 

 Computing similarity between gene products (annotated via ontology of gene 

clustering and gene function) can be applied with  fuzzy logic to protein secondary 

structure prediction and the associated structural bioinformatics 

 Considering micro-data analyses, the clustering algorithm in fuzzy sense (such as 

fuzzy co-clustering, fuzzy seaming etc.) can be formulated 

 Other application of fuzzy logic in bioinformatics include sequence motif 

identification, protein sequence alignment, protein sub-cellular localization, 

prediction, 3D protein structure comparison and computational proteomics 

 Building fuzzy thematic clusters and mapping them to higher ranks in taxonomy 

appears to be a real-world knowledge management in the art of gene ontology.  
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 Arredondo et al. elucidated fuzzy attributes of a DNA complex via a fuzzy inference 

engine designed exclusively to delineate codon and junk codon sub-spaces [2.4]. Recently 

the authors have developed a technique for fuzzy splicing in pre-cursor mRNA sequence. 

Hence, aberrant splice junctions in viral DNA contexts are predicted [2.9]. 

2.4   Energetics Aspects of Genomic Sequences 

 The chemistry of the bases in a nucleotide chain implicates neighborhood energy-

level dependency. As such, the nucleotide bases in their locations exhibiting neighborhood 

energy profile across the sequence can also be considered to analyze the underlying 

genomic features.  The RNA (transcribed from the double-stranded DNA) as well as in the 

so-called single-stranded DNA (ssDNA) that exist in viral genes, sequences tend to become 

more compact by “folding” or “bending” themselves into a stabilized hairpin structure 

(mostly towards 3’ end)  via nucleotide base-matching set by Watson Crick (WC) pairing 

of A ↔ T and G ↔ C [2.10]. In addition to the favored (neg)entropy enabled by WC-

pairing toward stability of hairpin structures formed, relevant (stability) dynamics also 

relies on free-energy minimization specified by nearest-neighbor (NN) parametric 

attributes [2.11], [2.12] of base-pairs in the test sequence. That is, the stability in question 

conforms to the rules stipulated by each base-pair depending only on the most adjacent 

pairs, with the associated total free-energy being the sum of each contribution of the 

neighbors. The underlying considerations are as follows:  

 Known generally as individual nearest neighbor (INN) model, it implies a 

preferential stacking of energetically conducive pairs with loop-initiation 

leading to an eventual hairpin structure 
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 The free-energy increments of the base-pairs in the sequence can be counted 

as stacks of adjacent pairs. For example, the consecutive CG base-pairs are 

worth about (~3.3 kcal/mol). The loop-region formed normally has 

unfavorable increments called loop initiation energy that largely reflects an 

entropic cost expended in constraining the nucleotides within the loop. For 

example, the hair-pin loop made of four nucleotides may have an initiation of 

energy as high as + 5.6 kcal/mol.   

  In using the relative free-energy data-set of NN specifications, a sliding-window 

method can be invoked to get the profile of free-energy variation across the test sequence. 

Relevant information can be profitably utilized in identifying characteristic sub-spaces in 

the DNA/RNA such as stem and loop features, CpG island motifs and isolation of CDS 

parts in a typical viral DNA structure of B19 virus; and, relevant considerations are 

exclusively useful in conceiving rational vaccine designs [2.13], [2.14]. Relevant 

algorithmic heuristics are as follows: The disposition of bases adjacent to each other or in 

nearest-neighbor (NN) sense is consistent with a minimum energy profile. This attribute 

assures a thermodynamic stability decided by chemical bonding consideration. Relevant 

INN -model has been proposed and discussed in the literature, largely in predicting RNA 

secondary structures [2.11], [2.10]. Apart from RNA sequences, relevant stability 

considerations also prevail in the case of single-stranded DNA (ssDNA) that exists in 

certain pathogens. The underlying structural stability of ssDNA sequences is specified by 

Watson-Crick (WC) pairing achieved with the sequence morphology of loops and hairpin 

bends (wherein the energy profile across adjacent neighbor seek a global minimum). 

Characterizing such unique profiles in such ssDNA contexts has been indicated in [2.13] 
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via energetics-based analyses. Detailed procedures and results of the above method has 

been discussed in Chapter V. 

2.5 Spatial-domain Analysis of genomic Details 

It is largely concerned with still sparsely known dependence between nearby bases 

and their occurrence statistics across the genomic sequence (in Markov’s sense). Hence, 

it is argued that the Fourier-transform (FT) may be adopted to overcome the aforesaid 

obstacle considering the fact that, real and imaginary parts of the Fourier coefficients are 

all independent random variables and as such, they may yield two distinct sets of 

fortifying details on the associated statistics [2.15 - 2.17]. Spectrograms are powerful 

visual tools for biomolecular sequence analysis [2.18]. Defining a spectrogram for use in 

analyzing 2D-patterns, the display of the magnitude of can be realized via short-time 

Fourier transform (STFT) [2.19]. In this thesis, the FT-based algorithmic and 

computational efforts pursued in the present study essentially follow the procedure due to 

[2.20] and has been discussed in details in Chapter VI. 

2.6     Conclusion 

 The scope of this chapter is to provide background details of biological sequences 

and lay the foundation for information-theoretic, energetics and spatial-spectral domain 

method for analysis of genomic sequences. These methods have been cohesively exercised 

on genomic sequences to obtain results on genomic features like characteristic loops and 

bends, delineation of exon-intron boundary, CpG island etc. and the results have been 

furnished in the ensuing chapters. 
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CHAPTER III 

VIRAL GENOMIC FEATURES: A REVIEW 

3.1  General 

Viral particles are the most abundant biological entities present on the earth [3.1]. 

The term virus is derived from the Latin word virus, which means poison. Viruses are 

non-living, microscopic particles consisting of either a RNA or DNA genome surrounded 

by a protective, virus-coded protein coat. The genomic material of the virus is packaged 

inside a structural capsid protein. In enveloped viruses, this structure is surrounded by a 

lipid bilayer with an outer layer of virus envelope glycoproteins [3.2] as shown in Figure 

3.1. Viruses are considered non-living as they do not possess the most basic 

characteristics of living system (metabolism, growth, reproduction and reaction to 

stimuli) [3.3], [3.4]. For replication, viruses depend on the host cell. In fact, before the 

viruses enter into the host, they are called as “virions” [3.5]. In his landmark paper, 

Bândea [3.5] distinguishes virions and viruses, aptly explaining the difference as, virions 

being the "spores" or reproductive forms of the virus, possessing life only as a potential 

property. Thus, virions are packaged genetic materials, which can be passed through 

direct contact or carrier to the host, where it replicates. 
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Figure 3.1: Structure of virus 

Almost all life forms, including all forms of fungi, bacteria, plants and animals can 

host atleast some type of virus. Also, there exist different types of viruses, which have 

different types of genetic material, structure, morphology etc. The replication 

mechanisms of the viruses also differ widely depending on the type of the virus and the 

host. Roizman [3.6] has described the mechanism of replication of various types of 

viruses in a range of hosts. Upon entering into a host, the virus may stay in vegetative 

state (resulting into latent infection, meaning they not be able to replicate at all in the 

host) or start infesting the cell of the host immediately, depending on host ambient.  

Since, the viruses depict the most abundant biological entity; their classification and 

nomenclature are significant in biological contexts. The first system of classification of 

viruses was suggested by Holmes in 1942 [3.7]. He suggested Linnaean system of 

binomial nomenclature to classify viruses into three groups under one order, Virales. 
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Accordingly, viruses are classified depending on the type of living organism (fungi, 

bacteria, plants or animals) that they infected. In 1962, Lwoff et. al. [3.8] suggested 

classifying viruses using complete Linnaean hierarchical system for viral nomenclature 

(unlike binomial classification suggested by Holmes) based on their size, symmetry, 

nucleic acid, physico-chemical properties and presence or absence of envelope around the 

virus [3.8]. Inasmuch as a single virus can infect multiple species of organisms, Lwoff et. 

al. ruled out the classification of virus based on the types of cells they infected. The 

outline laid down in [3.8] was accepted by International Committee on Taxonomy of 

Viruses (ICTV) [3.9] as the standard method for nomenclature of virus with few changes 

and additions.  

A classification system different from the one suggested by Lwoff at. al., was 

developed by David Baltimore in 1971 [3.10]. He argued that due to the small size of the 

viruses, it is difficult to identify their shapes even under electron microscope. As such, he 

suggested classifying the viruses according to their genome type (namely, type of nucleic 

acid (DNA or RNA) and its structure (linear, circular or segmented)) and on the method 

of viral mRNA synthesis. If the viruses are classified into categories as per these 

characteristics, then, all viruses in a given category will all behave in a similar way. This 

suggestion was accepted by ICTV and has been included in classifying viruses along with 

the framework laid down by Lwoff at. al. In all, viruses are categorized into seven 

different types as specified in Table 3.1 below: 
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Table 3.1: Baltimore classification of viruses 

Group 
Type of 

genome 
Common examples of family affecting human 

DNA virus 

I dsDNA 

Adenovirus, Papillomaviridae (HPV1, HPV11, HPV16, HPV18. HPV 

16 and 18 can become cancerous), Herpesviridae (HHV1-8 causes 

diseases like Herpes, Roseola, Epstein Barr, Chickenpox etc.) 

Poxviridae (smallpox), Hepadnaviridae (partially ds-causes Hepatitis 

B), etc. 

II ssDNA Parvovirus B19V (causing fifth disease in children), Anelloviridae etc. 

RNA virus 

III dsRNA Rotavirus etc. 

IV (+)ssRNA 

Coronaviridae (SARS), Picornaviridae (Polio virus, common cold virus, 

Hepatitis A virus etc.), Hepevirus (Hepatitis E virus), Togaviridae 

(Rubella virus, Ross River virus, Sindbis virus, Chikungunya virus etc.), 

Flaviviridae (Yellow fever virus, West Nile virus, Hepatitis C virus, 

Dengue fever virus etc.) etc. 

V (−)ssRNA 

Filoviridae ( Ebola virus, Marburg virus), Paramyxoviridae (Measles 

virus, Mumps virus), Rhabdoviridae (Rabies virus), Orthomyxoviridae – 

(Influenza viruses), Bunyaviridae (Hantavirus, Crimean-Congo 

hemorrhagic fever) etc. 

Reverse transcribing virus 

VI ssRNA-RT Retroviridae (HIV) 

VII dsDNA-RT Hepadnaviridae (Hepatitis B) 

 

3.2 Types of Viruses as per Baltimore Classification: Details 

3.2.1 DNA Virus 

These viruses have DNA as its genomic material and affect almost all domains of 

life. Double-stranded DNA (dsDNA) has two strands of DNA and replicate inside the 

host cell using its DNA polymerase [3. 10]. Double-stranded DNA has linear or circular 

genome and follows the central dogma of molecular biology, except that it uses the 
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host cell’s machinery for multiplying. Most of the DNA viruses are dsDNA viruses. 

Single-stranded DNA (ssDNA) has a single strand of DNA and requires formation of an 

intermediate double-stranded DNA form for genome replication. This is achieved by 

assuming structures like hairpin bends or loops (as has been discussed in Section 3.3 with 

reference to Parvovirus B19V). 

3.2.2 RNA Virus 

As the name suggests, the main genomic material of RNA virus is ribonucleic acid 

(RNA). Many of the deadly and widespread diseases in the world are spread by RNA 

virus, some of which are mentioned in Table 3.1. Most of the RNA viruses are single 

stranded (ssRNA). The ssRNA virus can be further classified into +ve sense and –ve 

sense [3.10]. If the RNA base sequence is identical to the viral mRNA sequence, then, it 

is known as +ve sense RNA virus; whereas, if the RNA base sequence is complementary 

to the viral mRNA sequence, it is known as –ve sense RNA virus. The double-stranded 

RNA virus (dsRNA) viruses represent a diverse group of viruses with varying 

characteristics. It has been discussed exhaustively in [3.11]. The RNA viruses are 

genetically very unstable with a very high rate of mutation. One of the principal reasons 

for this is the lack of the corrective mechanisms available inherently in DNA molecules 

[3.12]. This high rate of mutation greatly limits the design of vaccine and its future 

effectiveness. In fact, it is suggested by Holland et. al. [3.13] that RNA viruses have the 

most important role in evolution and survival of different species and maintenance of 

diverse ecology in general. The −ve sense RNA viruses can also be divided into two 

groups: i) Viruses containing non-segmented genomes for which the first step in 
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replication is transcription from the -ve stranded genome by the viral RNA-dependent 

RNA polymerase yielding monocistronic mRNAs that code for various viral proteins. A 

+ve sense genome copy is then produced that serves as template for production of the -ve 

strand genome. Replication occurs within the cytoplasm. ii) Viruses with segmented 

genomes for which replication occurs in the nucleus; and correspondingly the viral RNA-

dependent RNA polymerase produces monocistronic mRNAs from each genome 

segment. The largest difference between the two groups of –ve sense RNA viruses is the 

location of replication site [3.14]. Details on replication of RNA viruses can be seen in 

[3.15]. 

3.2.3 Reverse Transcribing Virus 

 This category consists of some of the most deadly as well as useful viruses. The 

economic impact of retrovirus (Group VI) is enormous. Infection by HIV, a member of 

retrovirus (Group VI reverse transcribing virus) is considered pandemic in the modern 

world. Most untreated people infected with HIV-1 eventually develop AIDS.  Also, 

retroviruses play a role in some forms of cancer. However, by careful design, retroviruses 

can also be used as the vectors for gene therapy and gene delivery systems [3.16]. 

In most viruses, DNA is transcribed into RNA. Further, RNA is translated into 

protein. But, in retrovirus, RNA is reverse-transcribed into DNA, which is integrated into 

the host cell's genome and then undergoes the usual transcription and translational 

processes to express the genes carried by the virus. So, the information contained in a 

retroviral gene is used to generate the corresponding protein via the sequence: RNA → 

DNA → RNA → protein. This extends the fundamental process identified by Crick and 
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Watson, in which the sequence is: DNA → RNA → protein [3.17]. The term "retro" in 

retrovirus in fact refers to this reversal (making DNA from RNA) of the central dogma of 

molecular biology. Like other RNA viruses, retrovirus also mutates quickly and 

enormously, thus making it difficult to produce effective antiretrovirus drugs that can 

stay effective for some time or producing a vaccine against these viruses.  

Hepadnaviruses (Group VII viruses) are very small genomes consisting of partially 

double-stranded and partially single-stranded circular DNA. The genome consists of two 

uneven strands of DNA. One has a negative-sense orientation, and the other (shorter) 

strand has a positive-sense orientation [3.18]. For multiplication, the reverse transcriptase 

process described above [3.19] is pursed. These viruses cause diseases of the liver. The 

mechanism of replication of Hepadnaviruses is discussed in [3.20]. 

For the present research, virus mainly considered is: (i) Parvovirus B19V and (ii) 

Dengue virus. The details of which are presented in the following sections. 

3.3  Structural Details of Parvovirus B19V 

B19V parvovirus is a member of the family parvoviridae responsible in causing a 

variety of diseases in human. Further, B19V is a member of the genus erythrovirus in the 

family of parvoviridae. Structurally, B19V contains a small linear single-stranded DNA 

(ssDNA) genome of 5.6kb length, which harbors two identical inverted terminal repeats 

(ITR) that serve as origin of DNA replication in the host cell. The virus has framework of 

overall folding of the DNA structure into hairpin formats. Such hairpins formed from a 

ssDNA consist of a base-paired stem-structure and a loop sequence with unpaired or 

mismatched nucleotides as shown in Figure 3.2. Relevant conformational studies of DNA 
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hairpins indicate possible tri-dimensional forms with variations, suggesting high profile 

of complexity of ssDNA structures. Part of this complexity can however be simplified 

with appropriately rationalized bioinformatic description of loop-bases and the stem part 

in the frame of backbone structures. 

 

Figure 3.2: A typical hairpin folding of a ssDNA genome. 

The B19V virus, considered in this study, according to Baltimore classification has 

an ssDNA (+sense) genome structure and it is classified as a parvovirus. Normally, the 

parvovirus has a non-segmented linear ssDNA genome, with an average genome size of 

5kbps (5594 nucleotides in length in the case of B-19) with a short double-stranded 

hairpin formation at the 3'-end. Characteristically, the 3'-hairpin may have inverted 

repeats across its stem region with site-specific nicks. The microbiological description of 

such DNA hairpin bends offers a distinct scope of study. Apart from understanding the 
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biological importance of DNA hairpin bends, a parallel pursuit of research is also 

directed at the physics of thermodynamics on the structural aspects of folded ssDNA as 

reported in Hilbers [3.21]. 

Typically, inverted terminal repeats (ITR) can be observed as illustrated in Figure 

3.3 (a). For example, the B19V has an ITR of 383 nucleotides and of these nucleotide 

bases, the terminal 365 tend to fold into hairpins in two alternative ‘flip’ or ‘flop’ 

orientation. The identical ITRs being present at each end of the genomes correspond to 

unpaired or mismatched bases in the palindromes represented by the bulges or bubbles. 

The hairpin folding not only enforces the stability, but, also solves the problem of linear 

DNA molecules replicating their 5' ends due to the requirement of DNA polymerase for a 

primer with a free 3'-OH group [3.22]. The hairpin transfer mechanism solves this issue 

by relying on terminal palindromic sequences to foldback on themselves, forming hairpin 

structures that prime the DNA replication. 

 

(a) 

1 2 3…                         

C C A A… 5′ 
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(b) 

 

(c) 

 

(d) 

Figure 3.3 An expanded view of B19V viral structure of bases from 1 through 5594  with 
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details such as, a bulge at 5′-end, the 3′-end loop (hairpin-bend), the stem parts, ITRs and 

locations of coding DNA sequences (CDS). Relevant details available as GenBank data 

on human parvovirus B19V (NC_000883.1) (Websites, 2011) 

 

(a)  The start of 5′-end of the genomic sequence of B19V. 

(b)  The stretch of 5′-end of 383 nucleotides tends to fold into a bulge around 365
th

 

base. The sets, {TCTGa} and {tGTCT} on either side of the bulge constitute 

the inverted terminal repeats ITRs) of palindromes. The bases (a and t) shown 

in lower case bold fonts depict the closing pairs in the loop. (The bases 

aTTTGGt in the bulge can flip-flop to a complement set of bases, namely 

tAAACCa; that is, the bulge can format itself in two alternative ‘flip’ or ‘flop’ 

orientations). 

(c)  The stem-part of nucleotides stretches up to 5212
th

 base and contains CDS at: 

615-2630; 2623-4968; 3304-4968 

(d)  Towards the 3′-end of the genomic sequence, a hairpin structure (3′-loop) is 

formed with a bending and a reversed stem-part that ends at the last 

nucleotide, 5594 (called “the dangling end”). The sets {TAAa} and {tAAA} 

on either side of this 3′-end loop constitute the palindromes of inverted 

repeats. (Again, the set aAATTt in the loop can flip-flop to its complement, 

tTTAAa) 

 

In addition to basic aspects of hairpin structure of a viral DNA, mismatched 

nucleotides in the 5' terminal hairpin can be observed. Further, more complex 

information may prevail with wild type palindrome in viral DNA sequences [3.23]. The 

complexity of hairpin structure as above is constrained by the associated molecular 

dynamics involving characteristic mismatches (such as tandem G-T mismatches at the 

stem and across non-canonical base pairs.) [3.24] 

Learning about the profile of hairpin structures is pertinent in the context of: (i) 

Understanding the virus replication process [3.23] and (ii) in drug synthesis applications, 

where, a relevant compound is sought, which in a specific DNA acts as a binding agent 

and inhibit the replication of certain viruses. [3.24] 
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Like functional RNAs, which are intensely folded, constituting stable, compact 

structures, viral ssDNA also assume a hairpin-bending (mostly towards 3’ end). This 

happens to preserve the stability of the sequence in the single-stand format. In the folded 

structure, the nucleotide base pairing (also known as Watson Crick (WC) pairing) of 

A↔T and G↔C takes place around the hairpin region (at the 3’ end), as illustrated in 

Figure 3.3 (b). 

The sequence of bases in the viral ssDNA contains the chemical signature necessary 

for storing and expressing genetic information. As well known, in the double-stranded 

helical form of the DNA, the base sequence (5'-3') in one strand matches (A↔T and 

G↔C) with the complementary base sequence (3'-5') as shown in Figure 3.3. The 

associated chemical configuration allows the double-stranded helical structure of the 

DNA to be structurally stable with the underlying features of energetics. The self-

complementing feature of the double helix does not however prevail in the single-

stranded format of any DNA structure such as in the viral ssDNA. As such single strand 

versions tend to “fold” or bend themselves so as to get stabilized via feasible base-pair 

matching. Relevant annotated details of the proteins made by the virus are presented in 

Table 3.2 below: 

Table 3.2: CDS range (from NIH website) of Parvovirus B19V [3. 25] 

Name of Protein Range of bases 

(NIH accession NC_000883.2) 

non-structural protein (NS1) 616…2631 

7.5 kDa protein 2084...2308 

minor capsid protein 2624...4969 
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protein X 2874..3119 

major capsid protein 3305..4969 

11 kDa protein 4890..5174 

 

3.4  Structural Details of Dengue Virus 

Dengue virus is a small (approximately 10.7 kb) positive-sense, single-stranded 

RNA virus (ss-RNA). It is another virus considered in the present research. Dengue 

belongs to the family Flaviviridae and has inverted complementary sequences at the ends 

of the molecule that mediate long-range RNA-RNA interaction and genome cyclization. 

Studies have demonstrated that alternative conformations of the genome are necessary for 

infectivity. Dengue virus has four different serotypes or strains, namely DEN1, DEN2, 

DEN3 and DEN4. The complete sequences of all the four strains are available in NCBI 

databank [3.26 – 3.29]. The genome of dengue virus encodes three structural proteins that 

form the coat of the virus and deliver the RNA to target cells, and seven nonstructural 

proteins that are responsible for the production of new viruses once the virus gets access 

to the host cell. These four different strains have slightly varying genomic characteristics 

(exhibits almost 60-80% homology between different strains) [3.30], resulting in slightly 

different proteins. One of the principle obstacles in developing an effective dengue 

vaccine is due to the need of simultaneously stimulating the immune system against all 

the four strains and thus generating antibodies against all the four different forms of the 

dengue virus. This is because when a person is infected with one serotype of the virus, 

and then infected later by a second serotype, the antibodies and immunity, gained from 
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the first infection appear to assist with the infection by the second subtype, instead of 

providing a general immunity to all serotypes. This means that an effective vaccine will 

have to stimulate protective antibodies against all four types at once, a feat that has not 

yet been achieved. Studies on nucleotide divergence characteristics among different 

strains of the given virus are limited.  Such lack of basic information of viral diversity 

severely limits vaccine and anti-viral therapy development efforts.  

The first dengue viruses were isolated from sick soldiers in Calcutta (India), New 

Guinea, and Hawaii. The viruses from India, Hawaii, and one strain from New Guinea 

were antigenically similar, whereas three other strains from New Guinea appeared to be 

different. They were called dengue 1 (DEN1) and dengue 2 (DEN2) and designated as 

prototype viruses (DEN1, Hawaii and DEN2, New Guinea-C) [3.31]. Since then, 

outbreaks of dengue fever (DF) and dengue hemorrhagic fever (DHF) have taken place in 

hundreds of countries, spread by mosquitoes especially in tropical and subtropical areas, 

resulting into thousands of deaths.  

The genome of dengue virus encodes a single long open reading-frame (ORF), 

flanked by highly structured 5' and 3' untranslated regions (UTRs). After entering the 

host cell via receptor mediated endocytosis, the virus releases the genomic RNA into the 

cytoplasm, which serves as mRNA for translation. Like all other Flaviviruses, the mRNA 

is translated as a single polypeptide and then cleaved into constituent proteins. Dengue 

virus has stem loop structure at both 5' and 3' untranslated region. These UTRs are 

needed for the stability and functioning of the viral RNA. Dengue virus 5' UTRs are 
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between 95 to 101 nucleotides long. They contain two RNA domains with distinct 

functions during viral RNA synthesis. The first domain consists of approximately 70 

nucleotides and is predicted to fold into a large stem-loop (SLA), a common feature 

found in all viruses included in the Flavivirus genus. The second domain of the dengue 

virus 5' UTR is predicted to form a short stem loop (SLB), which contains essential 

sequences for long-range RNA-RNA interaction and replication [3.32]. Within these two 

stem loops are found some loops and bulges.  

The first protein to be formed is the capsid protein. It is one of the most important 

proteins as it contains a hairpin bend between two AUG start codons. This structure is 

absolutely necessary for efficient viral replication in human and mosquito cells [3.33].  

