You are here

Microservices-based approach for Healthcare Cybersecurity

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Healthcare organizations, realizing the potential of the Internet of Things (IoT) technology, are rapidly adopting the technology to bring signi cant improvements in the quality and e ectiveness of the service. However, these smart and interconnected devices can act as a potential \back door" into a hospital's IT network, giving attack- ers access to sensitive information. As a result, cyber-attacks on medical IoT devices have been increasing since the last few years. It is a growing concern for all the stakeholders involved, as the impact of such attacks is not just monetary or privacy loss, but the lives of many patients are also at risk. Considering the various kinds of IoT devices one may nd connected to a hospital's network, traditional host-centric security solutions (e.g. antivirus, software patches) are at odds with realistic IoT infrastructure (e.g. constrained hardware, lack of proper built-in security measures). There is a need for security solutions which consider the challenges of IoT devices like heterogeneity of technology and protocols used, limited resources in terms of battery and computation power, etc. Accordingly, the goals of this thesis have been: (1) to provide an in-depth understanding of vulnerabilities of medical IoT devices; (2) to in- troduce a novel approach which uses a microservices-based framework as an adaptive and agile security solution to address the issue. The thesis focuses on OS Fingerprint- ing attacks because of its signi cance for attackers to understand a target's network. In this thesis, we developed three microservices, each one designed to serve a speci c functionality. Each of these microservices has a small footprint with RAM usage of approximately 50 MB. We also suggest how microservices can be used in a real-life scenario as a software-based security solution to secure a hospital's network consisting of di erent IoT devices.
Title: Microservices-based approach for Healthcare Cybersecurity.
150 views
68 downloads
Name(s): Trivedi, Ohm H., author
Shankar, Ravi, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 136 p.
Language(s): English
Abstract/Description: Healthcare organizations, realizing the potential of the Internet of Things (IoT) technology, are rapidly adopting the technology to bring signi cant improvements in the quality and e ectiveness of the service. However, these smart and interconnected devices can act as a potential \back door" into a hospital's IT network, giving attack- ers access to sensitive information. As a result, cyber-attacks on medical IoT devices have been increasing since the last few years. It is a growing concern for all the stakeholders involved, as the impact of such attacks is not just monetary or privacy loss, but the lives of many patients are also at risk. Considering the various kinds of IoT devices one may nd connected to a hospital's network, traditional host-centric security solutions (e.g. antivirus, software patches) are at odds with realistic IoT infrastructure (e.g. constrained hardware, lack of proper built-in security measures). There is a need for security solutions which consider the challenges of IoT devices like heterogeneity of technology and protocols used, limited resources in terms of battery and computation power, etc. Accordingly, the goals of this thesis have been: (1) to provide an in-depth understanding of vulnerabilities of medical IoT devices; (2) to in- troduce a novel approach which uses a microservices-based framework as an adaptive and agile security solution to address the issue. The thesis focuses on OS Fingerprint- ing attacks because of its signi cance for attackers to understand a target's network. In this thesis, we developed three microservices, each one designed to serve a speci c functionality. Each of these microservices has a small footprint with RAM usage of approximately 50 MB. We also suggest how microservices can be used in a real-life scenario as a software-based security solution to secure a hospital's network consisting of di erent IoT devices.
Identifier: FA00013140 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cybersecurity
Healthcare
Internet of things--Security measures
Medical care--Information technology--Security measures
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013140
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.