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ABSTRACT
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Melanoma, a severe and life-threatening skin cancer, is commonly misdiag-

nosed or left undiagnosed. Advances in artificial intelligence, particularly deep learn-

ing, have enabled the design and implementation of intelligent solutions to skin lesion

detection and classification from visible light images, which are capable of performing

early and accurate diagnosis of melanoma and other types of skin diseases. This work

presents solutions to the problems of skin lesion segmentation and classification. The

proposed classification approach leverages convolutional neural networks and transfer

learning. Additionally, the impact of segmentation (i.e., isolating the lesion from the

rest of the image) on the performance of the classifier is investigated, leading to the

conclusion that there is an optimal region between “dermatologist segmented” and

“not segmented” that produces best results, suggesting that the context around a

lesion is helpful as the model is trained and built. Generative adversarial networks,

in the context of extending limited datasets by creating synthetic samples of skin

lesions, are also explored. The robustness and security of skin lesion classifiers us-

ing convolutional neural networks are examined and stress-tested by implementing

adversarial examples.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Skin diseases can be categorized into many di↵erent classes and subclasses (Fig-

ure 1.1). Melanoma is a potentially fatal form of skin cancer which is often mis-

diagnosed as benign or left undiagnosed. In 2018, it is estimated that there will

be 91,270 new cases of melanoma reported and an estimated 9,320 lives lost in the

United States [221]. One in 27 men and one and 42 women are predicted to develop

melanoma in their lifetimes [221], up from 1:33 and 1:52, respectively, in 2016 [220].

The direct economic cost of melanoma treatment is reported to be over $3.3 million

dollars in the US annually [123]. The indirect cost of melanoma (premature mortality)

is much higher and is estimated to be over $3 billion [124]. Early detection, in addition

to saving lives, could help to lower these costs.

Despite the dour outlook, a melanoma diagnosis is not necessarily a fatal diagnosis.

Early detection can increase life expectancy [110]. Patients receiving an early diag-

nosis have a 98% 5Year relative survival rate, whereas if diagnosed in later stages,

a patient has only a 17% survival rate [220]. Early detection is vital; the lives of

patients are at the mercy of an accurate diagnosis.

Dermatologists have developed guidelines to improve the diagnosis of skin le-

sions, such as: the ABCD rule [183], the 7-point checklist [59], and the CASH algo-

rithm [129]. Though these methodologies may aid with diagnosis, they are imperfect

and subjective. Dermatologists often rely on personal experience and evaluate lesions

on a case-by-case basis. When inspecting a lesion, a dermatologist will often take into
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Figure 1.1: Skin Lesion Taxonomy. Figure from Esteva et al. [104].
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account the patient’s local lesion pattern in comparison to the entire body [112]. As

a result, without any computer-based assistance, the clinical diagnosis true positive

rate for melanoma detection is reported to be around 65-80% [60]. If dermoscopic

images are used and the professional has received formal education [71], the diagnosis

of skin lesions may be improved by 5-30% [113]. However, the reality is that the

visual di↵erences between benign and melanoma skin lesions can be extremely subtle

(Figure 2.5) and di↵erentiating between benign and melanoma skin lesions can be

exceptionally di�cult, even for trained professionals, and thus the success of these

methods is limited [60, 149, 238].

Due to the severity of melanoma, the significance of early diagnosis, the shortage of

trained professionals in some regions [63, 76], and the less than perfect un-aided clas-

sification methods, there exists a strong motivation to develop and utilize computer

aided diagnosis (CADx) systems to aid in the classification of skin lesions. In this

work, we are interested in investigating such system, specifically, an intelligent medi-

cal imaging-based skin lesion diagnosis system which would help determine whether

a dermoscopic image of a skin lesion contains a malignant or benign skin lesion.

1.2 PROBLEM STATEMENT

The fundamental problem addressed by this thesis can be stated as a question: How

to use the latest developments in deep learning to implement a two-class classifier that

is capable of examining an image containing a skin lesion and predicting an outcome

(malignant or benign) with a high enough degree of confidence to enhance current

early melanoma detection methods?

More specifically, it is desirable to have an intelligent model of how malignant skin

lesions di↵er from benign ones and use such model to predict – based on a photo of a

suspicious mole or patch – the occurrence of malignant skin lesions and other types

of diseases that would require medical assistance.
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1.3 MAIN CONTRIBUTIONS

The main contributions of this thesis include:

• Review of the state-of-the-art methodologies, challenges, and opportunities for

using deep learning techniques and architectures in dermatology.

• Design, implementation, and evaluation of multiple fully functional solutions

for skin lesion classification.

• Implementation of an approach to skin lesion classification using transfer learn-

ing1.

• Investigation of the e↵ects of segmentation on skin lesion classification2.

• Systematic study of the degree to which segmentation may benefit skin lesion

classification using convolutional neural networks3.

• Investigation of adversarial examples and how they may challenge skin lesion

classification systems.

1.4 OVERVIEW OF THESIS

This thesis is structured as follows: Chapter 2 presents background information and

related work in the areas of dermatology, skin lesion classification using deep learning,

and the intersection of the two as artificial intelligence in a medical setting. Chapter

3 describes implementation details used to address the stated problem, describing the

architecture choices used to classify skin lesions. Chapter 4 presents the results, and

their interpretation, of several experiments conducted to test hypotheses related to

1
This contribution was the central theme of a refereed paper, published and presented at IASTED

BioMed 2017, Innsbruck, Austria, Feb 2017 [167]

2
This contribution was the central theme of a refereed paper, published and presented at SIIM

2017, Pittsburgh, PA, June, 2017 [77]

3
This contribution was the central theme of a refereed paper, published in the Journal of Digital

Imaging, 2017 [78]
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the thesis’s objective. Chapter 5 includes ongoing experiments on adversarial exam-

ples, segmentation using fully convolutional networks, and synthetic skin lesion image

generation using generative adversarial networks. Chapter 6 contains concluding re-

marks and suggestions for future work.

5



CHAPTER 2

BACKGROUND, CONTEXT AND RELATED WORK

This chapter begins by providing a high-level overview of artificial intelligence in the

medical setting. A brief overview of medical image analysis and dermatology, specif-

ically related to skin lesions, is presented. The problem of skin lesion classification

and the current related publications are presented. Relevant resources, such as public

datasets, are introduced.

2.1 BACKGROUND

2.1.1 AI and Healthcare

Artificial intelligence (AI) is a broad term, encapsulating many technologies, that is

steadily being integrated into industrial settings. The majority share of AI funding

is currently being invested in the health care sector (see figure 2.1), where 1.5 Billion

dollars have been invested in nearly 190 health care focused AI startups in the previous

five years [2]. One third of the healthcare start ups receiving funding after January

2015 were working in imaging and diagnostics [2].

There are many promising, and sometimes surprising, use cases for AI in medi-

cal imaging and diagnostics. Some recent advancements include: retinal images to

predict cardiovascular risk factors [200], identifying diabetic retinopathy from reti-

nal fundus photographs [121], identifying tumors from pathology slides [164], and

detecting tuberculosis on chest radiographs [156].

Despite the promise and excitement of AI in healthcare and deep learning in

general (see Garnter hype cycle in Figure 2.2), AI does not always bring positive
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Figure 2.1: Map of start up companies in the AI+Healthcare field. Figure from [17].
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Figure 2.2: 2017 Gartner Hype Cycle indicating deep learning is at the peak of inflated

expectations. Gartner predicts Deep Learning will hit the plateau in 2-5 years. [1]
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sentiment. There is speculation and concerns regarding the integration of AI into the

medical industry, and to what capacity AI should be used [219].

2.1.2 Will AI replace MD?

One of the first concerns mentioned regarding the use of AI in the health care sector

is that AI will replace current professionals, decreasing the overall number of jobs.

Obermyer et al. [186] note that the ability to transform data into knowledge will

a↵ect at least three areas of medicine: (i) improving prognosis (ii) displacing the work

of radiologists and anatomical pathologists and (iii) improving diagnostic accuracy.

Some welcome this technology and cite that the complexity of medicine exceeds the

current capacity of the human mind. They argue that medical decisions have become

maddeningly complex and that doctors are not able to reliably evaluate the patients as

much as they would hope, leading to dissatisfaction and burnout among doctors [187].

Even though the replacement of medical doctors with AI has yet to be an im-

mediate and direct issue, it may be advantageous for these specialties most at risk

of automation to begin strategically planning for the future in which AI is a part of

the health care workforce. A role of a “information specialist” is suggested [141] in

which their responsibility would be less focused on the extraction of information from

images and histology, but rather shifted to focus on management and interpretation

of the information extracted by AI.

Regardless of displacement, AI in medicine should be considered an asset, as part

of the collective team. Current prognostic models are restricted to only a handful

of variables, but AI will be able to use far more variables. In addition to handling

far larger and more complex data than humans, AI o↵ers several advantages for

radiology and other medical image domains: (i) rules are created by the algorithm,

which may pick up on a connection a physician may not have been trained to notice

(ii) AI combines predictors in interactive and nonlinear ways (iii) AI is not a↵ected by
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human emotions, fatigue, or distractions and (iv) AI will increase dramatically over

time with the inclusion of larger datasets, more experience, and greater computing

power [87]. These systems, if used responsibly (in addition to, as opposed to in place

of, medical professionals) have the potential to greatly improve diagnosis rates.

2.1.3 Additional Related Concerns

Two main concerns beyond whether AI will replace doctors are that AI is a “black

box”, that AI is unable to describe its rationale, and that the use of AI presents

ethical concerns. These are both valid concerns and are outlined below.

AI as a Black Box - Why did some program identify an individual as at-risk for

disease X ? Why did some other program identify a skin lesion as malignant? These are

important considerations with potentially life altering consequences. Certain artificial

technologies, particularly those using neural networks, are not able to fully explain

why one outcome is produced over another. Though confidence levels for a prediction

can be produced, this still will not explicitly answer why an outcome was produced.

For example, in the image domain, visuals that indicate an input’s (pixel’s) relative

importance may be produced to help determine which parts of an image were most

important when evaluating an image. However, current visuals are far from perfect.

Two examples of such visualizations include: producing a heatmap-like figure of which

pixels are considered most important (such as shown in Rajpurkar et al. using chest

x-rays for pneumonia detection [201]) and saliency maps (such as shown in Esteva et

al. using dermoscopic images to classify skin lesions [104]). Though these methods

may help point to which parts of an input are most important, they do not fully

explain the rationale for the output. This is an active area of research [188, 194] and,

most notably, tools such as LIME [206] are being developed in attempt to automate

and improve this process.

Ethical Concerns - In order to discuss ethical concerns, questions are presented re-
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garding an example application (a skin lesion classification program that tells whether

a skin lesion is benign or malignant) used by the general public.

Once in the hands of the general public, how will a person respond when they

discover they have a malignant lesion? How will their mental state change? What

life changing decisions will they make? Ideally, they will visit their doctor and have

the issue addressed immediately. What if this is not possible? Will their mental

health improve or degrade with this knowledge?

In a more realistic scenario, this type of app will not be perfect. What if an

individual using the proposed app (despite warnings, end-user licensing agreements,

and disclaimers) assumes that the app is accurate and reliable enough and opts to

use this app rather than visit a dermatologist to examine a suspicious skin lesion?

What if the application incorrectly returns benign for a malignant image? These

are important considerations that would need to be addressed before an app is made

widely available.

Both main concerns, that AI is a ”black box” and that medical doctors will be re-

placed by machines are valid. Additional concerns around ethics may be more impor-

tant and immediate given the rate of adaption of AI in the hands of consumers [171].

The above concerns should not hinder the progress or artificial intelligence in

a medical setting. The prospect of artificial intelligence should be framed as an

additional check in which a trained professional will use the technology to augment

their own expertise rather than as a stand-alone solution that directly interacts with

the general population. It may be more appropriate to consider AI as Augmented

Intelligence as the use of artificial intelligence in a clinical setting should not be

considered AI vs MD, but rather MD with AI assistance vs MD without AI assistance.
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2.2 CONTEXT

2.2.1 Medical Image Analysis

In this work, when discussing medical image analysis, we are not concerned with the

physics of imaging, the image instrumentation, or the image acquisition and recon-

struction process. Rather, we are concerned with the analysis, modeling, and appli-

cation of the image in addition to the knowledge base and physiology of the domain.

Though advances in medical image analysis have led to many algorithms in com-

mercial settings that solve medical image analysis tasks with su�cient performance

(accuracy, reliability, speed), there still exist challenges that motivate the ongoing

development of more accurate, reliable, and faster algorithms that are dedicated to

specific applications [240].

2.2.2 Medical Image Analysis using Machine Learning and Deep Learning

Deep Learning, a subset of machine learning which is a subset of artificial intelligence,

encompasses many di↵erent principals and domains. Recently, the performance and

adaptation of deep learning based approaches to medical image analysis has increased

performance dramatically, to the point of raising concerns around future of current

professions; such as the human radiologist [141, 239].

Figure 2.3 demonstrates how deep learning has e↵ectively merged and replaced

entire components of a classical machine learning pipeline for image analysis in a

medical setting. In a classical setting, images typically undergo:

• Segmentation – Where unnecessary information is removed from the image

• Feature Extraction – Where hand-crafted features, dictionary-based features,

and or clinically inspired features are extracted from the image

• Feature Selection – Where the most relevant features are selected
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• Classification – Where predicted label(s) are generated for the image

Many of the above listed components need to be performed as separate ML tasks

(segmentation) or even by hand (selecting which features to extract). In a deep learn-

ing pipeline, it is not uncommon to have the deep learning architecture completely

replace all these components with one deep learning architecture that performs all

stages in a supervised setting. Litjens et al. provide a recent survey on the use of

deep learning in medical image analysis [163]

Figure 2.3: Distinction between an advanced classical machine learning pipeline and

a deep learning pipeline to perform classification of skin lesion images.
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2.3 RELATED WORK

2.3.1 Dermoscopy

Despite there being no definitive non-invasive method of diagnosing melanoma, cap-

turing and analyzing an image of a patient’s skin is a common non-invasive method

of attempting to diagnose a suspicious skin lesion [120]. These images can either

be macroscopic of dermoscopic. Dermoscopic images are produced by using specialty

equipment such as cross-polarizing light filters (non-contact dermoscopy) or an oil/gel

interface (immersion contact dermoscopy) [120]. Macroscopic images are considered

images captured by more conventional systems, such as a standard camera. For a

comparison of clinical photography vs dermoscopy, please see Figure 2.4. The trade-

o↵s when considering dermoscopic images vs macroscopic images are quality and cost.

Dermoscopic images provide additional color and pattern properties [181] but may

require more e↵ort and cost to acquire, where as macroscopic images typically require

a less complex and cheaper alternative at the loss of image details. Dermoscopy has

been shown to increase diagnosis accuracy [61, 64] compared to naked-eye examina-

tion. Though the techniques discussed can be applied to either image type (dermo-

scopic or macroscopic), due to dataset availability (see Section 2.3.4) and adaption

of dermoscopy [182], we will be referring to dermoscopic images in our work.

2.3.2 Conventional Methods

Unaided Methods

Dermatologists have developed many methods relying on dermoscopic criteria to aid

in reducing the subjectivity of determining whether a skin lesion is malignant. Some

focus only on recognizing melanoma related criteria (such as the Menzies method [180]

and the 7-point checklist [59]). Others, like pattern analysis [196], focus on the

identification and their density inside the skin lesions. Yet another group combines
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Figure 2.4: Image of a malignant lesion shown by clinical photography (A), nonpo-

larized light contact dermoscopy (B), polarized light contact dermoscopy (C), and

polarized light noncontact dermoscopy (D). Figure adapted from [69]
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the dermoscopic criteria and a high-level analysis of the lesions (such as analyzing

the overall shape, size, and border of the lesion as well). Two of the most well known

methods are the ABCD [230] (later ABCDE [207]) and CASH [129]. ABCD rule

(Asymmetry, Border, Color, and Di↵erential Structure) and CASH algorithm (Color,

Architecture, Symmetry, Homogeneity). A skin lesion examined using the ABCD

method may be evaluated as follows:

• Asymmetry – a lesion is first assigned a major and minor axes and the opposite

halves are compared in terms of shape, color, and pattern, where a lesion may

receive: i) 0 points (fully symmetric), ii) 1 point (asymmetric on one axis), or

ii) 2 points (asymmetric on both axes).

• Border – a lesion is first divided into eight imaginary slices by a dermatolo-

gist. For each slice, a score is assigned depending on how abrupt the transition

from lesion to surrounding skin is. An abrupt transition receives a score of 1,

otherwise a score of 0 is assigned.

• Color Features – a lesion is assigned points corresponding to the number of

colors are counted (white, red, light brown, dark brown, blue-gray, and black).

A minimum of 1 is possible, while the highest possible is 6.

• Di↵erential structures – a lesion is assigned points for every di↵erential structure

observed (homogeneous areas, dots, globules, and streaks).

To calculate a final score, each individual score is multiplied by a weight factor

and totaled to give a final value. The value is then compared to a threshold value

and a classification is assigned. For more information on these weight factors and

threshold, please see Nashbar et al. [183].

Examining the di↵erences to skin lesions in photographs is non-trivial, even to

a trained medical doctor. Due to the subjectivity and less than ideal performance
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(a) Benign Skin Lesions

(b) Malignant Skin Lesions

Figure 2.5: Side by side comparison showing the di↵erences between malignant and

benign skin lesions from the The 2016 ISBI challenge dataset [134].

attainable by professionals, a strong motivation exists to develop and investigate the

use of computer aided diagnosis (CADx) systems, which might improve the accuracy

and sensitivity of melanoma detection methods.

Classical Machine Learning Methods

In this section, the feature extraction and classification components from the classical

machine learning pipeline (Figure 2.3) are discussed. Many classical malignant classi-

fication methods consist of 3-4 consecutive steps, usually inspired by the ABCD rule,

and often rely on hand-crafted features, such as: lesion type (primary morphology),

lesion configuration (secondary morphology), color, distribution, shape, texture, and

border irregularity measures [190].

The feature extraction phase is often performed in an attempt to mimic perfor-

mance of dermatologists by extracting dermoscopic structures like: irregular streaks

and regression structures [106], pigment network [67, 81, 95, 109, 212], granulari-
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ties [229], blue-white veil [84], dots [244], globules [109], blotches [197, 228]. Ad-

ditional works attempt to isolate and evaluate features such as pigment distribu-

tion [217], relative color histograms [108, 227], and texture descriptors [218, 247].

Systems have even been developed to mimic unaided methods such as the seven-

point checklist [96].

After feature extraction, machine learning methods, such as k-nearest neigh-

bors (kNN), Artificial Neural Networks (ANNs), like the multilayer feedforward net-

work [209], logistic regression [176], decision trees [214] and support vector machines

(SVMs) [79], are employed to to perform classification. Moderate success has been

achieved with these methods [98]. Some examples of related work using this classifi-

cation pipeline (hand-crafted features and popular classifiers) are mentioned below.

Barata et al. [68], notes these above mentioned implementations and compares

global and local features against three classifiers AdaBoost [111], SVM, and kNN.

They report that color features perform much better than texture features alone and

that both global and local features achieve promising results (slight advantage to

local).

Other works implement methodologies combining feature extraction methods and

using classifiers such as logistic regression [73] and SVMs [247]. Recently, ensemble

methods have been proposed which further examine the combination of feature ex-

tractors and and classifiers [202, 216]. There has also been work as early as 1994

which proposed using neural networks to classify skin lesions [72, 102, 199].

Though these works achieve promising results, the di�culty with these methods is

that they require hand-coded, low-level features, that may even be based on subjective

thresholds/values. Additionally, these methods typically require the lesion to be

isolated (segmented) from artifacts. This creates a scaling issue. Creating these

features is time consuming, requires expertise, and may not generalize to larger, more

diverse, datasets.
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Figure 2.6: Distinction between a classical skin lesion classification pipeline using

pre-segmented dermoscopic images in a conventional ML pipeline vs a DL pipeline.

2.3.3 Deep Learning

Recently, the emergence of deep learning has lead to the development of promising

classification methodologies. Specifically, convolutional neural networks (CNNs) [159]

have achieved promising results classifying skin lesions, capable of potentially outper-

forming medical professionals working on the same task [89, 104].

In a conventional setting, feature extraction (often with handcrafted features) is

performed before being classified by a classifier (such as an MLP or SVM). When

performing the same classification with deep learning, the feature extraction and

classification are both learned and performed as a single unit (See Figure 2.6).

Recent Implementations

Codella et al. explore using an SVM trained on features extracted from CNN (Ca↵e [142]

model pretrained on the ILSVRC 2012 dataset [154]) using transfer learning and re-

port performance on par with ensembles of low-level features [89].
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Kawahara et al. [146] explores the possibility of using a pretrained CNN as a

feature extractor, rather than training the architecture from scratch. Furthermore,

their work demonstrates that using the learned filters from a CNN pretrained on

natural images generalize to classifying 10 classes of non-dermoscopic skin images.

Fine tuning ImageNet [94] pretrained models was performed by Laio [162] in attempt

to create a universal skin disease classification system.

Codella et al. [90] reports state-of-the-art performance using an ensemble of meth-

ods including low level features like color, edge and multiscale local binary patterns,

with sparse coding (gray and RGB), pretrained-pre-trained model from the Image

Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset [210] and a Deep

Residual Network (DRN) [126].

Kawahara et al. [147], proposed a multi-resolution-tract CNN. Though they are

met with hardware constraints, the work proposes using multiple resolution inputs

to classify skin lesions where lower resolutions may provide high level features like

overall shape and high resolution inputs may provide additional low level features like

patterns within the lesion.

Esteva et al. [104] fine tune Inceptionv3 and benchmark their results on a large,

proprietary dataset, against 21 board-certified dermatologists. Their findings indicate

that their solution is capable of classifying skin lesions to a level comparable to trained

dermatologists.

Result summaries from the ISBI challenges (introduced in Section 2.3.4) have also

been made public. The results and entries of the 2016 Challenge [122] are discussed

in Marchetti et al. [172] and the summary of the 2017 Challenge summary is outlined

in Codella et al. [91]. A review of current state-of-the-art methodologies is presented

in Pathan et al. [195].
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2.3.4 Datasets, Challenges, and Benchmarks

There exist relatively few datasets in the general field of dermatology and even fewer

datasets that include dermatologist created segmentation masks for benign and ma-

lignant lesions. Additionally, many of the datasets can be challenging to acquire

and often are not available publicly. These challenges make performing meaningful

(comparable as a benchmark), reproducible, research unnecessarily di�cult.

A few of the well known datasets are as follows: Dermofit Image Library, a

dataset containing 1,300 high quality skin lesion images labeled into 10 di↵erent

classes [99], Dermnet, a skin disease atlas containing 23,000+ skin images across many

diseases [12], PH2 [177], containing 200 dermoscopic images, and ISIC (International

Skin Imaging Collaboration) archive which contains 13,000 skin lesion images [45].

In 2016, the International Symposium on Biomedical Imaging (ISBI) [19] released

the first annual challenge dataset for “Skin lesion analysis towards melanoma de-

tection using photos from the ISIC archive [134]. This provided a public dataset

and public “leader board” which provided a means to benchmarking results. Both

the ISIC and ISBI 2016 dataset are further discussed in Section 3.1. An ISBI 2017

challenge has also been released [135], and a 2018 challenge planned for release [136].
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CHAPTER 3

PROPOSED SOLUTION

This chapter describes the main aspects of the proposed solution, which follows a

well-established pattern – in both skin lesion classification as well as other disciplines

– of building upon successful existing CNN architectures and implementing a trans-

fer learning approach. See Section 3.3 for more information on transfer learning.

For evaluation purposes, publicly available datasets and standard figures of merit

are used to allow reproducibility of results as well as meaningful comparisons and

benchmarking against other approaches in the literature.

The key elements of the design and implementation process are:

• Dataset selection, acquisition, and preparation (Section 3.1)

• CNN architecture selection and transfer learning considerations (Section 3.2

and 3.3)

• Model training, fine-tuning, and validation (Section 3.4)

• Performance evaluation (Section 3.5)

Each of these elements is described in the remainder of this section.

3.1 DATASET SELECTION, ACQUISITION, AND PREPARATION

All images were unaltered beyond basic cropping and/or resizing to the specified in-

put size. The dataset was split, such that no images overlapped between training,

validation, and test sets. Metrics of interest were produced on a balanced (benign/-

malignant) test set. It is worth nothing that the balance of the evenly balanced test

22



split used for evaluation does not accurately represent the balance a classifier may

encounter when deployed in a clinical setting. It is almost certainly the case that in

a clinical setting the balance will be shifted considerably in favor of benign lesions.

At the time of development, the ISBI 2016 challenge dataset [134] was the only

readily accessible, publicly available, dataset with included benchmarks and segmen-

tation masks. Additional experiments, such as those outlined in chapter 5 used the

ISIC Archive dataset [45].

3.1.1 2016 ISBI Challenge dataset

The ISBI challenge dataset [134] contains dermoscopic skin lesion images – labeled

as benign or malignant (melanoma) – pre-partitioned into sets of 900 training images

and 379 test images from the ISIC Archive dataset [45] (approximately 30.3% of

the dataset was malignant (273 images in the training set)). Obtaining the 2016

ISIC Challenge dataset is trivial and only involves visiting the accompanying website,

accepting the terms, and downloading the dataset.

3.1.2 ISIC Archive dataset

ISIC (International Skin Imaging Collaboration) was created as an academia and

industry partnership aimed to reduce the number of lives a↵ected by melanoma. The

primary goal of ISIC is to to support e↵orts to reduce melanoma-related deaths and

unnecessary biopsies. Image information captured by dermoscopic images in varying

conditions or by di↵erent devices do not always produce reliable color information [66].

ISIC is developing proposed digital imaging standards to address the technologies

(image resolution, processing, metadata, compression, and encryption), techniques

(poses, lighting, magnification, size and/or calibration markers), and terminology

(anatomic sites, diagnoses, morphology, etc.) used in skin imaging and creating a

public archive of clinical and dermoscopic images of skin lesions [45].
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The ISIC archive currently includes 13000+ dermoscopic images: 12668 labeled as

benign and 1084 labeled as malignant. To obtain the dataset, an individual can select

and download images using the web browser or they can use the API (https://isic-

archive.com/api/v1). The API, in practice, provides a more convenient method for

obtaining the images in bulk. There are a few limitations to using the API (including

a rate limit), but obtaining the dataset is possible. Image metadata is returned in

json form (example shown in Section B.2). To handle the json data, all metadata was

stored in a MongoDB [55] database. It is important to note that duplicate images do

exist. When using this dataset, the metadata from each image was compared and any

images with the same id were removed such that only one image of the lesion existed.

When using this dataset for personal use, it was easier to handle and interpret a

balanced dataset, with equal numbers of images in each class. To do so, 6000 images

were randomly obtained from the benign images set. Then images were subjectively

removed (poor quality images, images that contain foreign objects, and images that

contain excessive background noise such as additional lesions or hair were removed).

A unexpectedly large number of lesions contained colored stickers and markings. Once

the images were subjectively removed the dataset had already been reduced to 1483

images (note: this methodology should not be considered absolute as it was only

performed for personal use and do not claim any results to be benchmarked i.e. only

relative performance is evaluated). Next, duplicate images, using metadata, were

removed. 64 duplicates were found in this sample. After a similar methodology was

used for the malignant images, the benign images were randomly downsampled to

create an equal balance – 1082 benign images and 1082 malignant images. Unlike the

ISIC challenge dataset, however, this dataset includes neither dermatologist created

skin lesion masks for each image, nor a public benchmark.
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3.2 CNN ARCHITECTURE SELECTION

In essence, a CNN [159] (which gets its name from including a convolutional layer,

see Appendix B.1.2) consists of components that aim to extract potentially useful

features from an input. In addition to the convolutional layer(s), CNNs are typically

also composed of pooling layers, which are used to reduce dimensionality (see Ap-

pendix B.1.3). The convolutional and pooling layers, which may be stacked in many

di↵erent configurations, are then typically concluded with a dense (fully connected)

layer(s) that act as the classifier to the features extracted from the prior convolutional

and pooling layers.

Two well known convolutional classifier architectures were implemented: VGG-

Net [223], and InceptionV3 [234]. These models are introduced below.

3.2.1 VGG

The VGG model [223], attained popularity after achieving excellent results on the

ImageNet dataset [94] in the ILSVRC-2014 competition [210]. Of the many existing

variations of VGG, VGG-16 and VGG-19 are the two most common variations of

VGGNet, which contain 16 and 19 weight layers respectively. VGG-16 was used

exclusively in this work, as it has been shown to generalize to other datasets well [223].

The VGG-16 architecture (Figure 3.1) is constructed with five convolutional

blocks and is concluded with a classifier block consisting of three fully-connected layers

and final softmax output layer. The network is designed to accepted three channel

images (R,G,B) with height and width dimensions of 224⇥ 224. Each convolutional

layer uses small convolutional filters with a receptive field of 3 ⇥ 3. The number of

filters used in each layers increases with each block. All hidden layers utilize the

non-linear ReLU, Rectified Linear Unit, activation function (originally proposed in

Nair et al. [184] and implemented in neural networks in Glotrot el al. [116]). Each

convolutional block is concluded with a max-pooling layer.
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Figure 3.1: Outline of the VGG-16 Architecture.
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Figure 3.2: The first of the three InceptionV3 modules as shown in Table 3.1. Figure

adapted from [234].

3.2.2 InceptionV3

InceptionV3 [234] is the third version of the popular Inception architecture [44]. In-

ceptionV3 was made popular due to its state-of-the-art results on the ILSVRC 2012

classification challenge and lower computational cost when compared to other widely

used CNN architectures [234].

The InceptionV3 architecture is described in Table 3.1. The concept behind an

inception module (figures 3.2, 3.3, and 3.4) is to perform a number of di↵erent op-

erations and let the model decide (learn, during training) which output features are

more important. This is opposed to explicitly creating layers only consisting of a 3⇥3

convolutional layer, for instance. Another notable aspect of this architecture is the

use of the 1⇥ 1 convolutional layer, which is used to reduce the dimensionality of the

features, saving on computation.
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Figure 3.3: The second of the three InceptionV3 modules as shown in Table 3.1.

Figure adapted from [234].
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InceptionV3 Architecture Outline

Type Patch Size/Stride (or remarks) Input Size

convolution 3⇥ 3/2 299⇥ 299⇥ 3

convolution 3⇥ 3/1 149⇥ 149⇥ 32

conv. padded 3⇥ 3/1 147⇥ 147⇥ 32

pool 3⇥ 3/2 147⇥ 147⇥ 64

convolution 3⇥ 3/1 73⇥ 73⇥ 64

convolution 3⇥ 3/2 71⇥ 71⇥ 80

convolution 3⇥ 3/1 35⇥ 35⇥ 192

3⇥ Inception (Figure 3.2) 35⇥ 35⇥ 288

5⇥ Inception (Figure 3.3) 17⇥ 17⇥ 768

2⇥ Inception (Figure 3.4) 8⇥ 8⇥ 1280

pool 8⇥ 8 8⇥ 8⇥ 2048

linear logits 1⇥ 1⇥ 2048

softmax classifier 1⇥ 1⇥ 1000

Table 3.1: Outline of the InceptionV3 Architecture. Table adapted from [234]
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Figure 3.4: The final InceptionV3 module as shown in Table 3.1. Figure adapted

from [234].

3.2.3 Model Design Considerations

When using the indicated models, a few modifications were necessary to adapt the

models to our use cases. These modifications are listed below.

VGGNet – Since the architecture is designed to classify many classes (1000 in the

ILSVRC-2014 competition), the final output layer must be modified to be used as a

binary classifier. This could be achieved by using two softmax nodes or one sigmoidal

node. In our implementations we used a single sigmoidal output node.

InceptionV3 – A global average pooling layer, followed by two fully connected

layers, is implemented in place of the final classifying block. Again, the final output

node is activated by a sigmoidal function, rather than a softmax function.

3.3 TRANSFER LEARNING

Transfer learning [191] provides a means to leverage previous knowledge acquired by

a machine learning model for a di↵erent task. In context, when working with CNNs,

transfer learning, involves transferring “the knowledge” (previously learned features
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Figure 3.5: CNN transfer learning overview (see text for details).

– weights and biases) by initializing a CNN, at least partially, with these pre-trained

parameters, rather than training a network from random initialization [97, 203, 245].

Transfer learning can be used in many di↵erent capacities with varying degrees of

reuse. Related to CNNs, three broad uses of transfer learning could be (i) obtaining

a pre-trained network and using the model as is to perform the task as originally

designed on new data (ii) slightly modifying, and subsequently retraining, the clas-

sification layer(s) of the model to fit a related purpose (iii) using an existing model

as a feature extractor (partially or entirely) and designing or adapting a classifying

block, which may deviate from the original architecture significantly and could include

additional convolutional layers.
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When using transfer learning on a CNN, the network layers are initialized with

weights and biases from the same, corresponding, layers trained on a di↵erent dataset

– thus transferring the parameters (features) learned.

Figure 3.5 shows the process, where the color/pattern scheme is representative of

parameter values. The representative architecture on the far left is initialized with

random weights and biases. The adjacent architecture represents that the weights

and biases have been trained to classify data from Dataset A. The arrows represent

the parameters from the lower layers being transfered to a new classification task

during initialization (the remainder of the architecture being initialized randomly).

The final representative architecture (far right) shows the how the parameters learned

from Dataset A, were transfered and, in this case, frozen since they are unchanged,

and the rest of the architecture’s parameters were learned during training on Dataset

B.

Though not required, typically (and in our case), the original dataset used is sig-

nificantly larger. The lower layers of the network, which correspond more generalized

features (such as edges) [250], are then frozen. Freezing prohibits the modification

of the weights and biases during subsequent training. The upper layers, which corre-

spond to more specific features (which depending on the dataset may correspond to

wheels, faces, dogs, etc.) are left unfrozen and allowed to be modified during train-

ing. Through this procedure, we are able to leverage the features learned during the

training of the network on a larger dataset to obtain general features, then train the

upper, more specific levels specific to the objective task.

Transfer learning, in addition to o↵ering potentially useful features, in combination

with freezing the parameters, o↵ers the benefit of faster epoch training times. This

is due to the fact that back propagation does not take place in the frozen layers.

The trade-o↵ of using transfer learning is that there is no guarantee the transfered

features will be useful. This potential downfall is partially addressed by only freezing
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the features in the lower layers, such that the more specific layers can still be trained

to the target dataset.

The dataset from which the network features are trained and transfered is not

required to be similar to the target classification dataset. For example, ImageNet [94],

the dataset used in our experiments for training the network prior to transferring the

parameters, is composed of 1.2 million images labeled with 1,000 classes, none of

which are skin lesion specific.

3.4 MODEL TRAINING, FINE-TUNING, AND VALIDATION

Model training was performed on the training set and validated on a validation set –

which was not used for training purposes (i.e. k-fold cross validation [151], was not

used).

The output of a specified loss function, which represents the di↵erence between

the ground truth and the prediction, is optimized during training to be the lowest

value (smallest di↵erence between the ground truth and predicted value). The term

cost is frequently used interchangeably with loss. Technically, the loss refers to the

error on a single example, whereas the cost is the average of the loss across the entire

training set. In this work, the term loss is used exclusively and refers to the average

loss value over a specified batch or epoch.

As shown in Figure 3.6, training was determined to be finished when the validation

loss no longer improved. The network parameters (weights and biases) were saved

when the validation loss was recorded at its lowest.

3.5 PERFORMANCE EVALUATION

After a model has been trained and the best parameters were saved, evaluation was

performed with the test set, using the previously saved best parameters. Resulting

predicted labels were then compared to the ground truth targets provided by the
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Figure 3.6: Example loss plot showing possible training and validation loss relation-

ship and the point at which training parameters are saved.

dataset. Classifier performance was evaluated by measuring the results against the

following metrics. In this work, all metrics of interest were calculated using a balanced

dataset i.e. the number of benign lesions is equal to the number of malignant lesions.

Metrics of interest are created by interpreting a confusion matrix 3.2. For exam-

ple, if a sample was mistakenly predicted to be positive, (ground truth is negative),

then the classification would be considered a false positive (FP). Similarly, a false

negative (FN) occurs when a sample is predicted to be negative but the ground truth

Ground Truth

Positive Negative

P
re
d
ic
te
d

Positive TP FP

Negative FN TN

Table 3.2: Example confusion matrix
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is positive. True positives (TP) and true negatives (TN) indicate the sample was

correctly classified.

• Accuracy, (Eq. 3.1): the ratio of correct predictions to the total number of

predictions. The number of lesions correctly identified according to their ground

truth divided by the total number of test lesions predicted.

TP + TN

TP + TN + FP + FN

(3.1)

• Sensitivity, (Eq. 3.2): the ratio of true positives that are correctly identified.

This refers to the ratio of malignant lesions that are correctly identified.

TP

TP + FN

(3.2)

• Precision, (Eq. 3.3): commonly an information retrieval term, is used to express

the ratio of positives (malignant lesions) that are, in fact, positive (malignant

lesions). If the classifier predicts malignant, how often is is correct?

TP

TP + FP

(3.3)

• Specificity, (Eq. 3.4): may also be referred to as the True Negative Rate, is the

ratio of negatives that are correctly identified.

TN

TN + FP

(3.4)

• AUC (Area Under the Curve), is a single value representing the area under

an ROC (receiver operating characteristic) curve [107, 125] plotting the true

positive rate vs. the false positive rate. Though generally referred to as the

AUC, the term is correctly abbreviated AUROC, specifying that the curve is

an ROC curve. Figure 3.7 shows the ROC curve of three example classifiers
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Figure 3.7: Sample ROC curves for three classifiers. Figure from [82]

(perfect, good, and random). The area under each of these curves is represented

by the area between the curve and the x-axis i.e. the AUC for the perfect

classifier is equal to one, the AUC for the random classifier is equal to 0.5, and

a good classifier would have an AUC somewhere in between.

3.6 ADDITIONAL IMPLEMENTATION DETAILS

Python [47] was used as the main programming language. For some specific tasks,

such as creating the dilated masks and segmented images, MATLAB [174] was used.

The deep learning framework (see Section A) used for early experiments (Chapter 4)

was selected to be Keras [46] with Theano [50] as the underlying framework except in

the case of implementing the InceptionV3 architecture, in which case Tensorflow [53]

was the underlying framework implemented by Keras. A few other notable libraries
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used throughout the experiments include Scikit-learn [48], a general purpose ma-

chine learning library and PIL [40], an image processing library. In later experiments

(Chapter 5), Tensorflow [53] was used as the main deep learning framework. For

each experiment, the random number generator was seeded with an arbitrary value

in order to ensure that experiment was reproducible.

GPUs (Graphics Processing Units) were utilized to meet the demanding workload

of training a deep neural network (see Section C.6 for more information on hardware).

In order for the deep learning frameworks to access the Nvida GPUs CuDNN and

CUDA libraries [10] were used.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 A TRANSFER-LEARNING-BASED SOLUTION TO SKIN LESION

CLASSIFICATION

4.1.1 Hypothesis

The use of existing CNNs and associated pre-trained features from a di↵erent problem

domain, following the transfer learning paradigm, can improve the performance of a

skin lesion classifier.

4.1.2 Overview

Background

Transfer learning (see Section 3.3) may help to improve classification performance on

a small dataset by using a pre-trained model from a di↵erent (but related) visual task

and adapting it to a new problem domain. This work explores the use of transfer

learning in a deep learning based approach whose goal is to process dermoscopic

images containing a skin lesion and classify the lesion as malignant or benign.

Methodology

First, baseline performance is established by performing classification on a simple

CNN architecture. Then, the transfer learning methodology is explored using the

existing VGG architecture (described in Section 3.2.1) by evaluating the architecture

in two configurations: i) the architecture is trained from random initialization and

ii) lower layers of the network are initialized and frozen with convolutional features
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from the network being pre-trained on a larger dataset (ImageNet [210]). Resulting

metrics of interest from each method are compared.

4.1.3 Experiments and Results

The ISBI 2016 Challenge dataset for “Skin Lesion Analysis towards melanoma detec-

tion” (described in Section 2.3.4) is used through all experiments and variations. The

dataset was balanced through downsampling by listing the images alphabetically and

selecting the first images from each set that correspond to the number of samples in

the least represented class (in this case 173 images in the training set and 75 images

in the test set). In total, the final dataset for this experiment consisted of 346 training

images and 150 testing images, with an equal representation from each class.

Input images were preprocessed to match the expected values by the VGG archi-

tecture. Preprocessing included normalizing the pixel values to [0, 1] and resizing the

image to 224⇥ 224 pixels.

Method 1: Simple CNN Trained from Scratch

The architecture used in this experiment was designed to be smaller, yet similar in

design, to VGG to serve as a baseline. Three convolutional blocks each consisting of:

a convolutional layer with a 3 ⇥ 3 filter window and ReLU activation followed by a

2⇥2 maxpooling layer were created. Feature sizes of 32, 32, and 64 were specified for

each layer, respectively. A single dense layer (64 nodes, ReLU activation) followed

the convolutional layers. The output layer contained a single node and was specified

as sigmoidal (Figure 4.1).

Method 2: Initializing CNN with Pretrained Parameters

The architecture in this method is the VGG architecture (see Figure 4.2), specifically

VGG-16 (described in 3.2.1). All parameters (weights and biases) are initialized
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Figure 4.1: Method 1 Architecture; Simple CNN.

randomly. The classification block contains a fully connected 256 node layer (ReLU

activated) followed by an output node.

Method 3: Freezing the Lower Layers of a Pretrained CNN

In this method, the convolutional layers of the VGG-16 architecture are initialized

with the weights and biases of the network being pre-trained on the ImageNet [210]

dataset. The lower four convolutional blocks of the network are frozen. The fifth

convolutional block and fully connected classifier block is left unfrozen and available

for training. The fully connected layers are initialized with the weights and biases

saved from method 2.

40



Figure 4.2: Method 2 Architecture: VGG-16 as a feature extractor.
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Figure 4.3: Method 3 Architecture: Fine tuning VGG-16.
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Training Evaluation

Method Loss Accuracy Sensitivity Precision

1 0.5637 0.7187 0.7087 0.6990

2 0.1203 0.9595 0.9621 0.9560

3 0.4891 0.7688 0.6903 0.8259

Table 4.1: Training classification results from methods 1, 2, and 3

Parameters

In methods 1 and 2, RMSProp [42] was selected as the optimizer (default learning

rate of 0.001) and binary cross entropy [51] was implemented as the loss function. In

method 3, a stochastic gradient descent [74] optimizer with a learning rate of 1.0�4

and a momentum value of 0.9 was used. Dropout [226] regularization was utilized in

the fully connected layers with a value of 0.5. The batch size was selected to be 16.

The number of epochs varied for each method and were selected after examining the

behavior of the accuracy/loss plots vs. the number of epochs; 20, 50, and 20 epochs

were selected as the stopping point for methods 1, 2, and 3 respectively.

In an attempt to extend the dataset, the images were augmented using a number of

random transformations. Transformations were selected based on availability within

keras [46] and image preservation (e.g., shearing and warping) transformations were

not utilized (See Figure B.7 in Section B.1.6).

Results

The metrics of interest (Section 3.5) are loss, sensitivity, precision, and accuracy.

Table 4.1 shows the results obtained from the training dataset. The validation results

are shown in Table 4.2. Method 3 produced the most promising validation results in

all metrics of interest: 81.33% accuracy, 78.66% sensitivity, and 79.74% precision.

43



Validation Evaluation

Method Loss Accuracy Sensitivity Precision

1 0.6743 0.6600 0.5799 0.6777

2 1.0306 0.6867 0.3311 0.4958

3 0.4337 0.8133 0.7866 0.7974

Table 4.2: Validation classification results from methods 1, 2, and 3

4.1.4 Discussion

Method 1 provides a baseline using a simple CNN trained from scratch. Method 2,

which performs well on the training set, does not perform well on the validation set

– demonstrating a classic case of overfitting. Method 3 produces the best results on

the validation set. Early results – indicating that features learned on an unrelated

classification task (without any images of skin lesions specifically) may be useful for

skin lesion classification – are encouraging.

This experiment could be extended in the future by examining similar method-

ologies for various architectures and skin lesion datasets. Additionally, the level from

which features are transfered and frozen could also be investigated (Section 6.2.2). Fu-

ture work could also include examining which transfered features are most important

to this specific task. When examining the transfered features and their importance,

it would also be interesting to examine which other datasets improve or hinder per-

formance on this specific task – and whether there is any similarities in the features

that are useful to this task.
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4.2 INVESTIGATING THE ROLE OF SEGMENTATION IN SKIN LE-

SION CLASSIFICATION

4.2.1 Hypothesis

Both metrics of interest – accuracy and sensitivity – in the domain of binary (i.e.,

benign vs. malignant) skin lesion classification with CNNs on dermoscopic images

increase when the images are segmented, i.e., when the lesion region is extracted from

the entire image.

4.2.2 Overview

Background

When working with skin lesions, it is often the case that the image will contain more

pixel information than that of only the target skin lesion (Figure 5.12). Many images

in the publicly available datasets contain background noise and/or artifacts, which

could potentially lead to the classifier making predictions based on irrelevant infor-

mation. Skin lesion segmentation methods [189] become necessary to help increase

the usefulness of a dataset by removing background artifacts such as tattoos, hair,

and non-target lesions.

Segmentation is typically employed as a preprocessing method in a skin lesion

classification pipeline prior to classification [161]. The rationale for segmentation is

that the removed information is non-relevant and thus its removal can aid in classifi-

cation performance. Even if working under ideal conditions (perfect crop, no artifacts

such as hair or tattoos), due to the asymmetric nature of lesions, it would be near

impossible to only capture skin lesion pixels.

Previous studies have successfully produced deep learning solutions which are able

to classify malignant lesions with accuracies ranging between 70% and 95% [90, 104,

146, 167, 246]. Segmentation is often included in the image classification process [140],
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Figure 4.4: Images from the ISBI 2016 Challenge dataset which contain background

information and artifacts which are likely to be nonessential in the classification of

malignant lesions.
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but not always listed as necessary, as some recent works have produced excellent

results without segmentation [104, 167] and have even found segmentation to be

detrimental to accuracy [146].

Segmentation aims to remove ostensibly nonessential information, such as hair or

non-target surrounding skin and lesions, with the intent of increasing classification

performance. However, it may be the case that segmentation will obfuscate important

information that, when removed, may be detrimental to classification performance.

The relationship between segmentation and classification performance is not entirely

understood.

By isolating and evaluating performance metrics from both unaltered and seg-

mented images in a controlled setting, we aim to better understand the relationship

between segmentation and classification performance. Specifically, we intend to bet-

ter understand whether removing the pixel information outside the target lesion is

beneficial, or detrimental, to classification performance. This knowledge may aid in

future refinement of the classification process.

Methodology

Metrics of interest will be evaluated using a CNN-based classifier to classify dermo-

scopic skin lesion images as either benign or malignant. The experiment will be run

three separate times: once with unaltered skin lesion images, once with images that

have been segmented by a dermatologist, and a final time with partially segmented

images (where the dermatologist specified segmented region is dilated to include a

small amount surrounding non-lesion pixels). All conditions, with the exception of

the input images will be held constant and the performance metrics from the three

trials will be compared.
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4.2.3 Experiments and Results

Setup

The dataset preparation steps are similar to the ones described in Section 4.1. The

ISBI 2016 Challenge dataset for “Skin Lesion Analysis towards melanoma detection”

was balanced through downsampling to an equal number of benign and malignant

images in each set. The training set was then partitioned into a training and validation

set such that the final dataset split was 230 training images, 116 validation images,

and 150 test images.

The input images for the three cases - dermatologist specified segmentation, di-

lated segmentation, and unaltered (no segmentation) - were created using the supplied

binary mask from the dataset. The unsegmented images were used in their unaltered

form from the dataset. The dermatologist segmentation images were generated by

performing a bitwise AND operation using the unaltered image and the corresponding

binary mask. In final form, the dermatologist segmented images were composed of

an image of the dermatologist segmented skin lesion with all other pixel values being

set to zero. Before performing the bitwise AND, the original binary masks were first

morphologically dilated with a disk-shaped structuring element (50 pixel radius) to

create the dilated segmentation images. Figure 4.5 shows an unaltered image (left), a

binary mask (center), and the result of the bitwise and operation (right). Figure 4.6

shows an example of the three input images (not segmented, dilated dermatologist

segmented, and dermatologist segmented).

Images were preprocessed to match input expected by the VGG-16 architecture. A

resize was performed to 224⇥224 pixels and the image was normalized by performing

a channel-wise rescaling centered around zero (Eq. 4.1).

P

i,j

� Channel

mean

Channel

min

+ Channel

max

(4.1)
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(a) (b) (c)

Figure 4.5: Components in creating a dermatologist segmented image (left to right):

raw image (a), corresponding dermatologist created image (b), and the resulting

dermatologist segmented image (result of bitwise AND operation between (a) and

(b)).

(a) (b) (c)

Figure 4.6: Input images (left to right): an unsegmented image (a), partially seg-

mented image obtained with dilation using disk structuring elements with radius of

50 pixels (b) and a dermatologist segmented image (c).

where:

P

i,j

= represents a pixel value for a specified channel at point [i,j]

Channel

mean

= the mean value of the specified color channel

Channel

min

= the minimum value of the specified color channel

Channel

max

= the maximum value of the specified color channel

Transfer learning was used to leverage previously learned features from the Im-

ageNet dataset on the first three layers of the network. The remaining layers were
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Skin Lesion Classification Performance

Accuracy Sensitivity AUC

Unaltered 0.513 0.240 0.532

Partial 0.607 0.560 0.626

Segmented 0.587 0.453 0.622

Table 4.3: Skin lesion classification results comparing performance metrics of a clas-

sifier trained and evaluated with unaltered images, partially segmented images, and

fully segmented images

initialized with a default uniform random initialization. A stochastic gradient descent

(learning rate=10�6, momentum=0.9) optimizer was used. Binary cross entropy was

specified as the loss function. Dropout was used in the fully connected layers with

a value of 0.5. The batch size was specified to be 26 and a total of 60 epochs were

performed.

Results

The model was evaluated by comparing the accuracy, sensitivity, and AUC (see Sec-

tion 3.5 for definitions). When comparing an unaltered input vs the dermatologist

segmented input, all metrics of interest improve, as follows: accuracy (from 51.3%

without segmentation to 58.7% with segmentation), sensitivity (from 24.0% to 45.3%),

and AUC (from 53.2% to 62.2%). When the segmentation mask is dilated, they seem

to further improve: accuracy increased to 60.7%, sensitivity to 56.0%, and AUC to

62.6% (Table 4.3).

4.2.4 Discussion

Unsurprisingly, all metrics of interest improved when comparing a VGG-16 classifier

architecture using transfer learning trained and evaluated on dermatologist segmented
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inputs when compared against unaltered inputs (our baseline case). Interestingly,

however, early results indicate that all metrics further improved when the segmen-

tation mask was expanded with an unconventional subsequent dilation beyond the

dermatologist created segmentation mask. This trend suggests that it is possible that

using a dermatologist created segmentation mask does not provide optimal perfor-

mance. Additionally, it may be possible to further improve performance by using a

post segmentation dilation step when creating the segmented input images.

Sensitivity, our most improved metric (increasing from 24.0% to 45.3%, then to

56.0%), in medical applications (such as this case), may be considered to be among

the most important performance metrics [157]. In context, sensitivity is measuring

the e�cacy of the classifier in identifying malignant lesions. It is also suggested

that these types of diagnostic tests should be optimized to correctly recognize as

many malignant cases as possible, even at the cost of false positives [157]. In these

situations, where early diagnosis is of great importance, it is better to raise a false

positive than to create a false negative – we would rather be overly pessimistic than

optimistic in our prediction. Ultimately, misidentifying a benign lesions as malignant

may be an inconvenience for an individual, but misidentifying a malignant lesion as

a benign lesion may be a risk to the life of the patient.

Future work could further explore this relationship between classification perfor-

mance and degree of segmentation. Results, although limited in dataset size and

number of trials, seem to indicate that classification performance would increase, po-

tentially reach an optimal value, then decrease as additional contextual values are

included in the dataset. A more quantitative evaluation, using additional classifiers

and degrees of segmentation is outlined and performed in Section 4.3.
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4.3 FURTHER INVESTIGATION OF THE ROLE OF SEGMENTA-

TION IN SKIN LESION CLASSIFICATION

4.3.1 Hypothesis

Dilating a skin lesion segmentation mask to include pixel values outside the region of

interest will improve, reach an optimal value, then degrade classification performance.

4.3.2 Overview

Background

Segmenting an image containing a skin lesion before using it as input image in a CNN

classifier will remove inessential information (such as: non-lesion skin, hair, tattoos,

and additional artifacts) and improve classification performance. In Section 4.2 we

observed an interesting apparent trend in which dilating a dermatologist produced

segmentation mask further increased classification performance. This work aimed at

further investigating this trend.

Methodology

Conceptually, we intend to empirically demonstrate that dilating a segmentation mask

beyond the dermatologist indicated skin lesion may improve the performance of a

two-class (malignant vs benign) CNN based skin lesion classifier. Specifically, we

will evaluate whether the performance of a CNN classifier increases to an optimal

value before degrading to worse performance with the expansion of the segmentation

border to include pixels surrounding the target lesion. Morphological dilation will be

used to produce progressively more dilated versions of the dermatologist generated

ground-truth masks, producing a series of input images which will gradually contain

more and more pixel values beyond the target skin lesion image. The classification

performance of this input series will be evaluated and compared against each other.
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(a) (b) (c) (d) (e) (f)

Figure 4.7: Input images (left to right): perfectly segmented image (a), progressively

larger imperfectly segmented images (obtained with dilation using disk structuring

elements with radii 25 (b), 50 (c), 75 (d), and 100 (e) pixels, and an unsegmented

image (f) [78].

4.3.3 Experiments and Results

Setup

The same dataset and split as used in Section 4.2 is used in this experiment: the

final training, validation, and test sets contain 115, 58 and 75 images, from each

class, respectively. Input images, with varying degrees of mask dilation, are produced

in a similar manner as well. In addition to the three input types described in Sec-

tion 4.2, additional dilated input images are created through morphological dilation

with 25, 75, and 100 pixel disk-shaped structuring elements. As shown in Figure 4.7,

in total, six di↵erent inputs are considered; dermatologist segmented, 25px dilation,

50px dilation, 75px dilation, 100px dilation, and unaltered (no segmentation). When

considering the images that contain markers (such as stickers, see 5.12), no dilated

versions contain any visible marker information.