The 3' UTR is approximately 450 nucleotides long and can be divided into three 

domains. Domain I is located immediately after the stop codon of NS5 and is the most 

variable region within the viral 3' UTR. It exhibits extensive size variation between 

serotypes; it can be from more than 120 nucleotides to less than 50 nucleotides. Domain 

II comprises of many hairpin structures. Particularly interesting is a characteristic 

dumbbell structure containing conserved sequences with several pseudoknot structures. 

Domain III of the 3' UTR consists of a conserved sequence which is involved in a long-

range RNA-RNA interaction between the ends of the viral genome, followed by a 

terminal stem-loop structure. A conserved feature of all strains of dengue virus and other 

flavivirus genomes is the presence of inverted complementary sequences at the ends of 

the RNA that mediate long-range RNA-RNA interactions. 
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The annotated details as available in literature [3.26 - 3.29] as regard to the four 

strains of dengue virus under discussion are summarized in Table 3.3: 

 

Table 3.3: CDS range (from NIH website) [3.26 - 3.29] 

Name of Protein DEN1 

(NIH 

accession 

NC_001477) 

DEN2 

(NIH 

accession 

NC_001474) 

DEN3 

(NIH 

accession 

NC_001475) 

DEN4 

(NIH 

accession 

NC_002640) 

Capsid protein 94….394 97..396 95….394 102…398 

Anchored capsid protein                    94….436 97…. 438 95.…436 102…440 

Membrane glycoprotein                     710…934 712… 936 710…934 714…938 

Membrane glycoprotein 

precursor     

437...934 439… 936 439…934 441…938 

Envelope protein                                935...2419 937… 2421 935…2413 939…2423 

Nonstructural protein 1                      2420...3475 2422.. 3477 2414...3469 2424..3479 

Nonstructural protein 2a                    3476...4129 3478... 4131 3470..4123 3480..4133 

Nonstructural protein 2b                    4130...4519 4132... 4521 4124..4513 4134..4523 

Nonstructural protein 3                  4520...6376 4522.. 6375 4514..6370 4524..6377 

Nonstructural protein 4a                    6377...6757 6376... 6756 6371..6751 6378..6758 

2k protein 6758...6826 6757... 6825 6752..6820 6759...6827 

Nonstructural protein 4b                    6827...7573 6826.. 7569 6821..7564 6828..7562 

Nonstructural protein 5                7574..10270 7570… 10262 7565..10264 7563..10262 

 

3.5 Viruses as a Challenge for Design of Vaccine 

Most infectious diseases are caused by pathogens that are reasonably genetically 

stable and host-specific such that a single widely administered vaccine can be used to 
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effectively prevent widespread disease and especially epidemics [3.35]. However, an 

enormous mutating variety of genomic structures can be seen among viral species, 

specially ssDNA viruses and RNA viruses. Among RNA viruses, the genome is often 

divided up into separate parts within the virion (segmented). Each segment often codes 

for one protein and they are usually found together in one capsid. Every segment is not 

required to be in the same virion for the overall virus to be infectious. Antigenic diversity 

among ribonucleic acid (RNA) viruses occurs as a result of rapid mutation during 

replication, short replication times and recombination/reassortment between genetic 

material of related strains during co-infections [3.36]. Hence, effective vaccination 

against such unstable and rapidly mutating viruses requires surveillance programs to 

monitor circulating serotypes and their evolution to ensure that vaccine strains match 

field viruses [3.37].  

3.6    Conclusion

In this chapter, the general structure of viruses and their classification has been 

summarized to indicate the diversity in the different families of viruses and the diseases 

caused by some of the members of the families. Particularly broad outlines on the 

genomic features, replication, life cycle and the dynamic structures of the genome of the 

viruses have been discussed. In the present research, details of single-stranded DNA and 

RNA virus has been studied by bioinformatic methods by considering the genomic 

sequences of parvovirus B19V and the four serotypes of dengue virus family. Finally, 

the principal obstacle in designing anti-viral vaccine has been discussed briefly. 
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CHAPTER IV 

ENTROPY-BASED VIRAL GENOMIC SEQUENCE ANALYSIS 

4.1    General 

The concept of entropy seen in the perspectives of Shannon’s information is 

described in this chapter to present the underlying details statistically strewn across 

genomic sequences. Relevantly, the motive of this chapter is specified to frame an 

objective towards analyzing genomic sequences using information-theoretic methods and 

related entropy concepts. 

 Classically, information-theoretic methods (also known as entropy-based techniques) 

have been adopted in analyzing genomic/proteomic sequences of eukaryotic organisms 

such as human, yeast, bacteria, virus etc. The entropy features of a test sequence can be 

described in terms of various information-theoretic considerations and relevant 

formulations (such as the so-called Kullback-Leibler and other statistical 

distance/divergence measures) [4.1] and [4.2]. Hence, the concepts of relative entropy, 

mutual information and information redundancy considerations are invoked in this study 

and the use of relative entropy and mutual information formulations in the context of 

genomic analysis is elaborated with necessary examples in subsequent chapters. 
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 Exclusively addressed in this chapter are two topics pertinent to genomic entropy 

information-theoretics: (i) fuzzy aspects of genomic entropic detail transitions; (ii) 

information redundancy profile of genomic entities. In information-theoretic framework, 

comparison of two statistical profiles can also be accomplished via what is known as 

information redundancy (IR). Relevant analytical framework and computational details to 

specify differential features (not otherwise obviously seen across DNA/ RNA or amino 

acid sequences) of multiple sequences using IR concept are described in this chapter. An 

illustrative example and results thereof are furnished with reference to the genomics of 

dengue virus and its serovar; and (iii) recognizing the presence and extent of the so-called 

CpG sequences in the test ssDNA genome. 

4.2    Entropy and Information: An Overview 

Information theory (IT) is a probability-based concept developed on the basis of 

principles of entropy. Objectively, it serves to evaluate the contents and the nature of 

information buried in messages and it refers to rationally perceiving meaningful 

information from a set of data via stochastical considerations.  

Classically, entropy is a thermodynamic concept and the “thermodynamic 

information” decides the number of choices or alternatives posed by the uncertainty (or 

entropy) involved as a result of order-disorder conflict existing (naturally) in a system. 

Order in a system presents a negentropy as regard to the certainty of details generated, 

stored, transcribed, and copied (retrieved). It “informs” the system of details to organise 

towards an objective function.  Hence, the negentropic details constitute “information”.  

In contrast, any associated disorder would try to off-set the system’s objective and 
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therefore, constitutes a posentropy. The order-disorder conflict always prevails in a 

system constituting a “thermodynamic tug-of-war”, which can be studied in the suites of 

entropy concepts of IT framework [4.1]. 

A “Siamese twins” relation prevails between entropy and energy, which can be 

specified via entropy versus energy equivalence of (the bits of) information. That is, if E 

is the energy consistent with the thermodynamic indicator namely, the temperature, T, 

then the Boltzmann’s energy relation indicates that,  

 )N(log)TK(=E eB  erg                                                                                      (4.1) 

where, N  is the number of choices in the disordered state and  kB  denotes the Boltzmann 

constant (14  10
16

 ergs per degree). For example, at T = 298
o
 K and N = 2 (binary 

state), E = 3  10
14

 ergs. 

The uncertainty in a disordered system can be estimated by considering the 

statistical probabilities of the states involved. Correspondingly, the measure of 

information (H) or negentropy (S) is functionally dependent on those probabilities 

leading to the well-known Shannon’s law:  

∑ )p(logp=S=H i2i  bits                                                                    (4.2) 

 where pi’s represent the relative numbers or the probability of occurrence of 

choices/states. 
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Further, entropy (S) links the transforming (but conserved) energy and information, 

consistent with the change of state(s) involved. It is specified by the Boltzmann’s entropy 

relation, namely,  

)]Ω( [log × K = S 2B  bits                                                                                    (4.3) 

where, the Boltzmann constant  kB links the thermoentropy (or temperature) associated 

with the (thermal) energy with the various states involved as per equation [4.1] and 

explicitly, E = kBT, known as Boltzmann equation. Also, the function log2() describes 

changes encountered in a system having a constant (conserved) energy and mass. 

Applications of information theory include communications, computer science, 

genomics, economics, linguistics and others. The most fundamental problem of any type 

of communication is reproducing a message exactly or approximately at the receiving 

end.  As indicated in [4.1], if the number of possible received messages is finite, then, the 

number of possible messages can be thought of as a measure of the information produced 

when one chosen message is received. For example, natural language provides a system 

that generates long sequences of symbols that can be considered as realizations of 

different random processes [4.3]. Then the entropy measure has been used to indicate 

how much information is produced on average by each alphabet of a language and the 

redundancy in a language implies how much repetitiveness is imposed on the language 

by its statistical characteristics. 
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Relevant entropy aspects and profiles of coding and non-coding regions in non-viral 

DNA sequences have been studied, for example, in [4.4] and [4.5]. It is attempted here to 

apply similar analytical considerations to a viral ssDNA and ssRNA. 

 

4.3    Entropy Considerations in Bioinformatics 

Biological systems are intrinsically information-rich and the growth process involves 

consumption of nutrients, emergence of new cells and excretion of waste products.  This 

process is accompanied by heat exchange to and from the reservoir (or stored energy) such 

that the total entropy change is always positive consistent with the Second Law of 

Thermodynamics. Shannon’s entropy concepts and Boltzmann’s perspectives on 

thermodynamic entropy are cohesively addressed in [4.1] and [4.6].  

In living systems, viewed at its most primitive level where meaningful information 

prevails and deciphered is the DNA/RNA molecule. The occurrence of base in the 

DNA/RNA sequence exhibits statistical ordering. That is, characteristic to every individual 

living system, random dispositions of bases along the DNA/RNA chain are unique and 

represent a meaningful message borne by statistical uncertainty. That is, a negentropy value 

can be attributed to the stochastical features of the DNA/RNA chain. This negentropy value 

denotes specific genetic information possessed by the living system at the DNA/RNA level. 

(For mammals, the genetic information content realised via genetic coding is in the order of 

1010 bits).  This extensively large framework of DNA complex renders the associated 

entities stochastically viable for representation in the information-theoretic plane.  



 

49 

Characteristically, it is well known that gene information is contained in the so-called 

exon segment of a nucleotide sequence, wherein the associated genetic information (in 

Shannon’s sense) is decided by the statistics of {A, T, G, C} resulting from the permuted 

set of bases in the exons. Concurrently existing along the genomic sequence are introns, 

which supposedly bear no genetic details useful towards protein encoding. Towards the 

process of translation (a protocol in the central dogma of microbiology), introns are first 

scissored out (in the transcription stage) from the sequence and the remaining exons are 

spliced together constituting the mRNA, which is rendered ready for translation into a 

protein complex (at the cell interior). The contents of exons (or introns) can further be 

specified by a permuted set of 64 (= 4
3
) triplets of {A, T, G, C}, which are grouped into 20 

amino acids (AAs). The non-uniform probability of occurrence of such triplets in the exons 

support the uncertainty (entropy) aspects of the genomic framework furnishing (in 

Shannon’s sense), the genetic information; whereas, in the case of introns, the associated 

triplets are present on equally-likely basis (that is, with uniform probability distribution); as 

such, the intron set is regarded as “junk” and non-informative [4.4]. 

Codons tend to be typically no more than 200 characters long, while noncodons could 

be tens of thousands of characters in length. Thus in majority, introns prevail mostly in a 

typical eukaryotic gene. Should any errors have occurred (due to mutations), they would 

give room to the possibility of evolving wrong or cryptic splice-junctions and lead to 

(imperfect) translations. That is, aberrant splice-junctions may result from mutational 

spectrum and would hamper the making of correct proteins 
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4.4    Information-theoretic (IT) Measures 

In bioinformatics, the major interest lies in analyzing genomic and proteomic 

sequence details. Relevant to genomic sequence, entropy implies probabilistic (uncertainty) 

aspects of nucleotides distributed spatially along the sequence length. Inasmuch as the 

sequence is a mix of codon and non-codon parts, the appearance of the nucleotides {A, T, 

G, C} will be inherently random, but the Shannon information of the underlying genetic 

code would remain in the coding sequence segments (CDS). The following 

algorithmic/computational considerations can be identified thereof. For example, finding 

the delineating border of separation between codon and noncodon regions in a massive 

stretch of a DNA chain is a bioinformatic problem. Relevant methodology developed for 

this purposes uses information-theoretics based metrics so as to score the differentiating 

extents of statistics between codon-noncodon populations at a given site on the DNA 

sequence. 

Several measures of information have been proposed in literature [4.1] each with 

distinct properties leading to variety in their applications. To classify such measures, they 

can be first categorized as parametric, non-parametric and entropy-type measures of 

information.  

4.4.1 Parametric Measures of Information 

Parametric measures of information estimate the extent of information about an 

unknown parameter θ contained in a data set and are functions of θ. The best known 

measure of this type is the so-called Fisher’s measure of information. Specified as the 

Fisher discriminant metric (F-measure), it is based on a linear discrimination function with 
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a set of coefficients optimized on the basis of statistical features of a data collection. It can 

be used as a scoring metric to contrast statistical subsets (possessing relative uncertainty) in 

a data set. That is, the concept of Fisher discriminant function enables classifying (or 

distinguishing) a pair of data sets. It was originally developed by R. A. Fisher in 1935 [4.7] 

with reference to taxonomic studies. Relevant effort refers to finding out the extent to 

which two sets of data are statistically similar or dissimilar.  

The classical approach due to Fisher involves prescribing a linear function (F) with 

unknown coefficients {λi} for a set of measurements {θi}carried out on a population; and, 

this function in effect, is optimized with a choice of {λi}, so as to provide the largest 

scoring that distinguishes the two subsets of  test data. In other words, the Fisher linear 

discriminant with optimized coefficients applied to a set of measurements would enable the 

subsets of the population “best discriminated” [4.1], [4.4] and [4.8]. For each set of 

measurements (pertinent to an “inherent” variable/parameter), the associated a posteriori 

distribution (depicting actual statistics of the parameter (variable) in question) can be 

compared against an apriori, set of uniformly-distributed variable data set. The underlying 

heuristic of such comparison leads to the equation: 

)θ(Vardet

)θ(Var det
f=)θ(I

l
F

Actua

Uniform

                                                                         (4.4) 

where, f is a function that should be continuous and strictly increasing and var denotes the 

variance of (θ). Fisher-metric, for example can be applied to a test sequence so as to 

delineate the codon and noncodon parts [4.4]. It involves constructing a set of 
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discrimination matrices vis-à-vis the subsets of data in the parts to be discriminated. F-

metric is useful in identifying 

4.4.2 Non-parametric Measures of Information 

Non-parametric measures give the amount of information supplied by the data to 

discriminate in favor of a probability distribution f1 against another f2, or for measuring the 

distance (or affinity) between f1 and f2. For example the so-called, Kullback-Leibler (KL) 

measure belongs to this class [4.1] and [4.2]. It is an entropy-estimator method that extracts 

“meaningful signal” to distinguish the exon/intron segments of a test genomic sequence. 

Such conditional entropy aspects of statistical divergence (SD) are based on relative 

entropy (mutual information) considerations on coding versus non-coding regions. Given 

that pc denotes the probability of codon-population statistics and pnc depicts the probability 

of noncodon population statistics, the KL measure is specified by:  

∑
i

}C,G,T,A{→inccc )]p/plog(p[  

or 

∑
i

}C,G,T,A{→icncnc )]p/plog(p[                                                                    (4.5) 

There also exist a set of other distance measures such as, Mahalanobis measure, 

Bhattacharyya measure, Ali-Silvey measure etc., which have been adopted for genomic 

sequence analyses purposes [4.1] and [4.4]. Yet another non-parametric symmetric 

divergence measure belongs to the class of so-called Csiszár’s f-divergences, which are 

more general than the KL version. Details on such measures are available in [4.1] and [4.2]. 



 

53 

In essence, KL measure is a subset of this Csiszár family of cross-entropy functionals given 

by:    

)]p/p(F×p[ nccc   or   )]p/p(F×p[ cncnc                                                          (4.6) 

where, F(.) is a doubly differentiable convex function. A host of measures thereof can be 

specified by proper choice of F(.). Popularly, the KL-measure, the Jensen-Shannon (JS) 

measure etc. have been used in bioinformatics contexts [4.1]. 

The main driver behind the success of the above methods in genomic context is due 

to distinguishable statistical characteristics of exon and intron segments. That is, a non-

uniform codon usage  prevails in the exon part meaning that, specific to coding regions not 

all bases of {A, T, G, C} occur with the same probability; but, there are subtle differences 

between the statistics of their appearance that exist depending on the position of each base 

in the codon triplets. In contrast, in non-informative intron segments, the occurrence 

probabilities of A, T, G and C are the same (equal to ¼). A typical KL-measure based 

codon/non-codon delineation is indicated in Chapter V. Also, an example of recognizing 

the presence and extent of the so-called CpG sequences in the test ssDNA genome has been 

indicated in Section 4.8. 

4.4.3 Measures of Entropy: Bioinformatic Context 

As indicated earlier, measures of entropy implicitly express the amount of 

information contained in a distribution, namely, the amount of uncertainty associated with 

the outcome of an experiment. The classical measures of this type are specified explicitly 
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via Shannon’s concept and extended as Rényi’s measures [4.1]. However, without any loss 

of generality, the genomic analyses can be done via any one of the aforesaid versions. 

4.5   Characterization of Genomic Feature via IT Measures 

In order to quantify the negentropic characteristics of the DNA, the following 

questions should be answered: 

 Are the bases in the DNA chain independent events? 

 Does the occurrence of any one base along the chain alter the probability of 

occurrence of the base next to it implying (Markovian attribute)? 

 What is the conditional probability that when a base A occurs, it will be 

followed by A or any other base designated at T, C or G? 

Relevant salient aspects of DNA information can be summarized as follows [4.1]: (i) 

DNA information is inherently redundant; (ii) it represents at least a first-order Markov 

source output; (iii) DNA information can be regarded as the output of an ergodic source; 

(iv) Shannon’s redundancy factor (R) corresponds to: 1 – [Hm/log2 (a)], where ‘a’  is the 

number of states (or epochs) of the statistics involved; and,  [log2 (a)] corresponds to the 

maximum entropy of the sequence of equiprobable, independent elementary events  I = 1, 

2, ..., a; Hm  denotes the entropy of the first-order Markov chain and [Hm/log2 (a)] is defined 

as the relative entropy [4.9]. Further, (v) Shannon’s Second Theorem on genetic 

information transmission [4.1]:  “It is possible within limits, to increase the fidelity of the 

genetic message without loss of potential message, provided that the entropy variables 

change in the proper way, namely, by increasing D2 at relatively constant D1”. Here, the set 

{D1 D2} refers to the D-indices. D1 is the divergence from the equiprobable state of 



 

55 

independent occurrences; and, corresponding divergence from equiprobable state of non-

independent occurrences, which is denoted by D2, an evolutionary index that seperates 

higher organisms (like vertebrates) from lower species. Vertebrates can accomplish such a 

source encoding.  That is the reason for them to be “higher” organisms. A review on the 

application of information theory to DNA sequence analysis is available in [4.10]. 

4.6   Fuzzy Attributes of Genomic Sequences 

The large data spaces of bioinformatics can be in many instances overlapping. Such 

imprecise domains possess unique difficulties when the underlying details are extracted. 

This is because of the non-specificity of the values and sharplessness of the boundaries of 

activity variables that can be described mostly in linguistic norms of fuzziness or grey 

facts. With fuzzy attributes prevailing in bioinformatic contexts, a multi-value logic has to 

be appropriately built, making the grey truth into complex schemes of formal reasoning. 

As mentioned earlier, exclusive to this chapter, the entropy/IT considerations on 

genomic analysis is focused on presenting the associated fuzzy attributes. The task 

indicated thereof refers to elucidating the fuzzy profile that may prevail at the splice-

junctions between codons and noncodons. As regard to such fuzzy considerations, 

developed in [4.4] is a strategy that identifies the splice-junctions between codon and 

non-codon regions present in a massive stretch of a DNA chain, especially when the 

delineating boundary in question is submerged in a subspace where codon and non-codon 

parts exist as overlapping and ambiguous/fuzzy entities. A fuzzy inference engine (FIE) 

developed thereof uses again information-theoretic based metrics (with relevant 

algorithms applied to symbolic as well as binary sequence data representing the DNA) so 
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as to score differentiating extents of codon/non-codon populations at a given site in the 

DNA sequence. The information-theoretic metrics adopted in [4.4] refer to various 

statistical divergence (such as KL and JS measures) as well as distance and discriminant 

concepts. Further, the algorithms indicated in [4.4] yield consistent results on the 

delineation boundary sought on test subspaces that are fuzzy; and simulated studies using 

human as well as bacteria codon-statistics confirm the efficacy of the approach pursued.  

Notwithstanding the existence of pursuits as above in locating the splice-junctions, 

the statistical divergence (SD) can be extended in getting mapped into a novel 

membership function that specifies the fuzzy subspace of overlapping exon and intron 

segments. Relevant membership function is defined thereof on the basis of an “error’’ 

feature prevailing in the overlapping (“noisy”) segment with mutational aberrations. The 

underlying heuristics are as follows.   

As stated earlier, the locations of splice-junction may not so reliably distinct. 

However, in a canonical sense, the splice-junction consensus may follow certain rules as 

regard to introns and exons [4.11]. For example, the introns almost always begin with the 

residue set {gt} at 5-end and ends with an {ag} at the 3-end. But, inasmuch as the 

nucleotide sequence corresponds to a set of statistically permutated elements, {A, T, G, 

C}, numerous putatively occurring {gt} and {ag} locations (other than in the introns as 

indicated) may prevail and resemble such canonical patterns. This implies that relying on 

such canonical details alone may not reasonably and robustly show the presence of true 

splice-junctions. Further, in the event of point-mutations, stemming of aberrant splice-

sites is inevitable [4.12]. As such, should a junction be recognized and prevailing of 
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possible cryptic junction sites should be elucidated, it is necessary to analyze statistically 

prevailing long-range genetic information so as to determine the extent to which 

subsequences surrounding the splice-junctions differ from sequence segments of 

adjoining spurious analogs; hence, true versus aberrant (cryptic) splice junctions can be 

distinguishably identified. A feasible suite of analysis is as follows: 

Evolutionary conservation of splice-junctions is invariably hampered with 

inevitable phylogenetic-specific mutations. If such mutations are (assumed) independent, 

any “noisy” change in the spatial DNA pattern of the sequence (at the splice-junctions) 

can be marked as a “spatial jitter” with a characteristic parameter called spatial signal-to-

noise ratio (SSNR). 

Splice-junctions with a spatial jitter as above correspond to fuzzy offsets of exons 

and introns at their junctions. That is, the spatially-jittered junction corresponds to an 

overlapping mix of codon and non-codon entities and hence constitutes a (fuzzy) 

universe. In other words, the splice-junction information has a fuzzy structure that can 

only be identified/specified in norms of linguistic descriptions. Such descriptions can be 

characterized by a membership (function) [4.1] and [4.12] of belongingness to the 

attributes of exon or introns.  

 Indicated here is an appropriate FIE that delineates fuzzy overlaps of codon/non-

codon parts so as to elucidate the underlying cryptic (or aberrant) splice-junctions. This is 

done on the basis of SSNR defined with reference to the spatial-jitter. The SSNR is also 

adopted to represent the relevant membership function.  
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4.6.1. Spatial-jitter across Splice-junctions 

Consider a small window(-length) accommodating a finite-number (say, 100) of 

putatively occurring base residues along a DNA sequence. Suppose this window traverses 

a splice-junction. With no a priori information available on the accurate disposition of 

the splice-junction, it can be initially assumed that the reading gathered thereof is a 

“blurred” information implying an overlap of exon/intron region with a fuzzy codon/non-

codon transition. That is, a spreading function is assumed to prevail across the finite 

window-length. The resulting spatially-varying 1-D signal so gathered from the scan of 

the entire DNA sequence would resemble a set of random telegraphic waveform train 

constituted by changing statistical profiles of exons and introns (being scanned). The task 

in hand is then to detect the spatial transition sites, each delineating adjoining exon/intron 

(or intron/exon) segments despite of the noisy, blurred spatial information (of the 

transition site).  

  Suppose (x) represents an uncorrupted DNA sequence pattern metric computed 

along the variable x denoting the 1-D space of the sequence length. Associated signal 

component will assumed to be corrupted in the event of mutational changes in {A, C, T, 

G} had occurred along the sequence are encountered. Such mutation-specific effects can 

be modeled as a contribution of “noise”, m(x) on the signal part, (x). Hence, the signal 

output of the window-reader can be modeled by either a spatial-domain convolution 

description, namely,  s(x) = (x)m(x) or, equivalently by a corresponding frequency-

domain description, S(f) = (f)M(f) , where S(f), (f) and M(f) are the Fourier 

transforms of s(x), (x) and m(x) respectively.  
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Consider an intron-exon splice junction illustrated in Figure 4.1. The upper figure 

(marked as (a)) is a crisp noise-free (uncorrupted) site with a splice-junction at xo along 

the DNA sequence constituted by {A, C, T, G} residues. Should mutational corruptions 

have taken place, this crisp transition-boundary xo becomes (xo  x), where x denotes 

spatial jitter (marked as (b)).  

 

Figure 4.1: “Spatially-jittered” splice-junction manifesting as fuzzy exon/intron (or vice 

versa) transitional residues along the sequence. 

(a)  Unaltered (crisp) splice-junction; 

(a) Fuzzy splice-junction with graded variation of divergence (distance) 

between the statistical features (specified as a measure on the ordinate, 

y) of exon/intron (or intro/exon) along the transition region. The 

abscissa (x) depicts a scale of residues along the DNA sequence.  

 

Further in Figure 4.1, the y-axis depicts the measure/metric of (relative) statistical 

divergence of exon versus intron (or vice versa) prevailing at any point, x on the 

sequence. (This statistical divergence prevails due to the reason that exon has a distinct 

distribution of {A, C, T, G} constituents vis-à-vis the corresponding distribution in the 

intron segment).    
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The effect of (mutation-specific) corruption would make the splice-junction to 

become unclear of fuzzy, as shown in Figure 4.1 (b). In essence, x is a jitter variable 

superimposed on s(x) corresponding to crisp disposition of the splice junction xo.  The 

expected root-mean-squared (rms) jitter Jr at any splice-junction xo can be expressed by 

the “noise power” imposed by the mutation errors. 

In traditional communication theory, the term signal-to-noise ratio (SNR) is 

defined to specify the quality of an uncorrupted “signal (power) level” to the corrupting 

“noise power”. Translating this concept, suppose the average length of intron-plus-exon 

is X , corresponding “spatial SNR” (SSNR) with reference to the DNA sequence space (of 

Figure 4.1) can be defined as follows: SSNR = 2 2
r(X) /J .   

4.6.2. Error probability of Splice-junction Prediction 

Relevant to a “noisy” intron/exon (or exon/intron) transitions, the accuracy of 

locating the transition site, xo is constrained by the probability of error associated with the 

estimation of xo. In this context, within the specified blurring limits of jitter, the SSNR 

implicitly would predict the error probability of estimating the splice-junction. 

Suppose a sequence of exon/intron (or vice versa) transitions (x
i
o’s) prevail at 

locations indexed by i = 0, 1, 2, …, m. From these data, one can extract exon or intron 

widths () as follows: 
i+1 i+1 i E or Iχ = (x x ) for all values of i = 0, 1, 2, …, m, where the 

suffix (E or I) denotes the measurement done on an exon or an intron respectively. In 

terms of the average length of consequent intron plus exon (X) subspaces, the transition 

(split-junction) locations in the presence of mutation error-induced jitter can be expressed 
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as follows:
i

i Noisy j i

j = 0

(x ) = k X + δ X , where kj is an integer with ko being zero; and, i = 0, 1, 

2, …, m; further,  is a dimensionless random variable, which in a simple case, has zero-

mean Gaussian distribution with variance 
2
 = (1/SSNR). (This variance is invariant 

along the sequence length if the sequence statistics is assumed to be stationary). 

 Now defining a normalized variable,
i iκ = χ /X , it can be estimated as 

i i i i  1κ = K + (δ  δ ) with (i = 0, 1, 2, …, m); hence one can specify the probability of correct 

decoding of the splice-junction, Pc(m) as the probability that i iκ K 0.5.   

Inasmuch as, 
i i i i  1κ = K + (δ δ ) , the aforesaid probability can be restated as follows: 

   c 1 0

1 0 1 m-1

m =Prob  - δ δP

 - 0.5....,  - 0.5δ δ δ  δ 
                                                              (4.7) 

With the assumed Gaussian statistics for , the cumulative probability of correct 

decoding of the splice-junction, namely Pc(m) can be deduced as follows: 

     
2Δx

-
xo

1 1 Δx
= exp -  d ΔxΔx,σPc

2πσ 2 σ

1 1 Δx
                   = + erf

2 2 2σ



 
 
  

 
 
 


                                               (4.8) 

where, x with respect to an i
th

 junction is given by ix =
i i  1 (δ δ )x ; and, erf(u) = 

u
2

0

2
exp( u )du


 . Further, the fuzzy-space in question enclaves the universe 

m depicting an 

m-dimensional hypercube across the unit interval, I  [ 0.5, + 0.5].  
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Equation (4.8) implies that the probability of correct detection (and hence error 

probability) of the splice-junction disposition is implicitly dependent on SSNR 

parameter. The plot of equation (4.8) is shown in Figure 4.2, where Pc is plotted as a 

function of (xo  x)/xo with respect to a presumed, crisp splice-junction at xo posing a 

transitional error-prone width x.  

 

Figure 4.2: The probability of correct estimation of a splice-junction 

This error-prone region depicts a subspace of overlapping exon/intron subspaces 

that smear the exact location of xo. This unspecific (error-prone) subspace x is therefore, 

fuzzy imposing an imprecision on xo. Relevantly, the generic description of Pc in this 

fuzzy subspace takes a membership attribute of vagueness vis-à-vis the position variable, 

x. The membership here depicts the belongingness to exon subspace or intron subspace. 

Hence described in the next section, are the underlying aspects of the fuzzy subspace in 

question with the object of ascertaining the splice-junction in the fuzzy subspace. 
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4.6.3. Fuzzy Splice-junction Prediction 

Suppose a set of input values xi are taken from the sequence and considered as 

non-specific or fuzzy. By denoting those segment values by {ix}f, corresponding {(Pc)i}f 

can be written in terms of uncertain limiting-values of all the vectors in the bounding 

(lower and upper) interval, x   [xL, xH]. Hence it follows that [4.1]: 

            j
C C L C Lf i  i  if f f

α-1 j-1
Δx Δ + Δ Δ /j!ρP P x P x x

j=1

  
                   (4.9) 

where, f (.) depicts the slope equal to d(Pc)i/dxi and  is the number of interval-valued 

parameter for the range within [xL, xH]. Further, equation 4.9 denotes an algebraic sum 

of addenda computed via interval arithmetic and denotes the “width of the results”. In 

other words, for the specified vector bounding-limits of {(Pc)i}f, namely, x  [xL, 

xH], an -set of interval-valued parameters namely, {Q}, Q = Q1, Q2, …, Q, prevails at 

or around xo with no fuzzy attributes. Then relevant crisp-domain relation of {x} versus 

{Pc} can be written by a differential equation given by : d
2
Pc/dx

2
 + (dPc/dx)

2
 = g(x) 

where g(.) is some arbitrary function of x.  

In the event of overlapping fuzzy attributes existing at xo, then the corresponding 

(fuzzy)-domain relation between {x} versus {Pc} can also be generalized by a 

stochastical discourse of Pc versus x expressed in terms of a fuzzy stochastical 

differential equation [4.1].  Further, in such exon-to-intron transition subspace (denoted 

as F) having fuzzy attributes, corresponding demarcation of exon/intron transition can be 
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assumed to be at a centroid location (XC) with a line-of-delineation through a centroid. 

This location refers to a defuzzified elucidation based on membership of belongingness 

of the site-of-interest in the fuzzy space. The procedure to find XC is described below. 

4.6.4 Centroid of Fuzzy Subspace at the Splice-junction  

The SSNR and Pc considerations versus (xo  x)/xo indicated before imply 

inherent statistical attributes of {A, T, G, C} population in the exon and intron regions 

across the splice-junction. The exon-side statistics encodes for genetic information (to 

make necessary protein) and the intron-side statistics is non-informative. In other words, 

suppose the probabilities of occurrence of the elements {A, T, G, C} in the exon are 

denoted by the set: {QA, QT, QG, QC} with (QA + QT + QG + QC = 1). Then, the associated 

errors for the elements of {A, T, G, C) are decided by the inequalities, QA  QT  QG  

QC. Now, suppose the corresponding probabilities of occurrence in the intron are: {A, 

T, G,C} with (A + T + G + C = 1); then, the associated errors for the elements 

of {A, T, G, C } on intron-side are set by the condition that, A = T = G = C = 0.25. 

This is because the intron-side being non-informative, Laplacian hypothesis applies in 

presuming that all (four) elements are equally-likely to occur. Hence, with the distinction 

in the values of {Q}A, T, G, C and those of {}A, T, G, C relevant entropy/information-

theoretic (IT) distances (that is, the statistical divergence or SD values) computed (for the 

exon and intron regions) would show distinction in the profiles of SD (in exon and intron 

regions) as illustrated in Figure 4.3. (This SD can be any one on the divergence measure 

such as KL or JS mentioned before. Illustrative measures are presented later in the results 

with reference to a real DNA structure).  
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Figure 4.3:  SD – to q(SD) mapping. The SD-value “a” maps to upper- and lower-

limits of q(SD) respectively as (aU) and (aL). Similarly, the SD-value 

“b” maps to upper- and lower-limits of q(SD) respectively as (bU) and 

(bL). 

I: (xo  x)/xo versus SD curves in the intron and exon subspaces. Note 

the SD profiles are distinct in each region 

II: (xo  x)/xo versus membership function, q(SD) 
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Following the considerations presented in [4.13] and [4.14], the expression for  Pc , 

namely, (1/2) + (1/2)erf(Δx/ 2σ) , can be approximately written as: Lq(z)/Lq(0) where Lq(z) 

denotes the Bernoulli-Langevin function and the prime sign depicts the differentiation 

with respect to the argument z = (x/2. Explicitly, Lq(z) = (1 + 1/2q)coth{(1 + 

1/2q)z}  (1/2q)coth{(1/2q)z} where q represents an disorder entity associated with the 

statistics of the population concerned [4.16]. Shown in [4.16] is that the upper-bound of 

the isotropic disorder statistics is decided with q = ½ and the lower-bound (depicting an 

anisotropic disorder) is specified by q → . Inasmuch as the statistics of exon-region 

would differ from that of intron-region, qE  qI. Further, as indicated in [4.14], the ratio 

Lq(z)/Lq(0) denotes approximately the membership function q for the region (fuzzy 

space or block, F:{xi}) of interest with its fuzzy range (upper-to-lower) is decided by: q = 

½ to q → .  

Hence, shown in Figure 4.3, is the mapping of computed divergence measures (SD) 

of intron and exon subspaces (across the slice-junction) into corresponding membership 

values, q(SD) (with q = ½ yielding upper-bound values and q →  giving the lower-

bound values). For example, suppose a location xa (in exon region) gives the SD-value 

equal to (a). Then, the value (a) maps on to the membership-plane with the entities (aU) 

and (aL) depicting respectively, the upper- and lower-bound values. Similarly, assuming 

a location xb (in intron region) has an SD-value (b), this value maps on to the 

membership-plane as (bU) and (bL) denoting respectively the upper- and lower-limits. 

The steps as above can be elaborated as follows: 
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First, the chosen divergence measure (SD: KL or JS) is computed for the entire 

fuzzy domain F at each pointer-position within a chosen window-size.  For this purpose, 

two subspaces FExon and FIntron depicting respectively, the exon- and intron-side of the F-

space are specified. Then, the computation of the SD-measures with exon statistics {Q}A, 

T, G, C in FExon-subspace and with intron statistics {}A, T, G, C  in FIntron- subspace is done 

with KL or JS algorithm. 

The values of SD generated in each differential window (of FExon- and FIntron-

subspaces) accounts for the extents of codons and noncodons in the relevant fuzzy 

subspace. Corresponding to the window-specific pointer-positions along the sequence, 

the SD-score profile obtained across each differential block will be distinct for each 

subspace (exon or intron) in question. Next, the values of SD obtained are translated via 

membership function to provide descriptive details of belongingness in the fuzzy domain.  

The translated values gathered can be subjected to a defuzzification process [4.13] 

and [4.16] in order to get the centroid position (of the pointer) that delineates the 

boundary of the two test fuzzy subspaces. Relevant local search follows the heuristics of 

“search and score” applied appropriately on the assigned membership values that 

describe the qualitative descriptions of overlapping and ambiguous codon/non-codon 

locales across the fuzzy site.  

The boundary that marks the desired splice-junction being searched corresponds to 

a defuzzified location obtained via centroid-finding method. Towards the centroid, the 

fuzzy exon-domain profile and the fuzzy intron-domain would converge close a single 
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membership value. Referring to Figure 4.3, the SD value (a) in the exon subspace yields 

mapped values (aL and aU); and, the SD value, (b) in the intron subspace maps into (bL, 

bU). Suppose the set {aL, aU} in turn projects on to x-axis at xaL and xaU respectively. 

Likewise, the set {bL, bU} projects on to x-axis at xbL and xbU respectively. Then, the 

mean position of xaL, xaU, xbL and xbU would correspond to the centroid being sought.  

4.6.5   Simulation Experiments Using Real DNA Data 

 The efficacy of the efforts and procedure described above is illustrated with an 

example of real-world DNA sequence of dengue virus type 1 (NCBI Reference 

Sequence: NC_001477.1). Its CDS stretches from the nucleotide position 95 through 

10273. Using the nucleotide population details, a moving-window based calculation of 

KL-measure is plotted in Figure 4.4 across the entire sequence length. 

 

Figure 4.4: Nucleotide position versus computed KL-measure of the DNA sequence of 

dengue virus type 1 (NCBI Reference Sequence: NC_001477.1)

The data available in NCBI GenBank for example, shows a CDS stretch from the 

position 7574 through 10270 with an indication of a transition at 7574. Presented below 
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in Figure 4.5 is an exclusive plot of KL-measure across this selected CDS regime at the 

transition locale around 7574. While the codon (exon)/non-codon (intron) transition is 

markedly seen, there is however a subspace of fuzziness, wherein an overlap of exon and 

intron regimes prevails indistinguishably (viewed with the simple KL-measure).   

 

 

Figure 4.5: Nucleotide position in the limited range of 5000 to 9000 versus computed 

KL-measure of the DNA sequence of Dengue virus type 1 (NCBI 

Reference Sequence: NC_001477.1). 

Therefore, by assigning membership attribute, the fuzzy inference engine algorithm 

(described earlier) can be invoked to decide on the location of the splice-junction in the 

fuzzy region. For this purpose, drawn in Figure 4.6 is the profile of membership values 

(q) mapped from the computed KL-measures across the transition region of interest. 

There are two profiles: (a) depicts q-values with q = ½ (meaning the upper-bound on the 

6000 8000 

KL 

5 3 

0.2 

0.4 

Nucleotide 

positions 

Fuzzy 

subspace 

DEN1 virus 

(a) 

(b) 

Intron 

subspace 

Exon 

subspace 



 

70 

membership); and, (b) denotes q-values with q =  (meaning the lower-bound on the 

membership). 

 

Figure 4.6: Membership profiles (q) across the fuzzy transition region of interest. 

(a) q-values with q = ½ (meaning the upper-bound on the membership) 

versus nucleotide positions of the test DNA 

(b)  q-values with q =  (meaning the lower-bound on the membership) 

versus nucleotide positions of the test DNA. 

From Figure 4.6, the location of the splice-junction buried in the fuzzy domain can 

be ascertained. This location corresponds to the centroid coordinate (xC). This centroid 

position is featured by the upper- and lower-bound profiles of the -value. In view of the 

discussion presented earlier, xC corresponds to the mean position of xaL, xaU, xbL and xbU. 

For the data presented in Figure 4.6, relevant computed results show that this centroid 

(xC) is at 7401 (as against the crisp value indicated in NCBI GenBank as 7574). This 

centroid (7401) is the mean of: [(xbL + xbU)/2 = 7401] and [(xaL + xaU)/2 = 7401].  
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Depicted in Figure 4.7(a) are base residues reported around, for example splice-

junction site, namely 7574. The present method predicts in addition, a cryptic set of 7370 

and 7419 in the vicinity of the centroid 7401 determined. The selection of this set {7370, 

7401} is based on the heuristics of [4.11] suggesting the intron’s 3-side preferential 

ending being ag. That is, the values 7370 and 7401 are picked around the centroid 

determined such that they are in conformance with the abutting of ag-residues.  

 In Figure 4.7(a)-(i), the intron-subspace ends with residue set {ag}at 7574 and is 

consistent with the canonical splice-junction consensus (as mentioned earlier) of [4.11]. 

Notwithstanding this canonical pattern, the mutational influences could have possibly 

induced aberrant splice-junctions. A scan through the test DNA indicates a cluster of sites 

between 7500 through 7700 exist at which the residues a and g occur together making it 

ambiguous on the decision that splice-junction alone can be the splice-junction of 

interest. However, following the fuzzy pursuit presented here, it enables pointing out that 

other cryptic splice-junctions such as 7370 and 7419 could reasonably be alternative 

splice-junction sites having adjacent ag residues as illustrated, for example in Figure 

4.7(a)-(ii) with 7419 site. 
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Figure 4.7(a): The details on nucleotides adjacent to the predicted splice-junctions: (i) 

As per [13]; and (ii) as per present method. (In both cases, the intron-

subspace ends with a residue pair ag bases consistent with the canonical 

splice-junction consensus) 

 

The complete list of aberrant splice junctions evaluated for the test viral DNA in the 

present study is presented in Table 4.1 and illustrated in Figure 4.7(b). Table 4.1 indicates 

the centroid values determined as well as cryptic transition sites predicted on the basis of 

the heuristics of [4.11]. It may be noted that the data available in NCBI Genbank portrays 

overlaps of CDS domains that eventually facilitate various protein structures as listed. 
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Table 4.1: Transition sites indicated in NCBI GenBank and the predicted sites as per 

the present method 

CDS range 

data  

 

Description 

Transition 

site 

 

Bounds of membership value  

Centroid 

of UB 

and LB 

Cryptic 

transition 

sites  

predicted** 
Upper-bound 

(UB)* 

Lower-bound 

(LB)* 

95..394 

 

 

 

Capsid 

protein 

 

394 

 

1, 401 

 

  301 

 

352 

 

350 

354 

394 

94…436 

 

Anchored  

capsid  

protein                    

 

436 

 

301, 701 

 

301, 701 

 

501 

 

515 

 

710..934 

 

Membrane 

glycoprotein                     

710 

 

701 701 701  

 

954 

 
437..934 

 

Membrane 

glycoprotein 

precursor     

 

934/935 

 

701, 1101 

 

701, 1101 

 

901 

935..2419 

 

Envelope  

protein                                

2419/2420 1801, 2501 2801 2151 2160 

2420..3475 

 

Nonstructural  

protein 1                      

3475/3476 3301, 3801 3301, 3801 3551 3553 

3476..4129 

 

Nonstructural  

protein 2a                    

4129/4130 4001, 4301 

 

4001, 4301 4151 4149, 4170 

4130..4519 

 

Nonstructural 

protein 2b                    

 

4519/4520 

 

4301, 4701 

 

4301, 4701 

 

4501 

 

4326, 4356 

4452, 4505 

 

4520..6376 

 

 

Nonstructural 

protein 3                      

 

6376 

 

6201, 6701 

 

6201,6701 

 

6451 

6447,6462 

6377..6757 

 

Nonstructural 

protein 4a                    

 

6757 

 

 

6701, 7001 

 

6701, 7001 

 

6851 

 

 

6833,6857 

6758..6826 

 

2k protein  

6826 

 

6701, 7001 

 

6701, 7001 

 

6850 

6827..7573 

 

Nonstructural 

protein 4b                    

 

7573/74 

 

7201, 7601 

 

7201, 7601 

 

7401 

7370,7419 

7574..10270 

 

Nonstructural 

protein 5                    

 

10270 

 

10001, 

10401 

 

10001, 10401 

 

10201 

 

10202,10211 

** The UB and LB values indicated correspond to the sites where minima of q-plot (map) in the fuzzy 

domain of interest are observed, (for example, see Figure 4.6).  

* The predicted site is based on locating a site in the vicinity of the centroid where the introns almost 

always begin with the residue set {GT} at 5-end and ends with an {AG} at the 3-end as illustrated in 

Figure 4.7 
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Figure 4.7(b): Summary of results on the locations of splice junctions. Downward 

arrows indicate values available in NCBI GenBank for DEN1 virus. 

Upward arrows indicated computed values that include details of cryptic 

sites in the fuzzy subspaces 

 

The purpose of knowing correct and aberrant splice-junctions in the context of viral 

DNA (such as DEN1 virus) is pertinent to and implicates vaccine designs [4.18].  In 

general, a gene is first transcribed into pre-mRNA, which is a copy of genomic DNA 

containing exon and intron regions. Gene-splicing is an important form of protein 

diversity and has also regulatory functions and RNA-splicing is essential so as to regulate 

precisely the process that occurs after gene transcription and before mRNA translation (in 

which introns are removed and exons are retained). The sequences between the 

boundaries of introns (denoting regions of DNA or precursor RNA that are not 

represented in mature RNA, but reside between regions) and exons (depicting regions of 

DNA or precursor RNA represented in mature RNA) are not random. There are several 

splicing events that are possible eventually resulting in: Exon-skipping, intron-retention, 

394  436      710   934                                       2419             3476 

4130         4520         6376       6757   6826      7574      10270 

4149 

4170 

4326 

4356 

4452 

4505 6833 

6857 

7370 

7419 

10202 

10211 

3553 2160 515 954 

5 

3 

Splice-junction locations  

350 354 

6447 

6462 



 

75 

cryptic splice-site usage and alternative 3′- and 5′-side splice-sites [4.12]. Further, in 

RNA splicing, the so-called splicing-variants may be formed prior to mRNA translation 

due to differential inclusion or exclusion of regions in the pre-mRNA structure. Also, a 

systematic analysis of splice-junction sequences in eukaryotic protein coding genes using 

NCBI GenBank databank has revealed a striking similarity among the rare splice-

junctions [4.11] that do not contain ag at the 3′ splice site, or gt at the 5′ splice site.  

As mentioned before, indistinct splice-junctions would result from deleterious effects 

of mutations that target the splice-sites causing variability in splicing patterns. Such 

deleterious effects eventually form a major source of protein diversity leading to a 

considerable extent of diverse proteomic functions that stem from a relatively small 

number of genes. Thus, changes in splice-site (alternative splicing) can induce different 

effects on the encoded proteins, not only in humans but also in viruses. 

As regard to the viral leader sequences, there may be a splice donor site for 

generation of subgenomic messages, usually the env (viral envelope) transcript. In 

general, the role of RNA splicing is to generate a set of stable splice-junctioned 

sequences in viruses so that virus mimicry is enabled as a mechanism for the potential 

variability in envelope proteins, (which are susceptible for changes due to point-mutation 

and thus, avoid to be recognized by T-memory cells of higher organisms in vaccine 

trials). 

The present study offers a systematic way of elucidating cryptic splice-junction sites 

in viral DNA structures, the knowledge of which can be profitably used in vaccine design 

efforts. The study is being extended to a variety of viruses in order to elucidate the 
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underlying cryptic aspects of splice-junctions. Pertinent analytical framework and 

computational aspects are augmented with the details available in [4.19 - 4.21].  

4.7    Information Redundancy: Application to Genomic Sequences 

The second objective of this chapter refers to formulating a genomic sequence 

analysis with the information redundancy (IR) being the metric of the associated entropy 

and/or information details. Specifically, this IR approach is presented to elucidate the 

distinguishing features of four related sequences such as those of strains of a viral species. 

For example, discussed in Chapter III, are the details on a virus like dengue with its serovar 

DEN1, DEN2, DEN3 and DEN4. These viral strains could be phylogenetically related and 

are causative for similar, but, distinct dengue fevers. Therefore, it is of interest to know not 

only the similarity features between the genomic sequences of these strains, but also useful 

to identify their distinguishing characteristics. The similarity features are elucidated in 

detail in Chapter VII. Here, IR concept is adopted to study their distinguishing 

characteristics. 

 The redundancy factor (R) for a genomic sequence is given by the equation: 

[H(r)]

H(r)
-1=R

M
1                                                                                           (4.10) 

Here, H(r) is the information content of the genomic sequence and is given by equation 

(4.2). The redundancy factor for each strain of dengue virus is determined and is denoted as 

R1, R2, R3 and R4 for DEN1, DEN2, DEN3 and DEN4 respectively. Figure 4.8 below 

shows the most important redundant regions of all the four serovar of dengue virus. 
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Figure 4.8: Highly redundant segments common to all the four serovar of dengue virus 

 Consider for example the genomic sequence DEN1 of dengue virus. To determine the 

information content in its sequence, first, the total number of occurrence of each member of 

the set {A, T, G, C} is determined in a given window (here the window size is 120). It is 

denoted as pA, pT, pG and pC for A, T, G and C respectively. Then, the information content 

(denoted by H1) for each window is determined using modified Equation (4.2) as: 

( )( ) ( )( ) ( )( ) ( )( )plog×p+plog×p+plog×p+plog×p=H CCGGTTAA1                       (4.11) 

 Now, consider a junk sequence with equal probability (0.25) of occurrence of all the four 

bases and with the same sequence length as that of DEN1. Then, for the same window size 
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as above, the total number of occurrence of each member of the set {A, T, G, C} is 

determined and is denoted as qA, qT, qG and qC. The information content of this 

equiprobable junk sequence (denoting the introns) is given as: 

( )( ) ( )( ) ( )( ) ( )( )qlog×q+qlog×q+qlog×q+qlog×q=H CCGGTTAA1M                     (4.12) 

 Hence, by substituting Equations (4.11) and (4.12) into Equation (4.10), the redundancy 

factor (R1) for DEN1 can be deduced as: 

H

H
-1=R

M1

1
1                                                                                                   (4.13) 

 Similarly, the redundancy factors for all the other strains of dengue virus can be 

determined. The result has been shown in Figure 4.8 above.  

4.8    CpG Motifs in Viral ssDNA 

 In the DNA segments, a set of CG motifs constituted exclusively by short stretches of 

guanine (G) and cytosine (C) bases may prevail with an occurrence frequency of such CG 

nucleotides being higher than in other regions.  Such CG-motif section is also called the 

CpG island where ‘p’ implies that C and G are connected by a phosphodiester bond.   

 The CpG islands, in essence are unmethylated regions that contain high 

concentration of C and G.  The generally accepted definition of what constitutes a CpG 

island in a DNA sequence was proposed in [4.22] as being a 200-bp stretch of DNA with a 

(C + G) content of 50 % and an (observed CpG)-to-(expected CpG) ratio being higher than 

0.6. A subsequent study [4.23] based on an extensive search on the complete sequence of 

human chromosome 21 and 22, stipulates that a DNA region with equal or greater than 500 
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bp having a GC-content exceeding 55 % and an (observed CpG)-to-(expected CpG) ratio 

of 0.65 could be more likely a true CpG island. The CpG sequences are relatively rare in 

human DNA but, are more commonly observed in the DNA of foreign organisms such as 

bacteria or viruses.  

 There has been a general research interest in understanding the presence of CpG 

oligonucleotide in such viral and bacterial genomes. Specifically, the human immune 

system has been studied as regard to the way it evolved in recognizing CpG sequences as 

early signs of infection and initiating an immune response on ad hoc basis. The extent of 

CpG abundance and/or deficiency specific to viral genomes of a certain species has also 

been of research interest. [4.24].  

 Thus, with reference to an ssDNA, the bioinformatic effort of interest in the present 

study refers to knowing the presences of CpG motifs along the genome sequence via 

compatible analytical and computational procedures. Identification and delineation of CpG 

islands in a test ssDNA can be done again by using the concept of entropy-based statistical 

divergence. Relevant details are presented below: 

4.8.1 Locating the CpG Islands: Entropy-based Approach 

 Location of CpG islands in the test sequence implies finding the fragment of bases 

that constitute the motifs of CpG. In order to determine the presence of such islands, first 

the entropy-dictated by the occurrence statistics of three cases, namely, C-alone, G-alone 

and CG-jointly are determined. For this purpose, a “junk” sequence of length L bases is 

first constructed as follows: Considering a total sequence length of L nucleotide base 
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locations, a uniformly-distributed set of L/4 random locations (epoch spaces) are generated 

and assigned for the base A (in the space set L). Likewise, three different ensemble sets of 

random locations are permutatively generated within the field L and assigned for C, G and 

T. Thus, the total length L bases is occupied randomly by A, T, G, C each with an equal 

probability of {qA = qT = qG = qC = 1/4). The sequence of length so generated can be 

dubbed as a “junk sequence” implying that the statistics of {A, T, G, C} does not bear any 

information (due to certainty of equal-probable occurrences of the elements in {A, T, G, C} 

consistent with Laplacian hypothesis on equally-likely occurrences of epochs). In contrast, 

considering an actual genomic sequence (such as a viral sequence), the elements of {A, T, 

G, C} would occur randomly with unequal probabilities as dictated by the encoded genetic 

information. That is, corresponding probabilities of occurrence of A, T, G and T, namely, 

pA, pT, pG and pC are such that, pA ≠ pT ≠ pG ≠ pC; but, (pA + pT + pG + pC) = 1. 

 Now, taking a window across actual and junk sequences, the occurrence probability sets 

namely, {pC + G, pC, pG} and {qC + G, qC, qG} are determined for each window of nucleotides. 

Hence, the (observed CpG)-to-(expected CpG) ratio is specified by Rpw = (pC + G)/(pC × pG) 

and Rqw = (qC + G)/(qC × qG). Corresponding mutual entropy, say, in terms of Jensen-

Shannon measure, namely, JS (Rpw, Rqw) is then determined via Equation (4.14).  

      w e w ew w w
JS  = 0.5 × p × log p/M + 0.5 × q × log q/M  nats                         (4.14) 

 Pseudocode A describes the step-by-step approach pursued and the specific results 

obtained are illustrated in Figure 4.8. 
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Pseudocode A 

 

Pseudocode describing computation of mutual entropy based 

identification of CpG islands in the ssDNA of the Parvovirus B19V 

 

 

// Identification of CpG islands in B19V virus ssDNA 

 

Initialize 

 

Generate a junk random sequence of {A, T, C, G} 

→ Generating junk random sequence of {A, T, C, G} of length 

5000 

←  Junk random sequence represents a random sequence of 

{A, C, T, G) of length 5000 numbers such that, A = 

1250, C = 1250, T = 1250, and G = 1250 epochs are 

generated putatively with equal probability of 

occurrence of A, C, T and G 

 

// Step I 

 

Calculate the occurrence probability of (C + G) per window-

segment of 10 nucleotides in the junk sequence 

→ In equally-spaced window size of 10 nucleotides, count 

total of (C + G) = MC+G 

← Then, the occurrence probability of (C + G): qC+G = MC+G/10
 

← Repeat this calculation over 500 windows that span the 

stretch of 5000 nucleotides  

 

Calculate the occurrence probabilities of C and G per window-

segment of 10 nucleotides in the junk sequence 

→ In equally-spaced window of size 10 nucleotides, count C’s 

= MC; and count G’s: MG 

← Then, the occurrence probability of C: qC = MC/10; and, 

the occurrence probability of G: qG = MG/10; 

← Repeat this calculation over 500 windows that span the 

stretch of 5000 nucleotides  

 

 

//Step II 

 

Determine the ensemble average of (qC+G, qC and qG)↔(qC+G)Av,(qC)Av 

and (qG)Av 

→ This refers to generating a number of junk random sequences 

of {A, T, C, G} of length 5000 and in each case iterating 

Step I, so that ensemble averages of the probabilities over 

the entire set of ensembles generated are computed to yield 

(qC+G)Av,(qC)Av and (qG)Av  
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 // Step III 

 

Determine the ensemble average of (pC+G, pC and pG)↔(pC+G)Av,(pC)Av 

and (pG)Av corresponding to the actual {A, T, C, G} sequence of 

the ssDNA of B19V virus  

→ This refers to actual test sequence of B19V ssDNA 

sequence of length 5594 nucleotides 

→ Repeat procedures of Steps I and II to get (pC+G, pC 

and pG)↔(pC+G)Av,(pC)Av and (pG)Av corresponding to the 

actual sequence of the ssDNA of B19V virus  

 

 

// Calculating the observed/expected probability ratios for junk 

and actual sequences 

 

Define the (observed CpG)-to-(expected CpG) ratio as Rpw = (pC + 

G)Av/(pC × pG)AV and Rqw = (qC + G)Av/(qC × qG)Av for actual and junk 

sequences 

→ Determine Rpw and Rqw for each window-segment 

 
// Determining the mutual entropy, say Jensen-Shannon (JS) 

measure for each window  

 → JS (Rpw, Rqw) is then determined via equation (4.13). 

Print  

← Window segments across 0 to 5000 nucleotides versus 

the JS measures obtained  

 

Plot 

  → Window segments (indexed as 0 to 5000) versus JS measure 

estimated in each segment is plotted as an x-y graph  

 

Result/Output    

 →  (Figure 4.8) 

 ← CpG islands correspond to window-segments wherein JS 

values namely, JS(Rpw,Rqw), are seen clustered and 

some of such values are in excess of 0.6 

 

End 

______________________________________________________________ 
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Figure 4.8: Locating CpG segments in the test sequence: The computed results marked 

as (×) correspond to normalised JS-measure evaluated with Rpw and Rqw 

ratios (described in the text). The clustered regions plus computed measure 

exceeding 0.6 depict plausible CpG islands as shown. 

 

The concept of entropy is thus exercised in locating CpG island segments by 

considering the divergence of (C+G, C and G) populations in the test sequence versus the 

statistics of this population set in a simulated junk sequence, as shown in Figure 4.8. 

4.9   Salient Results and Discussions 

The salient discussions in this chapter thereof are concerned with the following:  

 Various entropy concepts and statistical ordering of the residue structures of the 

sequence, so as to identify the parametric as well as the non-parametric divergence 

matrix compatible for discriminating informative and non-informative sub-
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segments in a sequence and elucidating similar/dissimilar features across a set of 

sequences 

 Finding splice-junctions between codon-noncodon segments, specifically, to 

describe the fuzzy transitions at the splice junctions in terms of a spatial jitter 

algorithm 

 Predicting splice-junctions in viral sequences is elaborated. The possibility of 

aberrant splice-junctions appearing in viral sequences as a result of mutation is 

indicated with DEN1 virus as a case study example 

 Extending the concept of information-theoretic description of genomic statistics in 

terms of Shannon’s information redundancy factor (R) 

   The efficacy of information-theoretic approach to identify CpG islands is also 

presented. Relevant computational methodology and results are presented with 

respect to Parvovirus B19V ssDNA 

Relevant results on DEN1-DEN4 viral sequences are presented in Chapter VII. 

4.10 Closure  

  This chapter is written to outline the entropy considerations useful in deducing the 

segmental features of genetic statistics in genome structures. Relevant applications to viral 

genomes form the theme of the study addressed. 
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CHAPTER V 

ENERGETICS-BASED VIRAL GENOMIC SEQUENCE ANALYSIS 

5.1   Introduction 

The most prevalent viruses in nature are single-stranded (DNA or RNA) viruses with 

the genetic material encapsulated in icosahedral-shaped capsid proteins [5.1]. They 

cannot reproduce by themselves, but infect the host cells with their genetic materials, 

enabling the (host) cellular machinery to produce more viruses. The viral ssDNA or 

ssRNA assumes invariably a hairpin format (for structural stability as has been explained 

in Chapter III) and this hairpin form consists of a base-paired stem-structure plus a loop 

sequence having unpaired or mismatched nucleotides. Knowing the profile of hairpin 

structures and the loops and bulges in viral genome is largely pertinent in: (i) 

Understanding virus replication process [5.2] and (ii) in drug synthesis applications, 

where a relevant compound being sought may act as a binding agent in a specific ss-

DNA/-RNA inhibiting the replication of certain viruses [5.3]. 

As regard to the framework of overall folding of DNA structure into hairpin formats, 

exclusive research in bioinformatic perspectives is often needed (adjunct to wet studies) 

so as to ascertain their energetics profiles responsible for the folding and stability 

of the genome backbone. While a microbiological description of DNA hairpin bends 

emphasizes the biological importance of such bends, a distinct pursuit of research 
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deliberates the physics of thermodynamics on the structural aspects of the folded single-

stranded viral genomes [5.4], yielding details on the associated energetics profile of the 

genome structure. In this thesis, the energetics profile of two viruses has been discussed. 

The energetics profile of parvovirus B19V along with its associated entropic features is 

described in this present chapter. The application of the energetics profile of the various 

serovar of dengue along with its entropic features and data from spectral analysis in 

cohesively determining unique characteristics of each serovar has been discussed in 

Chapter VII. 

The scope of the present study emphasizes the following objectives in their 

bioinformatic contexts: (i) Constructing an analytical framework to elucidate the 

thermodynamics-based energetics profile of a test ssDNA/ssRNA vis-à-vis  its hairpin 

format; (ii) determining the entropy profile of the test ssDNA and characterize the 

underlying Shannon information of genetic expression in the strand; (iii) delineating 

codon and noncodons sections in the single-strand using the segmented features of the 

associated entropy; and (iv) elucidating the stability aspects of ssDNA via energetics and 

entropy details 

5.2  Energetics of a Genomic Sequence: An Overview 

 As stated earlier in Chapter IV, biothermodynamics and entropy are like Siamese 

twins. One of the main steps in the viral life cycle which is required for replication of the 

virus is genome ejection into the host cell. The ejection of the viral genome from the 

capsid is due to very high internal pressure due to the electrostatic forces of the 

nucleotides [5.5], [5.6]. This pressure and electrostatic charge is partially responsible for 
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the delivery of the viral genome into the host cell, thus making it central in the infection 

process. Also, as the overall folding of single-stranded DNA/RNA into hairpin structure 

(which is very important for its replication) and its stability depends on the energetics 

associated with the virus, the detailed energetics-profiling is imperative in determining 

the particular characteristics of the virus in question. 

The general prospects of the analyses indicated above and related computations 

would eventually illustrate the integration of stabilized, hairpin-folded viral DNA 

structure into a host genome in the perusal of replication processes.  

The bioinformatic contexts as above can be expanded specifically to include the 

following: 

 The site in the ssDNA/ssRNA at which the hairpin bend would take place 

 Possible sites in the folded structure where bulging (bubbles) may prevail 

 The integrity of base-pair matching within the hairpin-folded sections of the loop 

and the stem 

 The stability of folded-format of the ssDNA/ssRNA in terms of the associated 

energetics 

 Correlating energetic and entropy profiles of the folded ssDNA 

 Eventual use of genetic information (knowledge) in the folded structure of the 

ssDNA. (For example, understanding the mechanism of hairpin-bend (folding) 

implications in viral ssDNA vis-à-vis using relevant details for rational design of 

vaccines.) 

 Delineating codon (or coding DNA sequence, CDS) and noncodon segments in 

the test sequence. While CDS codes for a protein's amino acid sequence and 

noncodon segments do not. Examples of such non-coding segments (or “junk” 

codons) are introns, repetitive sequences and sequences between genes.  
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5.3  The Watson-Crick Model Base-pairing and Energetics of ssDNA/ssRNA 

 The RNA (transcribed from the double-stranded DNA) and ssDNA sequences tend 

to become more compact by “folding” or “bending” themselves into a stabilized hairpin 

structure (mostly towards 3’ end)  via nucleotide base-matching set by Watson Crick 

(WC) pairing of A ↔ T and G ↔ C. The RNA hairpin forms are widely addressed in the 

literature [5.7 - 5.9].  Analogous to RNA hairpin, it is hypothesized in this study that the 

hairpin structure of viral ssDNA is made of turn-around loop with the closing base-pairs 

and a stem. In addition, a bulge on a strand and/or an internal loop on both strands of the 

hairpin can be formed due to unpaired nucleotides [5.10]. However, associating 

assertively such a bulge and/or an internal loop composition with a viral ssDNA is an 

open-question for investigation. 

The stem-part plus loop constitutes the so-called stem-loop (SL) structure. The stem 

primarily consists of WC base-pairs (bp) formed between two anti-parallel structures of 

the hairpin, 5'-through 3'-end. The stability (as indicated to prevail in RNA hairpins) is 

due to the so-called TNCG tetra-loop composition (where, N depicts any of the four 

bases A, T, G, C). Typically, cTNCGg is an example notation that includes the loop with 

a closing base-pair (c and g denoted by lower case bold font). The closing base-pair is the 

first base-pair set next to the loop at the commencement of the stem. The hairpin-loop 

sequences preferentially decide on the type of closing base-pairs. For example, the 

UNCG tetra-loops in RNAs prefer a cg closing base- pair over a gc version (as decided 

by nearest-neighbor effects).  
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Normally, a region of unpaired nucleotides may exist at the apex of the hairpin loop, 

which serves as the region where the directionality of the backbone reverses making the 

two anti-parallel strands of the stem. In a RNA hairpin a minimum of three nucleotides 

can make a bend or turn (consistent with stearic repulsion); however, loops of four 

nucleotides (mentioned above as tetra-loops) are more common. The hypothesis of the 

present study conforms to the both tri- and/or tetra-loop characterizations applied to viral 

ssDNA genomes.  

Considering the viral ssDNA, it is yet to be ascertained confirmedly of stable and 

unstable aspects of hairpins and the existence of combinatorial base nucleotide selection 

in forming tetra- and/or tri-loops associated with closing base-pairs. Relevant folding 

kinetics expressed in terms of energetics and entropy consideration could be determinants 

of stability/instability in the folded viral ssDNA messages as discussed in Section 5.5. 

5. 4 Free-energy Thermodynamics of nearest-neighbor (NN) WC Nucleotides 

In addition to the favored (neg)entropy enabled by WC-pairing toward stability of 

the hairpin structures formed, such (stability) dynamics also relies on free-energy 

minimization specified by nearest-neighbor (NN) parametric attributes of base-pairs in 

the test sequence. That is, the stability in question conforms to the rules stipulated by 

each base-pair depending only on the most adjacent pairs with the associated total free-

energy being the sum of each contribution of the neighbors [5.11]. The underlying 

considerations are as follows:  

WC base-pairs are significant motifs, whose thermodynamic aspects can be well 

represented by the NN model that indicates the stability of the base-pairs being dependent 
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on the identity of the adjacent pairs. Known generally as individual nearest neighbor 

(INN) model, it implies a preferential stacking of energetically conducive pairs with 

loop-initiation leading to an eventual hairpin structure. Totally, the associated 

conformational free-energy is constituted by paired and unpaired nucleotide stacking in 

the bend as well as by the nucleotides at the loop. 

The free-energy increments of the base-pairs in the sequence are counted as stacks of 

adjacent pairs. For example, the consecutive CG base-pairs are worth about ( 3.3 

kcal/mol) [5.12 - 5.15]. The loop-region formed normally has unfavorable increments 

called loop initiation energy that largely reflects an entropic cost expended in 

constraining the nucleotides within the loop. For example, the hairpin loop made of four 

nucleotides may have an initiation of energy as high as + 5.6 kcal/mol. Mostly the 

unpaired nucleotides in the loop contribute favorable energy increments. From the 

literature indicated above, a set of approximate conformational free-energy can be 

gathered on the basis of nearest-neighbor considerations.  

Suppose the A, C, T, G bases as before are translated with 0, 1 scoring (with 1 

indicating WC-pair and 0 denoting NWC-pairing). Hence, by considering  3.3 kcal/mol 

as zero reference (depicting the lowest energy level), Table 5.1 is constructed, which 

depicts the data on relative energy values compiled from [5.12 - 5.15] for NN 

composition of four adjacent bases as shown. That is, indicated in Table 5.1, are four 

adjacent matched or unmatched WC-pairs along the hairpin-stem structure. By 

designating the matched pairs (WC) as 1 and the unmatched pairs (NWC) as 0, the details 
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on possible four adjacent pairs versus the associated free-energy values are as listed in 

Table 5.1. 

Table 5.1:  Depiction of four WC- and/or non-WC neighbors and the corresponding 

(approximate) relative levels of free-energy   

 

Note: 

 

  Scoring scheme: WC neighbor- 1; NWC neighbor- 0  

  NN-R: Neighbor on the right-side of centre element; CE: centre element; 

and,  NN-L: Neighbor on the left-side of centre element 

 EV: Energy values (in kcal/mol specified relative to  3.3 kcal/mol 

depicting the lowest energy level and taken as zero reference level) 

 

Four possible neighbors 

of  WC (1) and non-WC (0) 

pairs 

 

NN-R CE NN-L EV 

1 1 1 1 0 

0 1 1 1 0 

1 1 1 0 0 

0 1 1 0 0 

1 1 0 1 1.2 

1 1 0 0 2.2 

0 1 0 1 2.7 

0 1 0 0 6.6 

1 0 1 1 1.2 

1 0 1 0 2.2 

0 0 1 1 2.7 
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0 0 1 0 6.6 

1 0 0 1 4.3 

1 0 0 0 8.9 

0 0 0 1 8.9 

0 0 0 0 10.0 

 

Using the relative free-energy data-set shown in Table 5.1 as the metric and resorting to 

the sliding-window method, the profile of free-energy variation across the test sequence 

can be determined. Pseudocode A presents the steps for determining the energetics-

profile of Parvovirus B19V. 

 

Pseudocode A  

Pseudocode describing computation of energetic feature of 

nearest-neighbors (bases) in the DNA sequence of the Parvovirus 

B19V 

 

Initialize 

// Computation refers to ascertaining the hairpin-bend 

structural features of the ssDNA strand of B19V virus 

 

 

Input 

→ In this computation, only nucleotides from base-number 

5401 to 5594 (at the 3-end) are considered 

→ Relevant test sequence of {A, T, G, C} from 5’- 3’ 

is posted as a string 

→ The test sequence is converted into a 1  n matrix 

with each letter of {A, T, G, C} representing 

matrix element  

  ← This is named as window 1 (W1) 
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→ The reverse (3’-5’) of the test sequence is 

considered (omitting the dangling end) - This is 

named as window 2 (W2) 

Compare the elements residing in W1 and W2 

← Each element in W1 matrix is compared against the 

W2 matrix in the same column 

 → Comparison implies looking for (C ↔ G or  

   G ↔ C) or (A ↔ T or T ↔ A) match 

 

Perform scoring in binary format 

If (C ↔ G or G ↔ C) or (A ↔ T or T ↔ A) are seen across W1 and 

W2, the score is indicated as 1  

or else, the score is set as 0 

← This scoring is continued across the window-segments 

being compared and 1’s and 0’s generated is stored in 

a 1  n matrix 

 

Construct the nearest-neighbor (NN) concept based energetic 

profile for the nucleotide stretch 5401 to 5594 

←  Energetic values are assigned by considering two 

centre elements (of 1-0 map) and one neighbor on 

each side of this central pair. The allocation is as 

in Table 1. 

→  The energy value assigned is stored in a matrix  

 

 

Print  

← Window segment 5403 to 5593 versus the EV obtained  

 

 

Plot 

  → Window segments (indexed as 5403 to 5593) versus EV value 

estimated in each segment is plotted as an x-y graph  

 

 

Result/Output    

 →  (Fig. 5.2b) 

 

End 

 

5.5 Application of Entropy and Energetics Profiles of ssDNA 
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 The use of entropy-based segmentation method and energetics method are 

addressed side-by-side in this section as regard to finding the specific structural details of 

genomes. It refers to characterizing the sub-regions of genomic sequences such as loops 

and bulges. A brief description about the application of entropic considerations to a viral 

ssDNA is discussed below followed by the results due to both methods being compared. 

5.5.1 Entropy Considerations 

Pertinent to a hypothetical hairpin structure shown in Figure 5.1, suppose the 

occurrence probability of Watson-Crick (WC) base-pair matching, that is, A matching T 

(A ↔ T) or G matching C (G ↔ C) across the inverted stem parts is designated as ‘p’; 

and the probability of occurrence of corresponding mismatches is designated as ‘q’ (so 

that, q = p – 1). Between the event spaces of p and q, exists a cross-entropy (or mutual 

information) in Shannon’s sense. Such cross-entropy details can be assessed by 

understanding the probabilistic features of the test ssDNA sequence bearing the inherent 

genetic information. That is, viewed in terms of the probabilistic occurrence profile of 

{A, C, T, G}, the associated Shannon information or entropy can be ascertained as 

follows:  

Considering the test hairpin structure of an ssDNA, its WC-pair statistics in the stem 

region (along with any nicked base-pairs that may exist in the stem and/or in the loop) is 

first determined. In essence, relevant analytical and computational pursuits involve 

elucidating the statistical divergence of WC versus non-WC (NWC) pairs occurring in 

the sequence pattern; that is, a strategy in terms of the statistical occurrence profiles that 

segregate WC and NWC entities is evolved with the objective of primarily locating the 
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site at which bending takes place. By considering the nature of WC/NWC pairs 

manifesting as matched or unmatched inversions of {A, T, G, C} on both sides of the site 

where hairpin bending occurs (as illustrated in Figure 5.1), the associated analytical 

framework can be conceived on the basis of statistical divergence of WC versus NWC 

populations along the hairpin structure. That is, the extent of bases forming WC pairs 

across the stem region is specified by a (statistical) “distance” of WC entities with respect 

to (the statistics of) those bases, which do not pair as WC entities (that is, remain as 

NWC pairs). 

The following sliding-window approach is indicated to determine p and q values 

consistent with the definitions of p and q mentioned above. Suppose the WC base-pairs 

(AT, CG, GC, TA) are each assigned a fitness 1, and all other pairs are treated as 

mismatches with an assigned fitness of 0. Apart from the WC-mirrored sets, namely, A 

↔ T and G ↔ C, the set of pairs {G ↔ T and T ↔ G} is also regarded as stable pairs 

(Weise et al., 2008); hence, in all, the set {A ↔ T, G ↔ C, G ↔ T} is designated as a set 

of canonical base-pairs that can be accounted for in assigning the fitness 1.  

 Suppose the total length of the sequence is constituted by L bases. Considering a 

hypothetical hairpin structure, a sliding-window of size ‘w’ (containing a total of w 

pairing and non-paring nucleotide counts) is specified along the stem and its reversed part 

(of the hairpin bend on the 3'- side) as shown in Figure 3. Within each window, the count 

of 1’s, (meaning matching WC-pairs) is denoted as ‘m’; likewise, the count of non-

matching pairs is denoted as ‘n’, so that, (m + n) = w; hence, (m/w) = p   and   (n/w) = q 
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for the window-segment chosen. Thus, for each window size w sliding across the hairpin 

structure, the set {p, q}W is determined. 

 

Figure 5.1 Illustration of sliding-window procedure to compute p and q values across a 

hypothetical hairpin structure 

 

The statistical-distance that measures the cross-entropy (in each window segment, w) 

can be obtained via statistical divergence metrics by knowing pw and qw values (namely, 

the estimated p and q values in each window segment). Expressing in nats unit of 

information (negentropy), the statistical distance measures (for the window of size w) 

indicated above can be defined explicitly as follows: 

  (KL)w = {pw × log e(p/q)w + qw ×log e(q/p)w} nats                                                 

 (5.1) 

(JS)w  = {0.5 × pw × log e (p/M)w + 0.5 × qw × log e(q/M)w} nats        (5.2) 

 where, M = 0.5 × (pw + qw) = 0.5.  

(B)w = loge(w) nats                                                                                  

 (5.3) 

3'

′ 

GG…   .  

Dangling 

end 

Window of size w bases 

3'loop 

    ….T G G T A T C C G A A C G C C T  .. 

    ….A C A T C A C C C A G G G T C A  .. 

5' 

Sliding-window 

Matched WC pairs 
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where w = (pw × qw)
1/2

 

(Apart from KL-, JS- and B-measures, there are also a number of other statistical 

divergence metrics available as reported in [5.16], [5.17]. They can also be used in the 

algorithmic exercise in hand).  

The analysis pertinent to a given test hairpin structure as above, thus evaluates the 

statistically co-evolving positions of WC pairs across the folded structure and decides the 

associated cross-entropy or mutual information. The computation involves divergence 

measures in terms of the {p, q}-based discrimination of WC and NWC. The complete 

procedure for determining the entropic profile is summarized in Pseudocode B. 

Pseudocode B 

Pseudocode describing computation of relative entropy feature of 

the DNA sequence of the Parvovirus B19V 

 

 

Initialize 

// Computation refers to elucidating the relative entropy 

feature of the DNA sequence of the Parvovirus B19V 

 

Inputs 

→ Test sequence (of B19V virus) made of {A, T, G, C} is 

posted as a string of nucleotides numbered from 1 to 5594 

from 5-end to 3’-end 

→ This test sequence is converted into a 1  n matrix 

with each letter of {A, T, G, C} representing the 

matrix element 

 

Define the sliding window 

→ Select a window-size (10 nucleotide bases) 

→ An index is assigned to flag the start of the 

window and another is assigned to flag closing the 

window 

   → A pair of windows are defined: 
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← Window 1 (W1) is on main string at 3’-

end with the start-window direction 

indexed along 5’ to 3’ 

← Window 2 (W2) is an auxiliary 

(sliding- window) constructed with 

start end in reverse direction sliding 

from 3’ to 5’ 

 

Perform widow-sliding along the sequence 

→  Window lengths of W1 and W2 are varied by 

   setting start and end indices as necessary. 

→  Initial size is set as 5 and in linear 

   multiples of 5. 

 

Compare the elements residing in W1 and W2 

← Each element in W1 matrix is compared against the 

W2 matrix in the same column 

 → Comparison implies looking for (C ↔ G or  

   G ↔ C) or (A ↔ T or T ↔ A) match 

 

Perform scoring in binary format 

If (C ↔ G or G ↔ C) or (A ↔ T or T ↔ A) are seen across W1 and 

W2, the score is indicated as 1  

or else, the score is set as 0 

← This scoring is continued across the window-segments 

being compared 

← In each W1-W2 comparison, 1’s are counted and 

  added; likewise 0’s are counted and added  

 

 

Store the scores 

→    Score values for each window length are stored 

 

Perform computation of the probabilities of occurrence of 1’s and 

0’s in each of the configured/compared W1-W2 window segments 

→ For each window segment of 2  5 characters (and its 

multiples), the probability (p) of 1 is computed as 

follows: 

   p = [Total counted score of 1's] / [(2 × 5 × N (=1, 2, 3,..., 560)] 

→ Likewise, the probability of 0 (q) is: 

 

q = [Total counted score of 0's] / [(2 × 5 × N (=1, 2, 3,..., 560)]
 

 

  ← or, q = (1 – p) 
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Compute the statistical divergence on: p versus q 

→ The statistical divergence (distance) between the main and 

the sliding window is determined via  say, Kullback-Leibler 

(KL) measure (Equation 5.1) 

← KL divergence estimation of each window segment is 

done with the following algorithm: 

  

e eKL = [plog (p/q) + qlog (q/p)]  nats  

← Similarly JS- and B-divergence estimations of each 

window segment is done with the s algorithms of 

Equations (5.2) and (5.3) 

 

Print  

 → Window (of length 2  5) segment is indexed as 1 to 560 

commencing at 5’-end and terminating at 3’-end along the x-

axis; and the KL-measure estimated in each segment is 

depicted along y-axis for each x-axis value 

 

Plot 

  → Nucleotide base position-segments (indexed as 1 to 560 

across 5’-end to 3’-end) versus KL-measure estimated in 

each segment is plotted as an x-y graph  

 

Result/Output    

 →  (Fig. 5.2a) 

 

End 

 

5.5.2 Result of Application of Entropy and Energetics Profiles of a ssDNA 

 Inspired by existing investigations on RNA folding [5.10] and results available 

thereof, the present study was motivated to provide an exclusive entrée to viral ssDNA 

hairpins. It is a bioinformatic attempt to ascertain various structural, kinetic and 

thermodynamic aspects of a test viral ssDNA, so as to understand the stability and control 

of the underlying gene expression.  
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RNA sequences, (which are single-stranded) have been widely addressed in the 

literature [5.10] as regard to their structures, kinetics, thermodynamics and biological 

functions. Specifically, how a RNA folds back on itself (forming a complex structure) 

has been studied in terms of the resulting hairpin composed of a stem-part (with WC base 

pairing) and a loop-section, wherein the backbone reverses its directionality. Relevant 

studies also include descriptions of the hairpin structures with the associated diversity in 

their stem, loop and closing base-pairs. In relevant contexts, the kinetics and 

thermodynamics of hairpin-folding, folding transition-states and the co-operativity of 

folding have been investigated. However, similar information on viral ssDNA is rather 

sparse. Relevant outcomes of the study are presented in Figures 5.2 and 5.3; and, the 

results obtained and the associated inferences are detailed below. 
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(a) 
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3' 
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(b) 
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……. ……. 
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(c) 

Figure 5.2:  Illustrations of loop and bulge formations 

 

(a)  Formation of a loop (bulge) at the 5′-end: The normalized results plotted 

conform to entropy measures of: KL-, JS- and B-metrics as well as NN-based 

energetics values (NN-E) evaluated in the vicinity of 5′-end. (The sequence of 

bases and base locations indicated at the closing-ends of the bulge are taken 

from the GenBank data [5.18] on the test genome) 

 

(b)  Formation of a hairpin-loop at the 3′-end: The normalized results plotted 

conform to entropy measures of: KL-, JS- and B-metrics as well as NN-based 

energetics values (NN-E) computed in the vicinity of 3′-end. (The sequence of 

bases and base locations indicated at the closing-ends of the hairpin-loop are 

taken from the GenBank data [5.18] on the test genome). 

 

(c)  Overall representation of CDS in the test sequence. (Details as in Figure 5.3) 

 

3'-end 

Delineations at 5' and 3' ends  

 

Non-codon Non-codon 

Codons constituting 
the CDS segments 

Position of nucleotides from 5' to 3'end 

1……                

CDS regions pose low entropy levels and 

exhibit prominent transition to increased 

values at their terminations towards 5' 

and 3'ends  

 

CDS 

615 4968 

5'-end 



 

104 

 

 

 

 

600 800 

615 

Nucleotide locations (5'to 3') 

3'end 5'end 

A1 Fuzzy 

overla

p 

Start of CDS 

GenBank data 

KL 

NN-E 

615 

600 

Nucleotide locations (5'to 3') 

5'end 3'end 

A2 

Fuzzy overlap 

Start of CDS 

GenBank data 

800 



 

105 

 

 

 

 

2400 2600 2800 

2623 2630 

Nucleotide locations (5'to 3') 

3'end 5'end 

KL 

B1 
Fuzzy  

overlap 

Start of CDS 

GenBank data 

2400 2600 2800 

Start of CDS 

GenBank data 

2623 2630 

Nucleotide locations (5'to 3') 

5'end 3'end 

Fuzzy 

overlap 

NN-E 

B2 



 

106 

 

 

 

3400 3200 

Start of CDS 

GenBank data 

Fuzzy  

overlap 

3304 

Nucleotide locations (5'to 3') 

3'end 5'end 

KL 

C1 

Start of CDS 

GenBank data 
Fuzzy  

overlap 

3304 
3200 3400 5'end 

NN-E 

Nucleotide locations (5'to 3') 

C2 

3'end 



 

107 

 

Figure 5.3 Locating the CDS segments in the test sequence: Delineation of 

codon/noncodon boundaries. 

 

The set of normalized results plotted conform to entropy measures of KL-, 

JS- and B-metrics and NN-based energetics values (NN-E) computed 

across the stretch of 5′-end to 3′-end. (Note: (i) The sequence of bases and 

base locations indicated are transition regions as per GenBank data [5.18] 

on the test genome); and, (ii) at each transition site, the details are 

enlarged and presented as Figures A1 through D2 where the transitions 

shown are overlaps of codon and noncodon denoting fuzzy transitions 

(emphasized as shaded blocks). 

A1, B1, C1 and D1: KL-measure based data showing entropy changing 

from low-to-high or high-to-low at the transition sites. 

A2, B2, C2, and D2:  NN-energy based data showing energy level 

changing from low-to-high or high-to-low at the transition sites. 
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Summary of results is as follows: 

 (i)  The feasibility of loop (bulge) formation at 5′-end with inverted palindromes 

(flanking the bulge) is analyzed using the statistical distance (divergence) 

measures computed with WC matching and WC non-matching probabilities 

across the stem prior to and after the bulge. Figure 5.3(A1) illustrates the results 

obtained.  

(ii)  The divergence between WC matching pairs versus non-matching pair across the 

hairpin stem at 3′ end is determined and the results are illustrated in Figure 

5.3(B1).  

(iii) The codon and noncodon sections in the test sequence are delineated to ascertain 

the CDS of the sequence. Again, the occurrence statistics of {A, T, G, C} is 

discriminated against that of a junk sequence via divergence measures. Figures 

5.3(C1) and 5.3(D1) illustrate the outcome.  

(iv) The variation of (scored) energy levels along the sequence is ascertained as 

illustrated in Figures 5.3(A2) 5.3(B2), 5.3(C2) and 5.3(D2). In each case, the 

existence and extent of minimum energy levels depicts the stability feature. 

 

5.5.3 Inferential Remarks on the Results 

With the results described above, the following inferences can be made: 

 As regard to Figure 5.2 (a), where the formation of a bulge at 5′-end is indicated, 

the GenBank data [5.18] on the test sequence implies the bulge being at the base 

positions 359 to 365. The present analysis shows a well-defined, almost 

symmetrical minimum energy (NN-E) sites on both sides of the bulge site. Also, 
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the entropy feature (especially the B-measure) also indicates symmetrical 

maximum entropy levels abetting the bulge bilaterally. Thus, the algorithms 

indicated and computations performed enable finding of loop/bulge formation at 

the 5′-end with details on the relevant site in conformance with GenBank data  

 Likewise, considering the 3′-end, GenBank data projects the hairpin bend at 

5215-5220. The computed results of the present method again clearly show this 

loop sites with two minimum energy (NN-E) valleys on its sides in Figure 5.2(b). 

The entropy features also provide the information on the loop-site with KL-, JS- 

and B-measures changing distinctly from low-to-high or high-to-low values. 

 Considering Figures 5.2(c) and Figure 5.3, it can be inferred that the procedure of 

this study advocated again gives confirming results on codon-noncodon 

transitions along the test sequence. The results are validated with GenBank data. 

However, unlike the crisp transition locations specified in GenBank data, the 

delineating locales are rather fuzzy. Such observations are consistent with the 

results in [5.19]. 

 

5.6 Conclusion 

 In a nut-shell, pursued in the underlying research of this chapter are simultaneous 

considerations of Shannon-entropy and thermodynamics-related energetics features 

across a test, single-stranded viral genome. In Chapter VII, along with these two 

approaches, spectral domain analysis for ssRNA has also been pursued. The eventual 

scope is to uniquely identify and formally distinguish the characteristic pattern(s) of the 
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test ssDNA/ssRNA. The method pursued thereof enables robust determination of the 

sites-of-interest in the genome pointing out regions of possible loops and/bends that may 

occur toward stability. Use of relevant analyses is viewed in the context of possible 

vaccine-designs.  
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CHAPTER VI 

FOURIER SPECTRAL CHARACTERISTICS OF VIRAL GENOMES 

6.1   General 

A vast amount of critical information is contained in the genomic sequences and 

requires multiple analysis techniques to locate and interpret the data. The standard 

approach is to represent genomic sequences in the form of character sequences of which 

each character can be one out of a finite number of entities (4 in case of DNA and RNA 

and 20 in case of amino acid). That is, in the case of DNA or RNA, the character string 

consists of the elements of the set {A, T (or U in case of RNA), G, C}; in the case of 

proteins, the character string consists of the 20 amino acids. Genomic information is thus 

inherently discrete in nature as there are finite numbers of elements in the set that comprise 

the genomic sequence. DNA molecules thus store the digital information that constitutes 

the genetic blueprint of living organisms. This fact suggests that we may interpret the DNA 

sequence as a discrete-time sequence that can be studied using standard techniques from 

the field of digital signal processing. Although DNA sequences are truly symbolic signals, 

numerical assignments are required to be made for analysis purposes. Such assignments 

can be made only after careful consideration. Various methods for numerical assignments 

have been briefly discussed in Section 6.3  
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Digital Signal Processing (DSP) comprehends the representation, transformation and 

manipulation of digital signals as well as the information associated to them. In this 

context, signals are usually physical magnitudes that vary in time or space, and digital 

signals are those represented as sequences of numbers, as in the case of time series. 

However, this symbolic approach severely limits the method for mathematically and 

computationally handling the data. The possibility of finding a wide application of DSP 

techniques to analyze the genomic sequences arises when these are converted appropriately 

into numerical sequences, for which several rules have been developed.  

It is expressed in [6.1] that an obstacle may be faced in extracting useful information 

content in a genomic sequence. Considering still sparsely known dependence between 

nearby bases and their occurrence statistics across the genomic sequence (in Markov’s 

sense), it is expressed in [6.1] that extraction of useful information in a genomic sequence 

may not be fully done with the basic statistics of the constituents. As such, it is argued 

that the Fourier-transform may be adopted considering the fact that, real and imaginary 

parts of Fourier coefficients are all independent random variables and as such, they may 

yield two distinct sets of fortifying details on the associated statistics with augmented 

information. Simulation experiments using some DNA strings extracted from the 

GenBank database [6.2 - 6.5] are shown to confirm the said assertion of [6.1].  

The use of Fourier methods for bio-sequence analysis is also described in (6.6) and 

[6.7], where Fourier expansions are described as the “image” of the spatial sequence with 

relevant comparison efforts. Further, detection of similarities between DNA sequences is 

illustrated in [6.8] by enforcing Fast-Fourier transform (FFT) to ascertain the correlation 
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between DNA sequences using complex-plane encoding. In [6.9], the Fourier transform 

method is adopted to distinguish coding and non-coding sub-sequences in a complete 

genome. A comprehensive review on genomic signal-processing method is addressed in 

[6.10] and [6.11] where the local texture information in genome structures is extracted by 

Fourier spectral mapping of test sequences. In extended contexts of using Fourier 

transform methods in the analysis of genomics and proteomics, digital signal-processing 

(DSP) techniques are also proposed in the literature [6.12] where, spectrograms are 

shown to be powerful tools for DNA sequence analyses providing local frequency 

information. Specifically, the so-called short-time Fourier transform (STFT) appears to 

provide a useful localised measure of frequency content in the spatial sequence pattern. 

This STFT obtained in [6.12] is consistent with traditional discrete Fourier transform 

(DFT). It is applied to genome sequence analysis using sliding-window technique. In 

[6.12], the parametric feature of the test sequence considered refers to the so-called 

electron-ion interaction potential (EIIP) values assigned to the nucleotides. They denote 

a numerical representation of the genome sequence, which can be subjected to a Fourier 

transform. That is instead of viewing the parametric values of EIIP along the sequence 

depicting implicitly the statistics of genetic information, one can obtain the Fourier 

transform of the numerical sequence and the resulting spectrum can be analyzed towards 

determining the associated genomic information. 

For a clear Fourier spectrum to be generated, a reasonable sized sample is required. 

Larger samples give relatively poor resolution, making it tedious to locate features 

exactly using only the Fourier transform. Smaller sample provides better resolution, but, 

makes it difficult to locate the local distinguishing features. Figure 6.1 (a), (b), (c) and (d) 
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below shows the subtle variations in the complete Fourier spectrum of DEN1 serotype of 

dengue virus using various window sizes obtained with EIIP data. (More details on EIIP 

are furnished in Chapter VII). The x axis denotes the base locations. To exactly view the 

difference in resolution due to the differing window size, consider a threshold to be zero. 

Figure 6.2 (a) – (d) shows the difference in resolution of DEN1 due to varying window 

sizes. 

 

(a) 
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(b)  

 

(c)  
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(d)  

Figure 6.1:  Spectrum of DEN1 serotype of dengue virus sequence details pertinent to 

EIIP values computed using various window sizes 

(a) Spectrum of complete DEN1  sequence details pertinent to EIIP values 

computed with window size 120 

(b) Spectrum of complete DEN1  sequence details pertinent to EIIP values 

computed with window size 180 

(c) Spectrum of complete DEN1  sequence details pertinent to EIIP values 

computed with window size 255 

(d)  Spectrum of complete DEN1 sequence details pertinent to EIIP values 

computed with window size 510 
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(a)  

 

(b)  
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(c)  

 

(d)  

Figure 6.2:  Difference in resolution of DEN1 details pertinent to EIIP values computed 

due to varying window sizes 
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(a) Spectrum of DEN1 sequence details pertinent to EIIP values computed with 

window size 120 

(b) Spectrum of DEN1 sequence details pertinent to EIIP values computed with 

window size 180 

(c) Spectrum of DEN1 sequence details pertinent to EIIP values computed with 

window size 255 

(d) Spectrum of DEN1 sequence details pertinent to EIIP values computed with 

window size 510 

The genomic sequence of the different serovar of dengue virus has a homology of 

60-80% amongst themselves. By spatial analysis of the spectrums of all the four serovar, 

the similarity/dissimilarity between these serovar can be identified. Figure 6.3 below 

shows the distinguishable features of all the four serotypes for the range 0 to 1. In the 

present study, a window size of 120 has been used as it provides reasonable resolution as 

well as indicates the local features and is consistent with the window size used in the 

other analytical methods. 

(

(a)  



 

120 

 

(b)  

 

(c)  
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(d)  

Figure 6.3: Distinguishable features of all the four serotypes of dengue virus. Details 

pertinent to EIIP values computed 

(a) Spectrum of DEN1 sequence details pertinent to EIIP values computed with 

window size 120 

(b) Spectrum of DEN2 sequence details pertinent to EIIP values computed with 

window size 120 

(c) Spectrum of DEN3 sequence details pertinent to EIIP values computed with 

window size 120 

(d) Spectrum of DEN4 sequence details pertinent to EIIP values computed with 

window size 120 

6.2    Periodic Property of Genomic Sequence 

 As seen previously in Section 6.1, if the characters in the genomic sequence are 

represented by numerical values, then signal processing algorithms can be easily applied 

to extract useful information. However, it is important that systematic and proper values 

are assigned to each of the characters in the genomic sequence and not just some random 

value.  
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Periodicity of DNA sequences has been examined by various methods including 

autocorrelation function analysis, Fourier spectrum analysis, DNA walking, entropy, 

Hurst index estimation, de-trended fluctuation analysis, wavelet translation and mutual 

information function. One of the important properties of any genomic sequence is the 

‘period-3 property’ mentioned by Annastasiou in (6.10). By virtue of the characteristic 

information in the gene sequence bearing the triplets (= 4
3
 = 64) constituted by the 

nucleotide set {A, T, G, C} across exon regions, it is shown in (6.10) that the 

corresponding Fourier domain power-spectrum of a prokaryotic DNA has a strong peak 

at a frequency k = N/3. It corresponds to a spectral component with a period 3 and N 

represents the discrete integer of the set denoting the sequence (in the spatial domain). 

Figure 6.4 shows the period 3 property of all the four strains of dengue virus using the 

method described by Annastassiou [6.10]. 

 

(a)  
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(b)  

 

(c)  
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(d)  

Figure 6.4: Period 3 property of all the four serotypes of dengue virus 

(a) Period 3 property of DEN1 serotype 

(b) Period 3 property of DEN2 serotype 

(c) Period 3 property of DEN3 serotype 

(d) Period 3 property of DEN4 serotype 

 

Should non-informative introns excessively interrupt the sequence (as in the case of 

eukaryotic DNA), the power-spectrum would then tend to become flat. In other words, 

the power spectrum of the DNA is an implicit indicator of the mutual information content 

(or, the conditional entropy of, say a segment of a DNA (exon) being informative subject 

to the presence of non-informative segments (introns) present in the domain of interest). 

Thus, homologous DNA sequences are implicitly specified by their power spectrum 

attributes as discussed in [6.1] and [6.10]. 

Furthermore, to reflect the differences in coding structure of nucleotides, use of 

power spectral analysis of DNA sequences has been elaborated in [6.13], with reference 

to the classification of bacteria; and, the power spectra of the underlying DNA sequences 
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are presented as self-organizing maps. Such power-spectrum approach is regarded as 

intuitive as well as effective in reducing the dimension of the complete DNA sequences 

of a clustered set of species. Relevant details are again fortified in a number of studies 

[6.14 - 6.21]. Apart from such archival set identified above, there also prevails an 

exclusive thesis on Fast-Fourier transform (FFT) analysis applied to DNA sequences due 

to Hanson [6.22]. 

6.3    Numerical Representation of Genomic Sequences 

The numerical representation determines which features of the genome are 

highlighted by the analysis. For example, Figures 6.1 and 6.3 (a) represent the spectrum 

of DEN1 serotype of dengue virus. However, they use different numerical representation 

and highlight different features of the same viral serotype. Thus, the translation can be 

performed in a number of ways, a few of which has been discussed below.  

One of the earliest methods was proposed by Silverman and Linsker [6.23]. They 

represent each base as the vertex of a tetrahedron in three dimensional spaces and the 

genome sequence is transformed into an array composed of three dimensional vectors. A 

Fourier transform is then performed on each of the three sequences made up of a 

directional component from the sequence vectors. The resulting spectrum is the sum of 

the three Fourier transforms. Tiwari et al. [6.24] uses four binary strings to represent the 

occurrence of each base in the nucleotide sequence, summing the individual spectra to 

give an overall sample spectrum for the genome. Using this method, a repeating period of 

3 has been found in coding regions [6.24-6.26]. Fourier analysis has also been employed 

as one of a number of weighting factors in the determination of introns splice sites.  
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In formulating the spectral domain comparison of genomic sequences of test viral 

strains, the FT-based algorithmic and computational efforts pursued in the present study 

essentially follow the procedure due to [6.12], wherein the genomic sequences are 

represented by numerical sequences and the FT of the spatial-sequence is determined. 

