You are here
Quantum Circuits for Symmetric Cryptanalysis
- Date Issued:
- 2018
- Abstract/Description:
- Quantum computers and quantum computing is a reality of the near feature. Companies such as Google and IBM have already declared they have built a quantum computer and tend to increase their size and capacity moving forward. Quantum computers have the ability to be exponentially more powerful than classical computers today. With this power modeling behavior of atoms or chemical reactions in unusual conditions, improving weather forecasts and traffic conditions become possible. Also, their ability to exponentially speed up some computations makes the security of todays data and items a major concern and interest. In the area of cryptography, some encryption schemes (such as RSA) are already deemed broken by the onset of quantum computing. Some encryption algorithms have already been created to be quantum secure and still more are being created each day. While these algorithms in use today are considered quantum-safe not much is known of what a quantum attack would look like on these algorithms. Specifically, this paper discusses how many quantum bits, quantum gates and even the depth of these gates that would be needed for such an attack. The research below was completed to shed light on these areas and offer some concrete numbers of such an attack.
Title: | Quantum Circuits for Symmetric Cryptanalysis. |
227 views
120 downloads |
---|---|---|
Name(s): |
Langenberg, Brandon Wade, author Steinwandt, Rainer, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Mathematical Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2018 | |
Date Issued: | 2018 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 54 p. | |
Language(s): | English | |
Abstract/Description: | Quantum computers and quantum computing is a reality of the near feature. Companies such as Google and IBM have already declared they have built a quantum computer and tend to increase their size and capacity moving forward. Quantum computers have the ability to be exponentially more powerful than classical computers today. With this power modeling behavior of atoms or chemical reactions in unusual conditions, improving weather forecasts and traffic conditions become possible. Also, their ability to exponentially speed up some computations makes the security of todays data and items a major concern and interest. In the area of cryptography, some encryption schemes (such as RSA) are already deemed broken by the onset of quantum computing. Some encryption algorithms have already been created to be quantum secure and still more are being created each day. While these algorithms in use today are considered quantum-safe not much is known of what a quantum attack would look like on these algorithms. Specifically, this paper discusses how many quantum bits, quantum gates and even the depth of these gates that would be needed for such an attack. The research below was completed to shed light on these areas and offer some concrete numbers of such an attack. | |
Identifier: | FA00013010 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2018. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Quantum computing Cryptography Cryptanalysis Data encryption (Computer science) Computer algorithms |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013010 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |