You are here

Machine Learning Methods to Understand Textual Data

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The amount of textual data that produce every minute on the internet is extremely high. Processing of this tremendous volume of mostly unstructured data is not a straightforward function. But the enormous amount of useful information that lay down on them motivate scientists to investigate efficient and effective techniques and algorithms to discover meaningful patterns. Social network applications provide opportunities for people around the world to be in contact and share their valuable knowledge, such as chat, comments, and discussion boards. People usually do not care about spelling and accurate grammatical construction of a sentence in everyday life conversations. Therefore, extracting information from such datasets are more complicated. Text mining can be a solution to this problem. Text mining is a knowledge discovery process used to extract patterns from natural language. Application of text mining techniques on social networking websites can reveal a significant amount of information. Text mining in conjunction with social networks can be used for finding a general opinion about any special subject, human thinking patterns, and group identification. In this study, we investigate machine learning methods in textual data in six chapters.
Title: Machine Learning Methods to Understand Textual Data.
393 views
348 downloads
Name(s): Sohangir, Sahar, author
Wang, Dingding, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 133 p.
Language(s): English
Abstract/Description: The amount of textual data that produce every minute on the internet is extremely high. Processing of this tremendous volume of mostly unstructured data is not a straightforward function. But the enormous amount of useful information that lay down on them motivate scientists to investigate efficient and effective techniques and algorithms to discover meaningful patterns. Social network applications provide opportunities for people around the world to be in contact and share their valuable knowledge, such as chat, comments, and discussion boards. People usually do not care about spelling and accurate grammatical construction of a sentence in everyday life conversations. Therefore, extracting information from such datasets are more complicated. Text mining can be a solution to this problem. Text mining is a knowledge discovery process used to extract patterns from natural language. Application of text mining techniques on social networking websites can reveal a significant amount of information. Text mining in conjunction with social networks can be used for finding a general opinion about any special subject, human thinking patterns, and group identification. In this study, we investigate machine learning methods in textual data in six chapters.
Identifier: FA00013107 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Machine learning
Internet--Data processing
Text Mining
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013107
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.