The numerical values used thereof conform to the so-called electron-ion interaction-

potential (EIIP) values assigned to the nucleotides. Implicitly, such an EIIP-based 

numerical sequence leads to an information spectrum method (ISM) of transforming a 

genomic sequence for decomposition via Fourier series. This Fourier-transformed 

sequence inherently contains physico-chemical details attached to the biological 

functions of the genomic structure. As such, elucidating the Fourier series of numerically-

formatted genome leads to detecting code/frequency pairs that are specific to the genomic 

sequence vis-à-vis its biological profiles. This method is insensitive to the location of the 

motifs and therefore warrants no prior alignment of the sequence with its counterparts. 

The EIIP values assigned for nucleotide bases are listed in Table 6.1. 

Table 6.1: EIIP values of nucleotide bases [6.12] 

Base EIIP value 

A 0.1260 

T 0.1335 

G 0.0806 

C 0.1340 
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For example consider the following character sequence: {A, A, A, G, T, A, G, C}. 

The corresponding EIIP values for the above sequence is {0.1260, 0.1260, 0.1260, 

0.0806, 0.1335, 0.1260, 0.0806, 0.1340}. 

6.4    Spatial Domain Analysis of Genomic Sequence 

As mentioned earlier, in, the Fourier transformation in spatial domain can be applied 

the context of biological sequence analysis to identify protein coding genes in a linear 

sequence. In essence, given a function of a spatial variable, its Fourier transform 

identifies different frequency sinusoids and their amplitudes contained in that function. 

Suppose an analog numerical signal f(x) with x of varying amplitude (specified for 

example, a sequence of EIIP values assigned to each base of the genomic sequence) is 

considered. Its STFT can be defined as follows: 

R 120

m 1

mf(x) F(f) f(x m) w(m) exp 




                                                   (6.1) 

In evaluating equation (1), the whole test sequence is divided into N equally-spaced 

intervals or frequency (presently, N has been arbitrarily taken as 120 to match the 

window size improvised in other methods mentioned earlier). As already explained in 

2.3, the frequency k in equation (1) is equal to N/3. Since, ω = 2πk/N, with the 

substitution of value of k, ω = 2π/3. The subsequence spanning the window is denoted by 

w[m] with the window length (size) being R and R ≤ N. (taken as 120). The 

computational procedure of elucidating Fourier spectral details of a test sequence is 

presented in Chapter VII. 
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6.5    Conclusion 

In this chapter, the use of spatial spectral domain analysis as a tool for finding the 

underlying features of a genomic sequence has been discussed. Various methods for 

assigning numerical values to the genomic sequences have been discussed. It has been 

observed that depending on the numeric value assigned as well as the selected window size, 

different properties of the genomic sequence can be invoked and explored by applying 

Fourier transform to the numeric sequence.  
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CHAPTER VII 

A METALEARNING APPROACH TO EXPLORE VIRAL GENOMICS: A 

MODULAR FRAMEWORK OF DATA-MINING 

7.1   Introduction 

A workflow structure of computation, wherein the user facilitates necessary 

feedback toward final classification and decision conforms to a metalearning approach. 

Developed in this chapter is a bioinformatic inference methodology that allows a 

metalearning framework to systematically classify and elucidate the “best candidates” 

which prevail commonly among a set of viral serotypes. Relevantly, the present chapter 

refers to a bioinformatic method of analyzing a set of genomic sequences in order to 

cohesively elucidate their common and differential features in terms of the associated 

entropy, energetics and spectral characteristics. Such a diverse and distinct set of analyses 

would robustly enable distinguishing and comparing test sequences in terms of their 

global as well as local genomic details. For example, considering the diversity that 

manifests as distinct variations within the subspecies of a virus (or bacteria) [7.1] 

designated as serovar or serotypes, comparing and contrasting them as regard to their 

genomic features can help in the efforts of seeking a single and/or distinct rational 

vaccines for the serogroup in question. In acquiring such genomic feature details of the 
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viral strains using multiple procedures with information collected independently from 

different pursuits, will offer clarity on the distinctions to be made and similarities to be 

identified for possible use in vaccine design applications.  

 Hence, proposed here is a strategy to view a given set of genomic sequences in the 

framework of three perspectives, namely their associated entropy, energetics and spectral 

characteristics. These three independent methods would complement each other in 

robustly identifying the distinctions as well as the similarity features among the test 

sequences in question; and, implementing such three-prong analyses essentially forms the 

scope of the present study. 

7.2 Scope of the Present Study 

With the availability of entropy, energetic and spectral-domain methods narrated in 

Chapters IV, V and VI, it is attempted in this present chapter to invoke and apply all 

these three techniques cohesively in analyzing a set of genomic sequences. The reason for 

this cohesive and collective approach is to gather comprehensively as much of feature 

details as possible that would distinguish and differentiate subtly the test genomic 

sequences. In contrast, suppose a single technique is alone deployed. Then, the associated 

analysis may not show all the distinguishing feature details as needed.  

As indicated earlier, the test genome being considered here for the study refers to 

that of a virus, and the set of sequences analyzed correspond to the serotypes of this test 

virus. Strains of a single virus, though are known to be distinct from each other, may 

possess certain common subtle features [7.2], which remain dormant, mostly unseen and 

may not be indicated explicitly, if a single type of analysis is restrictively envisaged. 
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Hence, formulated as a scope of this study is a three-prong methodology that robustly 

evaluates the subtle similarity/dissimilarity features between the genomes of a given set 

of viral strains; and, it is surmised that such cohesive feature details collected across the 

test serovar may possibly show directions toward designing common and/or distinct 

vaccines for the diseases caused by the test virus. 

In the present study, the test dengue virus, takes four forms of serovar, namely 

DEN1, DEN2, DEN3 and DEN4. Relevant GenBank data [7.3 - 7.6] provides complete 

genomic details of these strains and, analyses are pursued in conformance with the 

proposed cohesive efforts of using entropy, energetic and Fourier transform techniques.  

7.3   Methodology/Application of Analytical Frameworks 

In seeking genomic details that indicate common and differential features of the 

serotypes of a virus, it is attempted in this study via three distinct methods mentioned 

earlier, namely entropy, energetics and Fourier transform techniques. Outlines on the 

implementation of these approaches are presented below: 

7.3.1  Entropy-based analysis 

The statistical aspects of nucleotide sequence entropy discussed earlier implies 

probabilistic occurrence of nucleotides positioned spatially along the sequence length. 

Inasmuch as the DNA sequence is a mix of codon (exons) and non-codon (introns) parts, 

the appearance of nucleotide the elements in the set {A, T, G, C} along the sequence-

space will be inherently random. However, considering the exon regions exclusively, the 

associated randomness implies negative entropy yielding Shannon information 
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concerning the underlying genetic code toward protein making and it remains fostered in 

the associated coding sequence segments (CDS) of the genomic structure.  

In the context of non-viral DNA sequences, the coding and non-coding regions have 

been comprehensively studied as regard to their entropy details in Chapter IV. It is 

attempted here to apply similar analytical considerations to the four strains of dengue 

virus under discussion. For this purpose, specifically the so-called entropy segmentation 

method and its variations in statistical divergence sense are used. The procedure is 

described below. 

Distinguishable characteristics of non-informative introns and informative exons 

enable delineating the associated splice-junctions using various statistical divergence 

methods (7.7) of entropy segmentation. Hence, considered here, is the well-known 

Kullback-Leibler (KL) divergence measure, which delineates the exon/intron boundaries 

and provides an information profile of the test sequence in question. 

 It is applied to the genomic sequence of all the four strains of dengue virus so as to 

distinguish them in the entropy-plane. Relevant algorithmic steps are outlined in 

Pseudocode A. 

Pseudocode A 

  % Pseudocode on computing the relative entropy features of 

the RNA sequences of test viral serotypes  

 

Initialize 

// Computation refers to elucidating the relative entropy features 

of a given set of RNA sequences of, for example, dengue virus 

strains 
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Input 

→ Test nucleotide sequence from 5-end to 3’-end (of each test 

strain of the dengue virus), is posted as a string (for 

example, numbered from i= 1 to 10735 for DEN1)  

→ Each test sequence is converted into (1  n) matrix 

with each letter of {A, T, G, C} representing the 

matrix element  

 

Construct: A hypothetical random sequence of {A, T, C, G} with 

uniform probability distribution of occurrence of each element 

→ A hypothetical nucleotide sequence is generated with the 

statistics of A, T, G, C as follows: pA = pT = pC = pG = 0.25 

→ This hypothetical nucleotide sequence denotes a non-

informative ‘junk’ chain of {A, T, G, C} and used as a 

common reference sequence 

→  The hypothetical sequence matrix constructed is again of 

size (1×10735) corresponding to the same length of DEN1 

characters 

Next 

// Step I 

→        Specify a sliding-window accommodating 120 nucleotides 

→ Calculate the occurrence probabilities of (A, T, G and C) 

per window-segment (with 120 nucleotides) in the 

hypothetical sequence 

→ Count the number of A’s in the window = MA 

← Then, the occurrence probability of A: qA = MA/120 

  Similarly, evaluate qT, qG and qC per window 

 

// Step II 

Calculate the occurrence probabilities of (A, T, G and C) per 

window-segment (with 120 nucleotides) in the actual test sequence 

(say DEN1)  

→ Repeat procedures of Step I to obtain {pA1, pT1, pG1, 

pC1} per window for DEN1 
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→ Similarly, evaluate the sets {pA2, pT2, pG2, pC2}, {pA3, 

pT3, pG3, pC3} and {pA4, pT4, pG4, pC4} for DEN2, DEN3 and 

DEN4 respectively  

 

// Step III 

Compute the statistical divergence: Invoke Kullback-Leibler 

entropy – Information-theoretic (IT) measure 

→ The statistical divergence (distance) between the test and 

hypothetical sequences is determined via Kullback-Leibler 

(KL) measure 

→ Define a window size of 120 bases 

← KL divergence estimation of each window segment of 120 

bases is done as follows: (The window is identified by 

an index k = 1, 2,…, 90) 

  

←   Suppose, KL1 refers to the estimation pertinent to DEN1 

(KL1)k =   {[(pa1 × log(pa1/qa) + (qa × log(qa/pa1)] + 

    [(pt1 × log(pt1/qa) + (qt × log(qa/pt1)] + 

    [(pg1 × log(pg1/qg) + (qg × log(qg/pg1)] + 

       [(pc1 × log(pc1/qc) + (qc × log(qc/pc1)]}k 

Next 

 

→ Compute KL2, KL3 and KL4 likewise using Step III for each 

window (k = 1, 2,…, 90) DEN2, DEN3 and DEN4 respectively 

 

End 

 

7.3.2 Energetics-based analysis 

The energetics profile of DNA/RNA structures, as discussed earlier in Chapter V, 

refers to the framework of structural stability of a sequence, that conforms to the rules 

stipulated by the chemistry of bonding concerning each base-pair as well as it depends on 

the disposition of the most adjacent pairs. Relevantly, it relies on the associated total free-

energy (in the thermodynamic sense) depicting the sum of the contributions from the 
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neighbors (7.8). That is, the INN-model takes into consideration two neighboring bases 

(about a pair of centre elements); and, an energetics value (EV) for each pair is assigned 

depending on the neighbors on the immediate right- and left-side of the centre pair. 

Compiled data on the energetic value for each pair of centre element with reference to 

their adjacent neighbors is presented in Table 5.1 in Chapter V. Low value of EV implies 

that the chemistry of the elements is self-selected in the sequence so as to assume a 

minimum potential energy profile toward thermodynamic stability. 

The analytical basis of prescribing an EV-profile along the test sequence is 

summarised in the Pseudocode B. 

 

Pseudocode B 

% Pseudocode to compute the energetics feature associated 

with nucleotides dispositions as individual nearest-

neighbors (INNs) in a test RNA sequence  

Initialize 

→ Test nucleotide sequence (say DEN1) from 5-end to 3’-end is 

posted as a string (numbered from i= 1 to 10735 for DEN1)  

 

 

// Step I 

Construct the INN-concept based energetic profile for the test 

sequence 

 

← At each nucleotide position, energetic values are assigned 

by considering a pair of bases, designated as centre 

elements (CE) and their neighbors (NN-L and NN-R) on each 

side of this central pair, using the EV allocations as in 

Table 5.1 

→ A moving-window is set to slide past each 

nucleotide; and, at each window position, the 
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minimum energy of the CE with respect to their 

neighbors is noted down using Table 5.1. 

→ The energy values observed are stored in a matrix 

EV1 (of size 1×10732) for DEN1 

Next 

 

→ EV2, EV3 and EV4 are corresponding matrices obtained 

likewise for DEN2, DEN3 and DEN4 respectively using Step I 

 

End 

 

7.3.3 Fourier-transform FT based analysis 

As mentioned earlier in Chapter VI, given a function of a spatial variable, its Fourier 

transform (FT) identifies different frequency sinusoids and their amplitudes contained in 

that function. Relevant FT-based algorithmic and computational efforts pursued in 

formulating the spectral domain comparison of genomic sequences of test viral strains, 

essentially follow the procedure due to (7.9), wherein the genomic sequences are 

represented by numerical sequences and hence, the FT of this spatial-sequence of 

numerals is determined. The numerical values used thereof as mentioned in Chapter VI 

conform to the so-called electron-ion interaction-potential (EIIP) values assigned to the 

nucleotides. Implicitly, such an EIIP-based numerical sequence leads to an information 

spectrum method (ISM) of transforming a genomic sequence for decomposition via 

Fourier series. This Fourier-transformed sequence determined from EIIP values 

inherently contains physico-chemical details attached to the biological functions of the 

genomic structure. As such, elucidating the Fourier series of this numerically-formatted 

genome (in terms of EIIP values) leads to detecting the code/frequency pairs that are 

specific to the genomic sequence vis-à-vis its biological profiles. This method is 

insensitive to the location of the motifs and therefore warrants no prior alignment of the 
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sequence with its counterparts. The EIIP values assigned for nucleotide bases are listed in 

Table 6.1 in Chapter VI. The computational procedure of elucidating Fourier spectral 

details of a test sequence is presented in Pseudocode C. 

 

Pseudocode C 

% Pseudocode to compute spatial frequency characteristics of 

a test RNA sequence using STFT method 

Initialize 

% Identify EIIP values, which refer to the chemistry-

specified electro-ion interaction potential for each base 

as listed in Table 6.1 

Input 

→ Test nucleotide sequences from 5-end to 3’- end (say, for 

example, DEN1) is posted as a string (numbered from i= 1 to 

10735)  

 

// Step I 

Construct the spatial frequency spectrum for the test sequence of 

DEN1 based on EIIP values using STFT 

 

← Construct a string of EIIP values replacing {A, T, G, C} on 

the sequence  

 

← CALL EIIP values from Table 6.1 and assign them 

appropriately to each base encountered along the entire 

sequence of DEN1 and store it in a matrix 

 

←  The short-time Fourier transform (STFT) of the test 

sequence of EIIP-string is obtained by applying Equation 

(1) with a frequency ω = 2Π/3 and suitable window size 

(say, R = 120)  

 

← Apply Step I to determine similarly, the spectra of DEN2, 

DEN3 and DEN4 

   

End 
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The flowchart illustrating the algorithmic steps of Pseudocodes A, B and C are given 

below in Figure 7.1: 

 

 

 

 

 

 

Figure 7.1: Flowchart illustrating the algorithmic steps of Pseudocodes A, B and C 

 

7.4  Extracting common and differentiating features between a set of sequences 

Having formulated three distinct methods based on entropy, energetics and Fourier 

spectrum characteristics of a nucleotide sequence as discussed above, the results are 

compiled with reference to the four sequences pertinent to RNA sequences of DEN1, 

DEN2, DEN3 and DEN4. Using these data, the motif segments that indicate common 

features seen along 5-end to 3’-end stretches of all these multiple (four) sequences in 

question are ascertained. Relevant procedures deployed are outlined in Pseudocodes D1 

and D2. 

 

 

KL-measure estimation: 

(Window size 120 bases 

over 90 windows) across 

5' to 3' stretch 

Pseudocode A 

 

EV- profile estimation 

(Window size 120 bases 

over 90 windows) 

across 5' to 3' stretch 

Pseudocode B 

 

FT – value estimation 

(Window size 120 

bases over 90 windows) 

across 5' to 3' stretch 

Pseudocode C 

 

 

RNA sequences of  

DEN1, DEN2, DEN3, DEN4 

(NCBI site)  

Complete 5' to 3' stretch 

 (NCBI site)  

Complete 5' to 3' stretch 

Store KL-measure profile 

 

Store EV- profile 

 

Store FT-profile 
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Pseudocode D1 

% Pseudocode on the procedure to determine the set of motifs 

forming the finger-print of four RNA sequences pertinent to 

DEN1, DEN2, DEN3 and DEN4 

Initialize 

→    Identify and designate the test viral strains 

→ Dengue viral strains: Dengue 1 virus (DEN1), Dengue 2 

virus (DEN2), Dengue 3 virus (DEN3) and Dengue 4 virus 

DEN4 

 

→  Perform Collection of RNA sequence details from NCBI site at: 

 : http://www.ncbi.nlm.nih.gov/genome/10308 

    → DEN1: 5’ agttg…tct    3’  (10,740 bases) 
   → DEN2: 5’ agttg…tct    3’  (10,720 bases) 

      → DEN3: 5’ agttg…tct    3’  (10,710 bases) 

   → DEN4: 5’ agttg…tct    3’  (10,650 bases) 
 

→ Perform: Analyses concerning: Extraction of entropy, 

energetics and Fourier spectral details 

→  Computations are done as per the following algorithms: 

 

//Step I 

Call Sub pseudocode A, B and C 

   

  →  Recall the test RNA sequences 

← For each RNA sequence stretch from 5′ end to 3′ 

end:  

→ Apply subroutine outlined as in Pseudocode A for 

the calculation of KL-measure  

→ Apply subroutine outlined as in Pseudocode B to 

determine the EV profile 

→ Apply subroutine outlined as in Pseudocode C to 

get the EIIP-based spectral profile 

← Perform the calculations as above considering a 

window size of 120 bases and across all windows 

→ Find the mean of KL_measures obtained across all 

windows from 5-end to 3-end:  

→ KLM1 
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→ Find the mean of min_Energy values (EV profile) 

across all windows from 5-end to 3-end:  

→ MEM1 

→ Find the mean of FT_amp values (EIIP-based 

spectral profile) across all windows from the 5-

end to 3-end:  

→  FTM1 

 

←  Assuming that the net characteristics of the sequence is 

intrinsically linear and equally-weighted by KLM, MEM and 

FTM, combine the three measures, namely, (KLM, MEM and FTM) 

to obtain a summed average as follows: 

→  DEN1-AV = (KLM1 + MEM1 + FTM1)/3 

 

← Obtain likewise DEN2-AV, DEN3-AV and DEN4-AV respectively 

for DEN2, DEN3 and DEN4 

 

→  For each window indexed as n (n = 1, 2, 3, … , 90) across 

5-end to 3-end, determine normalized (linearly)combined 

measures for DEN1 as follows: 

D1 = [Average of (KLM1 + MEM1 + FTM1)n]/ DEN1-AV 

 

→   Similarly, for DEN2, DEN3 and DEN4 respectively obtain, 

D2 = [Average of (KLM2 + MEM2 + FTM2)n]/ DEN2-AV 

   D3 = [Average of (KLM3 + MEM3 + FTM3)n]/ DEN3-

AV 

   D4 = [Average of (KLM4 + MEM4 + FTM4)n]/ DEN4-

AV 

 

End 

 

Next 

//Step II 

→ Find the overall mean of D-values concerning all the four 

strains of the virus: DM = (D1 + D2 + D3 + D4)/4 

← Compute: Demeaned values for each window by 

subtracting the value of DM from each element of the 

matrices D1, D2, D3 and D4  

→   For each window (n = 1, 2, … , 90) 

DiffD1 = (D1 - DM) 

DiffD2 = (D2 - DM) 

DiffD3 = (D3 - DM) 
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DiffD4 = (D4 - DM) 

Next 

//Step III 

→ To find logistic regression on DiffD1, DiffD2, DiffD3 and 

DiffD4 

 

%  Note: Logistic regression [7.10] and [7.11] (also known as 

logistic model or logit model) is a method to predict the 

probability of occurrence of p(z) of an entity (z) by 

fitting data to a logistic (logit) curve. This logistic 

function is a nonlinear sigmoid (S-shaped) with z being the 

independent explanatory variable and p(z) is the dependent 

variable. With large values of z (z  ∞), p would tend to 1 

as an asymptote. Otherwise, p(z) = 1/[1+exp(-z)]; and, the 

variable z is set by a linear regression of the associated 

independent variables.  

In the present case, z denotes DiffD1, DiffD2, DiffD3 or 

DiffD4 all obtained by a linear combination of KLM, MEM and 

FTM measures evaluated on each sequence. 

  

Do 

 

→ Logistic regression (LRk)k=1,2,3 and4 for each window (n = 1, 2, 

…, 120) using the logit function: 

 

GOTO DEN1 sequence 

→ Find:  LR1n = 1/ (1 + exp [DiffD1])n  

 

GOTO DEN2 sequence 

→ Find:  LR2n = 1/ (1 + exp [DiffD2])n  

 

GOTO DEN3 sequence 

→ Find:  LR3n = 1/ (1 + exp [DiffD3])n  

 

GOTO DEN4 sequence 

→ Find:  LR4n = 1/ (1 + exp [DiffD4])n  

 

End 

Next 

 

→ Find the overall mean: LRM = (LR1 + LR2 + LR3 + LR4)/4 

← Demean LR1, LR2, LR3 and LR4 for each window with 

respect to LRM to obtain: 

  LRD1 = |LR1 – LRM| 

LRD2 = |LR2 – LRM| 

LRD3 = |LR3 – LRM| 

LRD4 = |LR4 – LRM| 
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← Find logarithm of each element of LRD1, LRD2, LRD3 and 

LRD4 to obtain respectively: LLRD1, LLRD2, LLRD3 and 

LLRD4 {For example, LLRD1n = loge(LRD1)n}  

%  Note: By taking logarithm of the data as above, it will 

filter out most of the scattered outlier values 

 

 

Plot: 

→ LLRD1n = 1,2,3.. values (across 120 bases in each window) 

versus window number indexed as (120 × n) with n = 1, 2, …, 

90 

 

→ Plot LLRD2, LLRD3 and LLRD4 values likewise (across 120 

bases in each window) versus window number indexed as (120 

× n) with n = 1, 2,…, 90.  

 

Next 

//Construction of motifs 

%  Note: This refers to deciding motif sections between the four 

multiple RNA sequences of DEN1, DEN2, DEN3, DEN4 using the 

computed data on LLRD1n = 1,2,3.., LLRD2n = 1,2,3..  , LLRD3n = 1,2,3..  

and LLRD4n = 1,2,3..    

→ Select Regions in the plots of LLRD1, LLRD2, LLRD3 and 

LLRD4 (versus n) as per the following criterion: 

 

→ Mark the Sections along the sequences wherein the 

bases of all the four strains indicate almost similar 

(normalized) LLRD measures ≥ 0.6 within a span of say, 

at most 25 bases. Suppose the motif sections observed 

are identified as k = 1,2,…,7 (See Appendix).  

 

%  Note: The chosen upper threshold of ≥ 0.6 means that all 

the four sequences are almost identical to a probabilistic 

extent of 0.6 or better. Figure 7.2 shows the seven 

selected segments from 5' to 3' of the multiple sequences 

as per the above criterion 

 

→ Write For each of the selected motif span at k = 1,2,…7, 

the prevailing nucleotide sequence is noted down:  

→ Label them as {(MSEQ)DENn, n=1, 2, 3, 4}k, k= 1, 2, …, 7  
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→ Add 10-15 bases before the start and after the 

end of each of the selected region (MSEQ) to 

account for stray end-effects 

End 

 

 

Pseudocode D2 

% Pseudocode on the procedure to determine the aligned and/or 

unaligned AA representation of the selected seven motif 

sections 

Input 

→ For each of the selected motif span at k = 1,2,…7, the 

nucleotide sequence labeled as {(MSEQ)DENn, n = 1, 2, 3, 

4}k, k = 1, 2, …,  and 10-15 bases added before the start 

and after the end of each of the selected region (MSEQ) to 

account for stray end-effects 

 

→ Find the regular expression for each end-corrected (MSEQ)1, 

2, …, K section using PRATT tool:  

→  (Available at: http://web.expasy.org/pratt/) 

→ Determine: Position specific scores on each segment of k = 

1,2,…,7 

 

% Note: For motifs specified by a segment (of k = 1, 2,…, 7), 

the position-specific scoring implies probability 

information of nucleotides at each position of the ungapped 

multiple sequence aligned and obtained via PRATT tool. 

Using such scoring considerations, the regular expression 

for each segment (k = 1, 2,…, 7) is translated into  a set 

of four nucleotide sequences constructed on the basis of 

the positional frequencies of each residue, so that the 

degree of sequence conservation at each position of the 

multiple alignment is duly taken into consideration.  

For example, given below is a regular expression obtained 

using PRATT and the corresponding four sequences of 

nucleotides for the window k = 1 
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Range 
Aligned/ 

Unaligned 
Regular Expression 

1041-

1080 

Aligned A-[AG]-[AG]-[AG]-[AC]-A-A-[AG]-C-C-[AC]-A-C-[ACG]-[CT]-T-G-G-A-

[CT]-[AT]-T-[AT]-G-A-[AG]-C-T-[CGT]-[ACT]-[ACT]-[AGT]-A-A-[AG]-

A 

DEN1:     AAGACAAACCAACACTGGACATTGAACTCTTGAAGA cgga  

DEN2:  aa AAAACAAACCAACATTGGATTTTGAACTGATAAAAA ca 

DEN3:     AGAACAAGCCCACGCTGGATATAGAGCTTCAGAAGA ccga  

DEN4:gccc AGGGAAAACCAACCTTGGATTTTGAACTGACTAAGA       

 

Unaligned A-x(4)-A-A-x-C-C-x-A-C-x(2)-T-G-G-A-x(2)-T-x-G-A-x-C-T-x(4)-A-

A-x-A 

 

 

List 

 All PRATT-specified regular expressions (RE)k for each 

sequence k = 1, 2,…, 7 (Appendix) 

 

Next 

Perform: RE-to-nucleotide translation. A “select” set of 

nucleotide translations of the regular expressions obtained 

% Note: Explanation:  

-   Each RE would, in general, provide multiple nucleotide 
translations 

-   However, at any position in a translated version, each 
base is seen with certain position-specific probability 

of occurrence across the columns of four sequences 

-   Based on such probabilistic considerations only, a 

restricted (select) set of translations are listed as per 

the procedure described below: 

 

→ Procedure: Consider for example, a partial regular expression: 

←   RE: … A-[CT]-G-A-A-C … 

← It can be translated back to a set of four sequences 

as follows: 

 

Set X: DEN1: ACG AAC 

    DEN2: ACG AAC 

    DEN3: ATG AAC 

    DEN4: ATG AAC 

 

Set Y: DEN1: ATG AAC 

    DEN2: ATG AAC 

    DEN3: ACG AAC 

    DEN4: ACG AAC 

 

In making the above sets {X} and {Y}, the implication of 

the equal probability of occurrence of C or T in [CT] is 

invoked. 
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Likewise, suppose in another example, if -[CTG]- is 

encountered at a position. Then, the possible combinations 

for position-specific translations will be: 

 

       C        C          C              T        T       T 

       C   OR   C    OR   C       OR   T  OR   T  OR   T   

       C             C          C              T        T        

T 

  C            T          G              T        C         G 

 

and so on. 

 

→ Correspondingly, translated sets of {X}, {Y} etc. are 

framed for each (RE)K = 1, 2, …, 7 

→ Then, select numbers of sets are alone chosen as explained 

below: 

 

→ For each (RE)k, obtain the open-reading frames (ORF) and 

ascertain the ORF using the tool Sequence Manipulation 

Suite: ORF Finder (Available at:  

 http://www.bioinformatics.org/sms2/orf_find.html 

% (Note: Set the value of the parameter ‘Only return ORFs that 

are at least 3 codons long instead of the default value 

‘30’. Further, only forward reading frames are considered 

inasmuch as dengue is +ve single-stranded RNA virus) 

List  

 

→ All ORF’s obtained are tabulated in terms of amino acids 

(AA) for each (RE)k=1, 2, …,7 

 

Next 

→ For each subsequence numbered k = 1, 2, …, 7 and depicted 

in terms of AAs, manually select the AA sequence part found 

most commonly among all the ORF’s obtained for each motif 

section, k = 1, 2, …, 7 

→ Tabulate all such sorted (manually selected) AA segments 

obtained depicting a total of 36 motif sections (in the 

present analyses of dengue virus). The results on the 

identified motifs concerning DEN1 through DEN4 serotypes 

are presented in Table 7.1 

 

END 
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Table 7.1:  Manually selected sets of motifs of the four multiple sequences of DEN1 to 

DEN4 

Range 
Aligned/ 

Unaligned 
Fitness Regular Expression 

1041-

1080 

Aligned 131.0950  

 

A-[AG]-[AG]-[AG]-[AC]-A-A-[AG]-C-C-[AC]-A-C-[ACG]-[CT]-T-G-

G-A-[CT]-[AT]-T-[AT]-G-A-[AG]-C-T-[CGT]-[ACT]-[ACT]-[AGT]-

A-A-[AG]-A 

DEN1:     AAGACAAACCAACACTGGACATTGAACTCTTGAAGA cgga  

DEN2:  aa AAAACAAACCAACATTGGATTTTGAACTGATAAAAA ca    

DEN3:     AGAACAAGCCCACGCTGGATATAGAGCTTCAGAAGA ccga  

DEN4:gccc AGGGAAAACCAACCTTGGATTTTGAACTGACTAAGA       

 

Unaligned 79.2310 

 

A-x(4)-A-A-x-C-C-x-A-C-x(2)-T-G-G-A-x(2)-T-x-G-A-x-C-T-

x(4)-A-A-x-A 

 

 

1301-

1350 

Aligned 136.9046  

 

A-C-[AC]-[CG]-[CT]-[ACGT]-C-A-C-[AT]-[AC]-[AT]-G-G-[AG]-G-

A-[AC]-[ACG]-[AC]-[ACG]-C-A-x(1,2)-C-A-x(0,1)-G-T-[ACGT]-G-

G-A-A-A-T-G-A-[ACG] 

DEN1:   tagtc ACCGTACACACTGGAGACCAGCAc-CAaGTTGGAAATGAG acca  

DEN2:   tgata ACACCTCACTCAGGGGAAGAGCAtgCA-GTCGGAAATGAC ac    

DEN3:   tcatt ACAGTGCACACAGGAGACCAACAc-CAgGTGGGAAATGAA acgc  

DEN4:   ttgta ACAGTCCACAATGGAGACACCCAtgCA-GTAGGAAATGAC  

 

Unaligned 94.9112 

 

A-C-x(4)-C-A-C-x(3)-G-G-x-G-A-x(4)-C-A-x(1,2)-C-A-x(0,1)-G-

T-x-G-G-A-A-A-T-G-A 

 

3001-

3050 

Aligned 123.1960 

 

G-G-[ACT]-C-C-[AT]-[AGT]-T-[ACGT]-T-C-[AT]-C-A-[AG]-C-A-C-

A-A-[CT]-T-A-[CT]-[AC]-G-x(0,1)-C-C-[AC]-G-G-[ACG]-[CT] 

DEN1:   atgga GGACCAATATCTCAGCACAACTACAGaCCAGGAT att   

DEN2:   tcgct GGACCAGTGTCTCAACACAACTATAGaCCAGGCT a     

DEN3:   tagct GGTCCTATCTCACAACACAACTACAGgCCCGGGT accac 

DEN4:   atgcg GGCCCTTTTTCACAGCACAATTACCG-CCAGGGC       

 

Unaligned 87.0711 G-G-x-C-C-x(2)-T-x-T-C-x-C-A-x-C-A-C-A-A-x-T-A-x(2)-G-

x(0,1)-C-C-x-G-G 

 

3601-

3650 

Aligned 115.7843 

 

C-[ACT]-[ACT]-[AGT]-G-G-x(1,3)-C-x(1,3)-T-[ACG]-[AT]-C-

[AC]-T-[GT]-[GT]-A-[AGT]-[AGT]-G-A-[CT]-[ACT]-T-[AG]-[ACG]-

[CGT]-[ACG]-[AC]-[AG]-[ACG]-[ACG]-[CT]-[ACG]-[ACT]-[GT]-

[ACGT] 

DEN1:  tctca CAATGGga-CaatTGACATGGAATGATCTGATCAGGCTATGT 

atca  

DEN2:  ttgat CACAGGgaaCa--TGTCCTTTAGAGACCTGGGAAGAGTGATG gt    

DEN3:        CTCAGGg--CaaaTAACATGGAGAGACATGGCGCACACACTA 

ataat 

DEN4:  atcat CCTGGGaggCc--TCACATGGATGGACTTACTACGAGCCCTC       

 

Unaligned 43.8706 G-G-G-x(0,2)-A-x(2,4)-T-x(2)-C-x-T-x(2)-A-x(2)-G-A-x(2)-T 

 

5541-

5590 

Aligned 148.7139 

 

G-[ACGT]-T-C-[AG]-T-G-G-A-A-[CT]-[AT]-C-[AC]-G-G-x(2,3)-T-

x(0,1)-G-A-[AC]-T-G-G-[AG]-T-[ACT]-A-C-[ACGT]-G-A-[CT]-T-

[AT]-[CT]-[ACG]-[AC]-[AT]-G-G 

DEN1:   tgaaa GATCATGGAACTCAGGctaT-GACTGGATCACTGATTTCCCAGG 

t     

DEN2:   tgaac GTTCGTGGAATTCCGGacaT-GAATGGGTCACGGATTTTAAAGG 

ga    

DEN3:         GCTCATGGAATTCAGGcaaT-GAATGGATTACCGACTTCGCTGG 

gaaaa 

DEN4:   ggaaa GGTCATGGAACACAGGgt-TcGACTGGATAACAGACTACCAAGG       

 

Unaligned 103.2513 

 

G-x-T-C-x-T-G-G-A-A-x(2)-C-x-G-G-x(2,3)-T-x(0,1)-G-A-x-T-G-

G-x-T-x-A-C-x-G-A-x-T-x(5)-G-G 
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9701-

9750 

Aligned 159.5583 

 

T-T-T-C-x(0,1)-A-[CT]-[ACG]-A-[AG]-[ACT]-T-[ACG]-[AT]-T-

[CT]-A-T-G-A-A-[AG]-G-A-[CT]-G-G-[ACGT]-[AC]-G-[ACG]-[AGT]-

[ACT]-[AG]-[ACT]-T-[ACG]-G-T-[GT]-G-T-[GT]-C-C 

 DEN1:  cacca TTTCcACCAGCTGATTATGAAGGATGGGAGGGAGATAGTGGTGCC       

 DEN2:   acca TTTCcATGAGTTAATCATGAAAGACGGTCGCGTACTCGTTGTTCC 

a     

 DEN3:        TTTC-ATGAATTGATCATGAAAGATGGAAGAAAGTTGGTGGTTCC 

ctgca 

 DEN4:      c TTTC-ACAAGATCTTTATGAAGGATGGCCGCTCACTAGTTGTTCC 

atgta 

 

Unaligned 103.7513 T-T-T-C-x(0,1)-A-x(2)-A-x(2)-T-x(2)-T-x-A-T-G-A-A-x-G-A-x-

G-G-x(2)-G-x(5)-T-x-G-T-x-G-T-x-C-C 

 

9751-

9800 

Aligned 135.4156 

 

A-[CT]-G-A-A-C-T-[AGT]-[AG]-T-[AT]-G-G-[ACGT]-A-G-[AG]-G-C-

[AC]-[AC]-G-A-[AG]-T-[AC]-T-C-[ACGT]-C-A-[AG]-G-G-[AC]-G 

DEN1:  ccaag ATGAACTTGTAGGTAGGGCCAGAGTATCACAAGGCG       

DEN2:  ccaag ATGAACTGATTGGCAGAGCCCGAATCTCCCAAGGAG c     

DEN3:  ccagg ACGAACTAATAGGAAGAGCAAGAATCTCTCAAGGAG cggga 

DEN4:  ccagg ATGAACTGATAGGGAGAGCCAGAATCTCGCAGGGAG ctgga 

 

Unaligned 95.9112 A-x-G-A-A-C-T-x(2)-T-x-G-G-x-A-G-x-G-C-x(2)-G-A-x-T-x-T-C-

x-C-A-x-G-G-x-G 

  

Figure 7.2 depicting the seven motifs (indicated via A, B and C) that constitutes the 

fingerprint of the test multiple sequence set is shown below. Figure 7.3 and 7.4 are the 

flowcharts for the pseudocodes D1 and D2 respectively. 
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Figure 7.2: Selected (seven) motif segments across the multiple (four) RNA sequences of 

the test serovar in the entire 5'-to-3' stretch. They exhibit almost similar features 
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Normalized 

FT- measure 

versus 

window # k 

(Z3) k=1, 2, ..., 90 

 

Combine to single log-regressed 

value 

Z = Z1 + Z2 + Z3 

(LR) k = [1/ (1 + e
-Z

)] k 

Normalized 

EV- measure 

versus 

window # k 

(Z2) k=1, 2, ..., 90 

 

Normalized 

KL- measure 

versus 

window # k 

(Z1) k=1, 2, ..., 90 

Store/plot (LR) k  

versus window # 

k = 1, 2, ..., 9 

Set threshold at LR ≥ 0.6.  

Select segments S1, S2, … S7 

containing profiles of all four 

strains and equal to or 

exceeding this threshold 

Identify nucleotide segments for 

each (Si) as per criterion. See 

Figure 7.2 

 

(measured ≥ 0.6 in the scale 0-1) estimated by the cohesive combination of entropy, 

energetics and Fourier spectral methods 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Flowchart presentation of Pseudocode D1 

Normalized 

FT- measure 

versus 

window # k 

(Z2) k=1, 2, ..., 90 
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Flowchart shown in Figure 7.4 describes the salient aspects of the Pseudocode D2. 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Flowchart presentation for Pseudocode D2 

7.5  Finding common proteins among the test viral strains 

The method of ascertaining a set of proteins that may prevail most commonly in all 

the four viral strains using the selected set of motifs as above is described in Pseudocode 

E below. 

 

 

 

Construct the regular expression (RE) for each S 

with the addition of 10 bases on either side of the 

segment 

 Translate the RE for each S (+/- 10 bases) 

 From all possible translations, obtain a restricted 

group as described in Pseudocode D 

 For the selected and translated RE, obtain forward 

reading frames 

 Convert all these reading frames into amino acid 

(AA) format 

Nucleotide segments (S i), where i 

= 1, 2… 7 
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Pseudocode E 

 

% Pseudocode on the procedure to find the common proteins 

across all the four viral strains using the selected set of 

36 motif sections listed in Table 7.2 

Initialize 

→ List the 36 motifs from Pseudocode D in AA format 

→ For each motif the selected set of AA segments are 

subjected to BLAST search to ascertain the underlying 

homology and similarity. Relevant blastp compares an AA 

query sequence against a protein sequence database 

 

List 

 

→ Protein sequences obtained as output from BLAST search and 

corresponding expected value (E-value) estimated from BLAST 

for each AA sequence 

 

Next 

 

→ Tabulate the AA sequence, protein type and E-values 

obtained from the BLAST search. A low E-value indicates 

that a score has high confidence level 

→ Filter out all those sequences that post high E-values 

→ Prepare a condensed set of details as in Table 7.2 with 

reference to DEN1, DEN2, DEN3 and DEN4. 

END 

 

 

 

 

 

Table 7.2: Probabilistically most common motif sections (denoted in terms of AAs) and   

       possible proteins synthesized by them across all the four dengue 
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serotypes. (Only 13 out of 36 are listed: See the note presented beneath the 

table) 

 

Identified motif 

section: Highly 

probable amino acid 

(AA) sequences 

translating into 

proteins 

 

 

Translated protein type from the 

AA sequence 

 

Basis of 

selection 

priority 

 

Typically 

present in: 

 

KPTLDIELMK envelope protein [dengue virus] 1 Dengue virus 

KPTLDFELMK polyprotein [dengue virus] 1 Dengue virus 

TVHTGDQCK polyprotein [dengue virus 1 and 3] 1 Dengue virus 

TVHTGDQRK polyprotein [dengue virus 1 and 3] 1 Dengue virus 

SQHNYRPG polyprotein [dengue virus 1 and 2] 1 Dengue virus 

QDELIGRARISQG polyprotein [dengue virus 2, 3 and 4] 1 Dengue virus 

FHELIMKDGRELVV polyprotein [dengue virus 1 and 3] 

 

1 Dengue virus 

FHELIMKDGSELVV polyprotein [dengue virus 1, 2 and 3] 1 Dengue virus 

QTNIGF* FER-1-like protein 5   

[Homo sapiens] 

2 Human protein 

QTNTGF* nuclear pore complex protein Nup98-

Nup96 isoform 1 [Homo sapiens] 

2 Human protein 

SQNLTR dual specificity phosphatase 22 

variant [Homo sapiens] 

2 Human Protein 

SQNLSR Chain A, crystal structure of The 

human phosphatase (Dusp9) 

2 Human Protein 

SQNLAR unnamed protein product 

 [Homo sapiens] 

2 Human Protein 

Note:  

(a) The analysis pursued also indicates existence of other 23 possible motifs in 

the four dengue viral sequences. But, they are not observed in the BLAST 

search to express proteins prevalent in either in dengue viral strains and/or in 

human. As such, they are not listed here as viable entities for vaccine design 

considerations on the dengue viral strains. 

(b) Selection priority: The priority 1 or 2 indicated refers to the order of 

observations with low-end of E-values seen in BLAST tool results 

(c) The results posted are obtained by using the protein BLAST (blastp) 

option of the BLAST tool 

 

Presented in Figure 7.5 is a flowchart summary on Pseudocode E. 
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Figure 7.5: Flowchart presentation for Pseudocode E 

7.6  Results 

The thematic objective of the present study as stated earlier refers to applying 

cohesively the three methods of information-theoretic (entropy), thermodynamic-kinetics 

(energetics) and Fourier-spectral methods to DNA/RNA structures in order to obtain a 

comprehensive, featured portal that identifies and classifies distinguishable details buried 

across them. Currently, when this approach is specifically addressed to the serogroup of 

dengue virus, the resulting data obtained are listed in Table 7.1.  

7.7  Viable use of the present study 

 Manually select AA segments as per the procedure 

in Pseudocode E 

 Selected AA segments represent the set of motifs 

common to all four serotypes 

 Do Blastp on motifs to get corresponding 

proteins 

 Select only those proteins with low E-values 

List all the proteins as 

tabulated in Table 7.2 

AA formatted reading frames of the 

seven motifs 
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The gene expression in a virus morphs to different patterns at the molecular 

(DNA/RNA) level across its different serotypes. Such discernment features in single viral 

diversity indicate the need for distinct vaccine designs vis-à-vis differentiable pathology 

of the strains concerned. Diverse vaccines can be synthesized by considering the distinct 

underlying DNA signature features of each serotype of a given virus. For example, 

relevant DNA feature can be determined in terms of the expression seen in each viral 

DNA/RNA structure observed as: (i) CDS, CpG, TATA box features; (ii) sites of 

homology specified by the spatial-spectrum (in Fourier domain); (iii) long-range 

correlation of coding/noncoding segments and (iv) individual nearest-neighbor energetic-

interactions plus stability-seeking bends/loop formation (as in the case of single-strand 

DNA or in RNA sequences).  

7.8  Closing Remarks 

The present study is motivated by the interest in seeking a strategy towards 

comprehending the inner details of genomic information via a framework of multiple 

analyses applied simultaneously on a test sequence. Hence, a three-prong approach based 

on entropy, energetics and Fourier-transform methods is advocated and applied to RNA 

sequences of dengue viral strains. The collective details obtained thereof indicate most 

probable set of common protein-translated motif sections among the four serovar 

sequences in question. These can be viably used as indicators or biomarkers in the efforts 

of finding a common vaccine for the serotypes in question, coping with the diversity 

across a single virus. 
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Disclaimer: The list of proteins, motif sections etc. deduced in this paper (Table 7.1) and 

indicated as possible useful entities in designing a common vaccine for dengue serovar is 

based on analytical methods, computational procedures and various assumptions 

specified in making selective ensembles of data as necessary. No wet-lab studies were 

conducted to supplement or cross-validate the details furnished. 
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CHAPTER VIII 

VIRAL GENOMIC SEQUENCES AND VACCINE DESIGN CONSIDERATIONS 

8.1  Introduction 

Disease prevention is of utmost importance for public health. It is always better to 

prevent than to treat the disease. A way to prevent a disease is to administer the susceptible 

individuals with what is known as the “vaccine”. Such vaccines can protect both, the 

people who receive them as well as those with whom they come in contact. A vaccine is 

any  preparation  used as a  preventive introduction of an antigen (microorganism or an 

agent of disease into an host organism) to confer immunity  against a specific disease,  

usually employing an innocuous form of the disease  agent, such as  a killed or weakened  

bacteria  or  virus, which can  stimulate  antibody  production. Vaccine antigens are not 

strong enough to cause disease but still are strong enough to make the immune system to 

produce antibodies against them. Thus, the goal of any vaccination is the induction of an 

appropriate and effective immune response in the vaccinated person. However, it is still 

unclear what precisely exactly constitutes an effective immune response for many diseases 

so that an appropriate design can be attempted towards the prevention of the disease.  

As discussed in earlier chapters, the gene expression in a virus morphs to different 

patterns at the molecular (DNA/RNA) level across its different strains. These discernment 

features offer a viable opportunity to conceive a set of distinct vaccine designs usable to 
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prevent the differentiable pathology likely to be caused by the strains of the virus 

concerned. In this study, it is hypothesized such diverse vaccines can be intelligently 

synthesized by considering the underlying DNA signature features of the various strains of 

a given virus. Essentially, the unique expressions seen in each viral DNA/RNA structure as 

regard to its CDS, CpG, TATA box etc., sites of homology can be the entities of interest in 

vaccine design. These entities compared to those specified by the spatial-spectrum (Fourier 

domain) details, long-range correlation of coding/noncoding segments and nearest-

neighbor energetic-interactions and related stability-seeking bends/loop formation (in the 

case of single-strand DNA or in RNA sequences). For example, the computed data on the 

distinguishable features pertinent to the RNA structures of dengue virus serovar as 

ascertained in Chapter VII can be used in conceiving a smart/ rational vaccine design. 

 

8.2 What is Immunity? An Overview  

Immune response is the result of a series of biochemical reactions that provides 

protection mechanism for the body from potentially dangerous pathogens and foreign 

substance. Two types of immunity exist, innate and acquired. Innate immunity is always 

present and consists of an intricate system by which infection is recognized with the 

production of antimicrobial/viral activities and recruitment of neutrophils and other 

phagocytic cells to the site of infection so as to kill or neutralize the invading pathogens 

[8.1-8.3]. Such activities are triggered by the presence of cell-surface and internal receptors 

(what are known as Toll-like receptors or TLRs) that recognize certain pathogen-associated 

molecular patterns present in or on the surface of pathogens. Acquired immunity is induced 

in response to the invading pathogens; but it is dependent on the innate immune system to 
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facilitate the presentation of pathogenic antigens in order to further trigger either the 

production of antibodies or stimulating the cellular immunity [8.4]. 

The cellular part of immune system includes certain types of white blood cells 

(WBCs) called lymphocytes, (which in turn consist of B-cell and T-cell) and antibodies. 

Antigens are particles or protein molecules on the surface of pathogens that induce 

production of antibodies by the immune system. The cells of B series (including plasma-

cells) produce antibodies. Antibodies attach to a specific antigen and make it easier for the 

immune cells to destroy them. A part of the antibody known as the paratope recognizes an 

antigen, or better its critical part (amino-acid sequence) known as epitope. The T-cells 

attack antigens directly and help in controlling the immune response. These T-cells are 

either helper (Th) or cytotoxic T(c) versions and they specifically kill host cells in which a 

pathogen resides [8.5]. They also release chemicals, known as cytokines, which control the 

entire immune response, including production of antibodies from B-cells.  

The biochemical reactions during immune response produce and select particular 

epitopes from antigenic material or antigen presenting cell (APC). The epitope is a peptide 

that can be recognized by a T-cell and elicit an immune response against the foreign body. 

T-cell immunity is essential for the induction of long-term protective immunity against 

infectious disease agents [8.6-8.8], and the paratope part of the antibodies binds to the 

epitope by a lock and key mechanism [8.9]. The epitope can be continuous or 

discontinuous [8.10] as has been indicated in Figure 8.1. The lock-and-key feature of 

paratope-epitope structure is presented in Figure 8.2. 
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Figure 8.1: Types of Epitopes 

 

Figure 8.2: Lock-and-key mechanism of epitope-paratope 

Once B-cells and T-cells are formed, a few of these would multiply and provide a 

"memory" for the immune system [8.11] on the invading pathogen. This allows the 

immune system to respond faster and more efficiently when the body is exposed 

subsequently to the same antigen; and, in many cases it will prevent the host from getting 

sick due to the invading pathogen or at least minimize the severity of the related infection. 

