You are here
A Low-Level USV Controller Incorporating an Environmental Disturbance Observer
- Date Issued:
- 2018
- Summary:
- Modeling, system identification and controller design for a 16’ catamaran is described with the objective of enhanced operation in the presence of environmental disturbances including wind, waves and current. The vehicle is fully-actuated in surge, sway and yaw degrees of freedom. Analytical and experimental system identification is carried out to create a numerical model of the vehicle. A composite system of a Multiinput multi-output Proportional-Derivative (PD) controller and a nonlinear disturbance observer is used for station-keeping and transiting modes of operation. A waypoint transiting algorithm is developed to output heading and cross-track error from vehicle position and waypoints. A control allocation method is designed to lower azimuthing frequency and incorporate angle saturation and rate limits. Validation is achieved with improvement in simulation with the addition of the nonlinear observer.
Title: | A Low-Level USV Controller Incorporating an Environmental Disturbance Observer. |
182 views
135 downloads |
---|---|---|
Name(s): |
Diddams, Michael Albert, author Dhanak, Manhar R., Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2018 | |
Date Issued: | 2018 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 89 p. | |
Language(s): | English | |
Summary: | Modeling, system identification and controller design for a 16’ catamaran is described with the objective of enhanced operation in the presence of environmental disturbances including wind, waves and current. The vehicle is fully-actuated in surge, sway and yaw degrees of freedom. Analytical and experimental system identification is carried out to create a numerical model of the vehicle. A composite system of a Multiinput multi-output Proportional-Derivative (PD) controller and a nonlinear disturbance observer is used for station-keeping and transiting modes of operation. A waypoint transiting algorithm is developed to output heading and cross-track error from vehicle position and waypoints. A control allocation method is designed to lower azimuthing frequency and incorporate angle saturation and rate limits. Validation is achieved with improvement in simulation with the addition of the nonlinear observer. | |
Identifier: | FA00013022 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2018. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Unmanned surface vehicles Environmental disturbances Catamarans--Design and construction |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013022 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |