You are here

The Effects of MsrA and MsrB in Anoxia Tolerance in Aging Drosophila melanogaster

Download pdf | Full Screen View

Date Issued:
2018
Summary:
Drosophila melanogaster tolerates several hours of anoxia (the absence of oxygen) by entering a protective coma. A burst of reactive oxygen species (ROS) is produced when oxygen is reintroduced to the cells. ROS causes oxidative damage to critical cellular molecules, which contribute to aging and development of certain agerelated conditions. The amino acid, methionine, is susceptible to oxidation, although this damage can be reversed by methionine sulfoxide reductases (Msr). This project investigates the effect of Msr-deficiency on anoxia tolerance in Drosophila throughout the lifespan of the animal. The data show that the time for recovery from the protective comma as well as the survival of the animals lacking any Msr activity depends on how quickly the coma is induced by the anoxic conditions. Insight into the roles(s) of Msr genes under anoxic stress can lead us to a path of designing therapeutic drugs around these genes in relation to stroke.
Title: The Effects of MsrA and MsrB in Anoxia Tolerance in Aging Drosophila melanogaster.
67 views
27 downloads
Name(s): Suthakaran, Nirthieca, author
Binninger, David, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Medicine
Department of Biomedical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 79 p.
Language(s): English
Summary: Drosophila melanogaster tolerates several hours of anoxia (the absence of oxygen) by entering a protective coma. A burst of reactive oxygen species (ROS) is produced when oxygen is reintroduced to the cells. ROS causes oxidative damage to critical cellular molecules, which contribute to aging and development of certain agerelated conditions. The amino acid, methionine, is susceptible to oxidation, although this damage can be reversed by methionine sulfoxide reductases (Msr). This project investigates the effect of Msr-deficiency on anoxia tolerance in Drosophila throughout the lifespan of the animal. The data show that the time for recovery from the protective comma as well as the survival of the animals lacking any Msr activity depends on how quickly the coma is induced by the anoxic conditions. Insight into the roles(s) of Msr genes under anoxic stress can lead us to a path of designing therapeutic drugs around these genes in relation to stroke.
Identifier: FA00013046 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Drosophila melanogaster
Methionine Sulfoxide Reductases
Anoxia
Aging
Oxidative stress
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013046
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.