Sequential or linear or 

Continuous Epitope 
Conformational or 

Discontinuous Epitope 
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The possibility of immune response of a person who acquired immunity to a certain 

pathogen is shown in Figure 8.3. 

 

Figure 8.3: Immune response generated by a previously vaccinated person’s body (host) to 

a pathogen 

8.3 Vaccine and Vaccine Designs: A Review 

 Consistent with the immunity response considerations as indicated above, a vaccine 

is an antigen that prepares an immune system for future protection against some pathogen 

without causing severe symptoms in the host. Vaccines can be of various forms such as: An 

organism (bacteria or virus), a protein (or peptide), or a nucleic acid sequence [8.12], 

[8.13]. Thus, the goal of vaccine design is to create an artificial means to produce 
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immunological memory of a particular pathogen without the risk of developing the disease 

in the host and offer a resistance against future possible infections. 

The science of vaccinology started with Edward Jenner’s systematic investigations into 

the protective effect of cowpox against smallpox in the late 18th century [8.14], [8.15]. 

However, the momentum was provided by Louis Pasteur [8.16], [8.17] for further research. 

Empirically vaccines were designed on the basis of Pasteur’s principle: “isolate, inactivate 

and inject” [8.18] and is being practiced till date. The traditional vaccine design approach is 

to derive all possible vaccines from a protein sequence and test each of them for an 

immune response experimentally. The vaccines are designed in specialized laboratories and 

tested invitro. However, this strategy is not only expensive, time-consuming and often 

unpredictable, but also it may fail in producing effective vaccine solutions against some 

pathogens, especially those with very high antigen variations [8.19].   

To reduce the high costs associated with traditional vaccine development, in silico 

based methods of vaccine design is proving to be useful. With the advent of modern 

technologies plus bioinformatic tools and databases developed for proteomics, comparative 

genome analysis and interpretation of whole-genome sequences, computer-based 

techniques for designing or predicting epitopes for effective vaccine is increasingly gaining 

momentum. It can be used to assign putative gene functions to each open-reading frame 

(ORF) on the basis of homology to known proteins. Systematic identification of potential 

antigens of a pathogen using this information without the need for cultivation of the 

pathogen, is termed as ‘reverse vaccinology’ [8.20].  
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 Vaccine history teaches that advances in vaccines are closely tied to the development 

of new and improved technologies. By understanding how vaccinology has evolved, 

innovative strategies—informed by novel technologies—can be pursued and applied 

towards the development of safe and effective vaccines against chronic infections, highly 

variable pathogens, or non-infectious diseases such as cancer, lupus, Alzheimer’s disease 

etc. Hence, a brief overview on the conventional as well as on recent novel strategies 

indicated for designing vaccines is discussed in following sub-sections. 

8.3.1 Live, Attenuated and Inactivated Vaccine 

The live attenuated vaccines consists of the whole attenuated bacterial or viral 

particles.  This attenuation is achieved by growing generations of the pathogens in cells in 

which they do not reproduce very well. As they evolve to adapt to the new environment, 

they become weaker with respect to their natural host, human beings. Its major advantage 

is in the fact that they contain the entire possible antigenic spectrum as that of the pathogen, 

they induce most effective and long lasting immunity against the infection. However, on 

rare occasions and especially in immune-compromised or immune-deficient host, these 

pathogens introduced through vaccines can prove fatal. Thus, this conventional method, 

while successful against some pathogens (especially against certain viruses like chicken 

pox, mumps etc.), failed to provide a solution for many of those pathogens (especially 

bacteria which has thousands of genes) for which a vaccine is not yet available. 

Inactivated vaccines are prepared by killing the disease-causing pathogen with 

chemicals, heat or radiation. These vaccines are very stable and safer than live vaccines as 

the dead pathogen can’t mutate back to their disease-causing state. However, most 
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inactivated vaccines stimulate a weaker immune system response as compared to live 

attenuated vaccines and so it takes several doses or booster shots, to maintain immunity.  

8.3.2 Subunit and Conjugate Vaccine 

 Subunit vaccines include only the epitopal or antigenic part that best stimulate the 

immune system. As they do not contain all the other molecules that make up the pathogen, 

the chances of adverse reactions to the vaccine are lower. Hepatitis B vaccine is an example 

of subunit vaccine. 

 Conjugate vaccines are a special type of subunit vaccine used for immunization 

against bacteria that possesses an outer coating of sugar molecules called polysaccharides. 

A polysaccharide coating on bacterial surface hides the antigens, so that the immature 

immune systems of infants and younger children can’t recognize or respond to them. In 

preparing conjugate vaccine, the antigenic material inside the polysaccharide coating of the 

bacteria is replaced by an antigen that an infant’s or young child’s immune system can 

recognize. Thus, the infant’s or child’s immune system responds to the polysaccharide 

coatings and defends against the disease-causing bacteria. 

8.3.3 DNA and Recombinant Vector Vaccines 

A novel class of vaccines that specially deserves to be mentioned is based on the 

immunization with "naked" DNA was introduced in late 1990’s. It’s main strength is that it 

highly reduced or eliminated the disadvantages associated with conventional vaccines 

designed using live attenuated or inactivated pathogen [8.21]. Direct inoculation of plasmid 

DNA encoding sequences of viral proteins results into the synthesis of the proteins causing 
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immune responses in the host. Several advantages are associated with DNA immunization, 

e.g., cheap to produce, heat stability, amenable to genetic manipulation, mimic viral 

infection, and no risk of reversion to pathogenicity. Some concerns remain regarding their 

safety, e.g., the possible integration of plasmid DNA into host chromosomes [8.22]. 

Recombinant vector vaccines are experimental vaccines similar to DNA vaccines, but 

they use an attenuated virus or bacteria to introduce antigenic DNA to cells of the host’s 

body. “Vector” refers to the virus or bacterium used as the carrier. This DNA vaccines do 

not use DNA as immunogen (as it is proposed in [8.12] and [8.13]) but just a critical DNA 

sequence inserted in plasmid in order to fabricate sufficient amoubt of protein (epitopal ) 

copies for given epitope. This is the crucial distinction between the two concepts. A 

detailed review of the history of vaccinology is provided in [8.23]. 

8.4   Rational Design of Vaccine 

 Along with the above mentioned ways to design vaccines in biology laboratories, 

reverse vaccinology has fast gained acceptance [8.24]. Technological breakthroughs in 

molecular biology in the past decade have led to the generation of immense amounts of 

data and research at the genomic or proteomic level. This has given rise to an increase in 

the popularity of immune-informatics [8.25] and computational research methods, which 

are often faster than biological experiments as it reduces the time required for the 

identification of critical candidate vaccines and provides new solutions for those vaccines 

which have been difficult or impossible to develop. The two techniques central to this new 

discipline of rational vaccine design are epitope mapping and reverse vaccinology. Rational 

vaccine design uses computers for large scale screening of potential vaccines based solely 
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on genomic and proteomic information [8.26] by using intelligent algorithms and tools for 

setting up a standardized approach. Today, the possibility of using genomic information 

allows us to study vaccine development in silico, without the need of cultivating the 

pathogen. The whole concept has been summarized in Figure 8.4. 

 

Figure 8.4: Concept of rational design of vaccine 
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Various computational approaches and algorithms have been proposed and used for 

recognition/design of possible epitopal candidates and reverse vaccinology. Epitope 

identification is a kind of pattern recognition and the computational methods used for 

pattern recognition are applicable [8.27]. Other methods to determine antigens use 

techniques such as neural network [8.28], support vector machines [8.29], Hidden Markov 

models (HMM) [8.30] and many more. A good review of various methods and the 

immunological entity that can be determined through these algorithms and tools is in 

literature [8.31]. 

8.5  Rational Design of Vaccine for Dengue Virus  

As already stated earlier, exposure to one serotype of dengue virus usually results into 

mild symptoms which goes away easily and the patient is immune for life to a second 

infection of the same serotype. However, subsequent exposure to a second dengue serotype 

increases the chance of the illness progressing to the severe and sometimes fatal dengue 

hemorrhagic fever. Although many different approaches have been tried to develop vaccine 

effective against all the four serotypes of dengue virus, but, none have proved effective. 

Cardosa has provided a good review of the issues and challenges in designing a vaccine 

against dengue virus [8.32]. Individual vaccines though are effective against a particular 

serotype, but, combining them together effectively to form a reliable vaccine against all 

four serotypes has been unsuccessful. Various researchers have made attempts to develop 

vaccine against all the four serotypes using many innovative methods and substantial 

progress has been made towards finding a vaccine, yet, each comes with its own unique 

challenges and benefits and an effective tetravalent vaccine has not been developed till 
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date. A comprehensive review on this topic is by Durbin and Whitehead [8.33].   The most 

recent clinical trial of the vaccine developed against dengue by Sanofi Pasteur researchers 

showed promising results against dengue virus of serotypes DEN1, DEN3 and DEN4, but, 

proved ineffective against DEN2 [8.34].  

The goal of this research is to design or suggest a minimal set of immunogens capable 

of inducing a robust and sustained immune response through computational approach. The 

potential of this new strategy is illustrated in this thesis for the development of a vaccine 

against all the four serotypes of dengue virus. Especially, for a particular pathogen (such as 

virus), which may prevail in different forms of serotypes, (as in the case of dengue 1 to 4 

viral strains) with genomic variability as well as common genomic features, finding such 

common genomic information of a serogroup may be useful in knowing epitopal details for 

designing unique vaccines for the immunity across multiple serotypes. 

8.6    Limitations of Rational Vaccine Design 

   A limitation of rational vaccine design is that it models only short biological 

sequences, which often does not work so effectively as vaccine prepared from an 

live pathogen  

   Under certain conditions immunogenic epitopes can do more harm than good and 

might therefore be considered pathogenic. the specific removal of such pathogenic 

epitopes from vaccines might increase their prophylactic potential, while 

minimizing the risk of side-effects from vaccine use. [8.35] 

 

8.7  Closure 
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Despite the overall success of vaccination efforts in this modern era, there is still a 

great need for completely new and improved old vaccines. The predictive accuracies of the 

computational methods increase as more data and knowledge about the mechanisms of 

immune response become available. Therefore, rational vaccine design can be expected to 

become a common approach in immunology laboratories in the future. However, the 

predictions of rational vaccine design should always be confirmed by biological 

experiments before conclusions are drawn. 
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CHAPTER IX 

INFERENTIAL CONCLUSIONS AND OPEN-QUESTIONS FOR FUTURE 

RESEARCH 

9.1  General 

Summarized in this chapter are essential details on the perceived objectives of the 

research and the results obtained. Relevantly, chapter-by-chapter efforts are briefly 

revisited and corresponding outcomes of the research are enumerated. Discussions on the 

efforts indicated across various chapters are highlighted and salient conclusions are listed. 

Further, the host of possible research that can be undertaken as future efforts are identified 

along with motivating considerations. 

9.2 An Overview on the Research 

 In Chapter I, relevant to the topic of research, namely ‘Bioinformatic Analysis of 

Viral Genomic Sequences: Application to Rational Vaccine Design’, introductory details 

on the analysis of viral genomic sequences are presented along with the scope and 

objectives, motivated essentially by the considerations on elucidating subtle features in test 

sequences of certain viruses and their serotypes. Indicated thereof is the cohesive use of 

bioinformatic approaches involving entropy, energetics and spectral-domain methods to 

determine the underlying common and/or differential features across the test viral 

sequences; and, the health-science related objective is indicated to identify the salient 
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signatures that can be seen in viral sequences, which are useful in synthesizing appropriate 

vaccines. 

 To support the conceived research on the aforesaid genomic sequence analyses, the 

existing details on biological sequence information, entropic aspects of genomic structures, 

and energetic profiles of genomes and spatial spectral-domain considerations (in 

representing the genomic features) are elaborated in Chapter II. 

9.3 Viral Genome Considerations 

 Pursuant to the generic details on genomic sequence analyses reviewed in Chapters I 

and II, a directed effort exclusively to address the viral genomic features is reviewed in 

Chapter III. Basic definitions, classifications and structural aspects of viral genomes are 

presented; and, the intricate details on the double-stranded (ds-) and single-stranded (ss-) 

DNA genomes are described. Specifically, particulars concerning ssDNA of Parvovirus 

B19V and ssRNA structure of dengue viral serotypes (DEN1, DEN2, DEN3 and DEN4) 

are considered. The existence of multiple strains or serotypes implicating anti-viral vaccine 

design is outlined. 

 For the purpose of research pursued, the aforementioned Parvovirus B19V and the 

serotypes of dengue virus are regarded as test species throughout the study. 

9.4  Viral Genome Analysis: Entropic Considerations 

Consistent with the scope, objectives and the suite of test-viral genomes mentioned 

above, the first research task undertaken is described in Chapter IV. It refers to applying 

entropy considerations (in Shannon’s sense) to extract the genetic information that prevails 



   

171 

in the test sequences. The methods pursued and results obtained in Chapter IV thereof, are 

concerned with the following:  

 Applying various statistical distance/divergence methods (such as Kullback-Leibler 

(KL) measure) and Shannon’s information redundancy (R) considerations to the 

test genomic sequences 

 Revisiting various entropy concepts and statistical ordering of residue structures in 

their sequences, so as to identify both parametric and non-parametric divergence 

matrices compatible for: (i) discriminating informative and non-informative sub-

segments in a sequence; and (ii) elucidating similar/dissimilar features across a set 

of sequences 

 Finding splice-junctions between codon-noncodon segments in line with earlier 

studies due to Arredondo and Neelakanta [9.1]: Specifically, a new approach is 

indicated to describe the fuzzy transitions at the splice-junctions in terms of a 

spatial jitter algorithm 

 Predicting splice-junctions (canonical and cryptic versions) in viral sequences: The 

possibility of aberrant splice-junctions appearing in viral sequences as a result of 

mutation is indicated with reference to DEN1 virus taken as a case-study example. 

Hence, the complete locations of splice-junctions in DEN1 viral sequence are 

identified and compared with NCBI GenBank data along with the presence of 

cryptic sites depicting fuzzy subspaces 
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 Extending the concept of information-theoretic description of genomic statistics in 

terms of Shannon’s information redundancy factor (R): Relevant results on DEN1-

DEN4 viral sequences are presented in Chapter VII 

   Deducing the efficacy of information-theoretic approach to identify CpG islands: 

Relevant computational methodology and results are presented with respect to 

Parvovirus B19V ssDNA, invoking mutual entropy measures such as Jensen-

Shannon measure 

9.5  Viral Genome Analysis: Energetics Considerations 

The devoted effort in Chapter V is concerned with a method to deduce genetic 

statistical features using the underlying parametric details in genome sequences. 

Specifically, the parametric profile considered refers to the inherent minimum potential-

specific energetics that can be seen across the sequence, wherein the positions of the 

entities in the set {A, T, G, C} present themselves to attain the minimum potential energy 

states, so as to guarantee stability of the system. For example, considering an ssDNA, 

wherein no complementary strand is present (to facilitate the Watson-Crick (WC) pairing 

and hence, the associated energy minimization), such ssDNA structures “bend” themselves 

into different forms (like hairpin bends, loops, bulges etc.), so that the WC matching and 

related palindromic signatures are eventually sustained. 

In order to apply such free-energy dynamics of nearest-neighbor nucleotides, the 

Parvovirus B19V ssDNA is considered; and, the statistics of nearest-neighbor (NN) energy 

profile is invoked to locate the sites of loop, hairpin and bulge formations along the 
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sequence. Normally, either dot-plot or Nussinov algorithms are used to determine the 

secondary structural features of ssRNA/ssDNA. In context, the present study uses a new 

method based on the statistics of NN-E energy and statistical divergence methods to 

determine the hairpin bend/bulges in the test sequence. This method is relatively simple in 

its computational procedure. The results agree with available data [], demonstrating the 

efficacy of the method pursued. 

9.6  Viral Genome Analysis: Fourier Spectral Characteristics 

Another method of making use of parametric value representation of a genomic 

sequence is concerned with deducing the Fourier transform of the parametric values 

(numerical) assigned to the residues in the sequence; and, extracting the spectral features is 

based on short-term Fourier transform (STFT) method. Hence, considering the DEN1 

genome sequence, appropriate spectral-domain results are obtained as discussed in Chapter 

VI. The parametric/numerical data adopted thereof conform to the so-called electron-ion 

interaction potential (EIIP) values as advocated in [9.2]. The methodology of such 

(parametric domain)-to-(Fourier domain) conversion and relevant computations forms the 

gist of efforts addressed in Chapter VI. 

9.7  Cohesive Analysis of Genomic Sequences 

Considering cohesively all the three methods of genomic sequence analysis using 

entropy, energetics and Fourier transform technique, a comprehensive approach is detailed 

in Chapter VII to compare the four test sequences of DEN1-DEN4 viruses. Hence, the 

obtained portal of data mining has enabled finding distinguishable details buried across 



   

174 

them. Using the results so obtained, the common proteins across all the four viral strains 

are deduced via the motifs specified by the BLAST tool. 

In the existing literature, rigorous computational search on such data-mining is not 

available to obtain probabilistically the most common motif structures across a set of 

genomes like dengue serotypes. Hence, the approach of deducing common proteins across 

the four test genomes as identified in this study is novel and useful as a viable framework 

in designing a single vaccine for all the four serotypes, coping with the diversity seen 

across a single virus. 

9.8 Vaccine Design Considerations 

The principle of vaccine design, related existing methods and futuristic considerations 

are reviewed and described in Chapter VIII. It is of a comprehensive review on the related 

topics of interest. The question of rational vaccine design is also considered vis-à-vis the 

proposed efforts of the present study. 

9.9 Scope for Future Studies 

Motivated by the needs to address DNA/RNA analysis specific to viral species, the 

present study is developed with the objectives and the scope outlined earlier. Concurrently, 

researched in this study are the prospects of developing vaccines from the data-mined 

details and the associated meta-learning frameworks of viral sequence analysis in the 

contexts of vaccine designs. 
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The possible topics that can be considered as viable for future research can be 

identified in terms of the associated open-questions. Relevantly, the following research 

topics are indicated for future studies: 

   Though the entropy method is adopted in the present study on viral sequences, yet, 

another similar parallel analysis can be undertaken by applying Fisher linear-

discriminant method. Relevant approach is indicated by Arredondo in [9.3] to 

identify the CDS in ssDNA. More elaborate pursuits and fuzzy considerations 

pertinent to cryptic splice-junctions, untranslated region (UTR) etc. need to be 

investigated further 

   There are a host of viruses for which vaccine designs are imminent. For example, 

the rationale for epitope-based vaccine design against sapovirus is predicted in 

[9.4], where, T- and B- cell epitopes are predicted on the capsid protein of 

sapovirus by immuno-informatics approach. Relevant proteomic level studies for 

example, homology modeling of the 3D-structure of sapovirus capsid proteins and 

the related similar folding-patterns exhibited by norovirus and vesivirus can be 

attempted as adjunct bioinformatic study on viruses 

   In order to predict epitopes from a set of proteins (for example HBx) for vaccine 

designs, computer-aided approach as in [9.5] can be considered and applied across 

various viral species. Essentially, the maximum expression of sequence can be 

ascertained via codon and CpG optimization efforts; and relevant modeling plus 
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pattern searching. It enables the identification of helix, sheets and turns that carry 

the predicted epitopes 

    As indicated in the present study, given the results on a sequence obtained by 

different methods (such as entropy, energetic and Fourier transform), such results 

can be assessed by logistically regressing them using a logit function. Applying 

logistic regression on multiple data mined via different techniques on a specific 

framework (like a biological sequence) has to be studied further. Specifically, 

obtaining an upper and lower bound on the combined data as considered in the 

present study needs more efforts 

    For local analysis of short-segments, use of wavelet transform (discrete or 

continuous) can be considered. For example, the wavelet transform of “DNA walk” 

constructed from a genomic sequence [9.6], wavelet-based fractal analysis of DNA 

sequences [9.7], signal representation of DNA sequences using Haar representation 

[9.8], wavelet analysis of DNA sequences using integer representation [9.9] etc. can 

be applied to the analyses of sequences in virology context 

    More ways of numerical sequence construction using nucleotide and/or amino-acid 

related physic-chemical parameters can be attempted (for analysis using Fourier 

transform etc.). For example, relative mutability of amino acids can be a new 

candidate for the said analysis  
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9.10  Closure 

This study is mainly concerned with bioinformatic analyses exclusively on the genetic 

features of viruses. Though not addressed, corresponding proteomic efforts may also yield 

fortifying results. Since this research is of debut effort, more research needs to be 

undertaken on the related issues. Nevertheless, the studies addressed here can be considered 

as seed efforts for futuristic research. 



   

178 

CHAPTER X 

 

EXECUTIVE SUMMARY 

 

Avenues of using traditional bioinformatic algorithm to explore their applications 

exclusively for genomic sequences of viruses form the thematic scope of this research. 

Hence, known concepts of entropy methods, energetic concepts and Fourier transform 

techniques are invoked and applied to a set of test viral genome sequences. Considered 

thereof, are ssDNA sequence pertinent to Parvovirus B19V and ssRNA sequences of 

dengue viral serovar. The motivating aspect of this study is concerned with eventual 

identification of structural features in such sequences that correspond to viable epitopes; 

and, these epitopes could be considered as promising signatures for vaccine designs. 

10.1 An Overview on the Research 

 In Chapter I, relevant to the topic of the research, namely ‘Bioinformatic Analysis of 

Viral Genomic Sequences: Application to Rational Vaccine Design’, introductory details 

on the analysis of viral genomic sequences are presented along with the scope and 

objectives motivated essentially by considerations on elucidating subtle features in test 

sequences of certain viruses and their serotypes. Hence, indicated thereof is the cohesive 

use of bioinformatic approaches involving entropy, energetics and spectral-domain 

methods to determine the underlying common and/or differential features across the test 

viral sequences; and, the health-science related objective is posed to identify the salient 
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signatures that can be seen in the viral sequences, which can be useful in synthesizing 

appropriate vaccines. 

Commensurate with the scope and motivations of the research outlined above, the 

specific bioinformatic exercises carried out are as follows:  

 A comprehensive survey on genomic sequence details pertinent to viral species 

 An outline description of the sequence features of the test entities 

 Formulating and applying entropy-based statistical divergence techniques for test 

sequence analyses 

 Identifying unique features such as bends, bulges. loops etc. in a test sequence using 

the entropy concept 

 Specifying the residues of the test sequences in terms of numerical characteristics 

such as nearest-neighbor interaction potential (NN-E) and analyzing the new 

format of sequences in terms of the NN-E profile 

 Representing the residues in terms of electron-ion interaction potential (EIIP) 

values and analyzing the resulting numerical sequence in the Fourier transform 

domain so as to elucidate the underlying characteristics 

 Combining all the aforesaid methods (based on entropy, energetics and Fourier 

transform) and cohesively obtain common signature details of the test sequences. 

For example, such a cohesive analysis leads to finding the most probable common 
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attributes among the diverse serovar sequences of dengue virus. The common 

features so deduced are applied to data-mining of the associated protein information 

useful in conceiving epitope format for vaccine design. The methodology used to 

combine the results of three different methods as above relies on the classical 

technique of logistic regression. However, more considerations are emphasized in 

specifying an upper bound and lower bound on the logistically regressed data using 

Langevi-Bernoulli expression as the logit function 

 Lastly, a review on rational vaccine design is presented consistent with the general 

theme and results of the present theme 

The outcome of this research study is deliberated in the following publications 

referenced as [10.1 – 10.3]: 

     Fuzzy Splicing in Precursor-mRNA Sequences: Prediction of Aberrant Splice-

junctions in Viral DNA Context, Journal of  Biomedical Science and Engineering 

(JBiSE), vol. 4, no. 4, April 2011 

     Information-theoretic Algorithms in Bioinformatics and Bio- /Medical-imaging: A 

Review, Proceedings of the IEEE International Conference on Recent Trends in 

Information Technology (IEEE ICRTIT), Chennai, India, pp. 183-188, June 2011 

     Computation of Entropy and Energetics Profiles of a Single- stranded Viral DNA, 

International Journal of Bioinformatics Research and Applications (IJBRA), vol. 7, 

no. 3, pp. 239-261, August 2011 
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     A Cohesive Analysis of DNA/RNA Sequences via Entropy, Energetics and 

Spectral-domain Methods to Assess Genomic Features Across Single Viral 

Diversity, International Journal of Bioinformatics Research and Applications 

(IJBRA), (Under Review) 

     The snippets of the code for the entire dissertation are available at: 

           https://sites.google.com/site/bioinformaticanalysis/ 
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