Two CNN classifier architectures were implemented: VGG-Net (Section 3.2.1)

and InceptionV3 (Section 3.2.2). To match the input layers expected by VGG-16 and

InceptionV3, the input images were resized to a 224⇥224 pixel RGB image and a

299⇥299 pixel RGB image, respectively.

A few modifications in the classification block were made to the original VGG-16

and InceptionV3 architectures:
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• In VGG-16 three, not four, fully connected layers was implemented in the final

classifying block.

• In InceptionV3, a global average pooling layer followed by two fully connected

layers was implemented as the final classifying block.

• The final activation function in the output layer was converted to a single sig-

moidal node from many softmax nodes.

• Preprocessing was performed similarly to the previous experiment (Section 4.2,

Eq. 4.1). However, when using inceptionV3, the resulting value was multiplied

by 2, resulting in values [�1, 1], as expected by the architecture.

Similar to earlier experiments (see Section 4.1 and Section 4.2), a transfer learning

approach was used and the architectures were initialized by loading weights from

the network being pre-trained on the ImageNet dataset [154]. In this experiment,

all convolutional layers in the original VGG-16 architecture were initialized with the

pretrained weights. The first four convolutional layers were subsequently frozen, while

the fifth, and final convolutional layer and fully connected layers were left trainable. A

similar methodology was also used for the InceptionV3 architecture, where all original

layers were initialized and frozen with the pretrained weights, and the classifier block

was left trainable.

Classifier architectures were loaded from the default Keras library at the time of

publication – these specifics are available in the Keras documentation [46]. When

using VGG-16, stochastic gradient descent was used as the optimizing function with

a learning rate of 10�6 and a momentum value of 0.9. An adaptive optimizer, RM-

SProp [54], was used for InceptionV3. The loss function in both architectures was

selected to be binary cross entropy. All layers in the classifier block were initialized

with a default initializer and specified to have a ReLU activation function. In VGG-

16, the second to last fully connected layer (256 nodes) included a dropout value of
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Figure 4.8: Confusion matrix displaying example images from unsegmented skin lesion

images classified on the VGG-16 classifier [78].

0.5. The final classifier block in InceptionV3 is specified to be a global average pooling

layer, 64 node dense layer, and a final single node output layer.

All trials for each architecture were trained for a consistent number of epochs

– selected based on the behavior of the loss and accuracy values reported during

training – VGG-16: 60 epochs with a batch size of 26; InceptionV3: 25 epochs with

a batch size of 32. Metrics of interest included accuracy, sensitivity, precision, and

AUC (see Section 3.5 for definitions).

Results

Performance metrics from the test results with various degrees of dilation applied to

the dermatologist created segmentation mask ‘None’, 25, 50, 75, and 100-pixel radius,

plus a baseline case – where no segmentation mask is used – denoted as ‘N/A’) are
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Test results for VGG-16

Dilation Accuracy Sensitivity Precision AUC

None 0.587 0.453 0.568 0.622

25 0.613 0.533 0.598 0.642

50 0.607 0.560 0.598 0.626

75 0.593 0.573 0.590 0.608

100 0.553 0.347 0.538 0.579

N/A 0.513 0.240 0.509 0.532

Table 4.4: Skin lesion classification results comparing performance metrics of VGG-16

trained and evaluated with the array of input images

shown in Table 4.4 and Table 4.5, with the best values highlighted (in bold).

Dilating the original binary masks to include pixel values beyond the target le-

sion consistently improved the performance metrics of interest. The classification

performance appears to increase, then decrease as the dilation size in increased.

4.3.4 Discussion

The results indicate that the pixel information surrounding the lesion may provide

relevant information and may improve performance of a convolutional based deep

learning classifier. Furthermore, the classification performance appears to increase,

then decrease (presumably as too much background information is included), as more

non-lesion information (dilation size) is included. This apparent trend suggests that

the typical classification pipeline for skin lesion classification (no segmentation or

dermatologist-like segmentation) may not be optimal and additionally, that a post

segmentation border enlargement process could potentially produce better results

than either conventional methods.

In addition to using larger and di↵erent datasets, future work could include inves-
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Test results for InceptionV3

Dilation Accuracy Sensitivity Precision AUC

None 0.573 0.667 0.590 0.643

25 0.627 0.667 0.638 0.696

50 0.613 0.680 0.631 0.700

75 0.693 0.760 0.723 0.739

100 0.653 0.733 0.683 0.738

N/A 0.633 0.613 0.628 0.680

Table 4.5: Skin lesion classification results comparing performance metrics of Incep-

tionV3 trained and evaluated with the array of input images

tigating the relationship between the dilation size and the lesion size. Future work

could also investigate whether these increased performance metrics were a result of

using transfer learning, by (i) comparing results across more architectures with vari-

ous degrees of lower layer features transfered and (ii) evaluating the role the dataset

used during pretraining has on the performance metrics. Visualizing the output at

the di↵erent layers in the CNN may help to determine the most important features,

which would provide key insights regarding the dilation size and role transfer learning

is having in these results.
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CHAPTER 5

ONGOING WORK

5.1 ADVERSARIAL EXAMPLE

5.1.1 Overview

Adversarial examples [235] are input examples which have been deliberately designed

to fool a classifier, i.e., designed to cause a classifier to produce an unexpected pre-

diction. Adversarial examples are often produced such that the di↵erence between an

original input and adversarial example is indistinguishable to a human – yet a classi-

fier will predict the inputs to be of di↵erent classes, often with high confidence. In this

section, adversarial examples created to fool a skin lesion classifier are demonstrated.

To further explain and visualize adversarial examples, an adversarial example is also

demonstrated using an easier to interpret dataset (MNIST).

5.1.2 Methodology

The classification architecture used during this experiment is outlined in Figure 5.1

and is composed of three convolutional blocks followed by the fully connected classifier

block. The first classifier block is composed of three sequential convolutional layers,

each with a stride of 2 and composed of 32, 64, and 96 output dimensions, respectively,

and is concluded with a 2 ⇥ 2 max pooling layer. The second convolutional block

consists of 2 convolutional layers, each with a stride of 1, and 128 and 192 output

dimensions, respectively. The block is also concluded with a 2 ⇥ 2 max pooling

layer. The third convolutional block consists of 2 convolutional layers. The first

convolutional layer has a stride of 2, a filter size of 3⇥ 3, and an output dimensions
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Test Classification Results

Loss Accuracy AUC

0.60613 0.62257 0.67790

Table 5.1: Skin lesion classification results on our custom sample classifier architecture

trained and evaluated with the created ISIC archive dataset described in Section 3.1.

of 256. The final convolutional layer has a stride of 1, and 4⇥ 4 filter size (to match

the current data dimensionality) and 1024 output dimensions. The classifier block

is composed of 4 layers: 256, 64, 16, and 1 units, respectively. The loss function is

specified to be sigmoid cross entropy and an Adam optimizer [148] with a learning

rate of 10�5 is used. The model is saved at the best recorded validation loss and the

specified hyper parameters are (epochs = 100, batch size = 32, input dimension is

224⇥ 224⇥ 3, and all activation functions in the hidden layers are an elu [88]). The

classifier performance is shown in Table 5.1. During this experiment, the classifier

architecture and classifier performance are not the primary concern or focus, in that

the architecture could easily be exchanged for another architecture and would not

dramatically change the methodology and outcomes described below (discussed more

in Section 5.1.4).

An adversarial example is created using brute force using only a variable of the

same dimensionality as the input 224 ⇥ 224 ⇥ 3 (represented in Figure 5.2) and a

gradient descent optimizer. The learning rate was specified to be 3. The di↵erence

allowed for each pixel (epsilon) is parameterized and, in this instance, epsilon is

allowed to be up to 20 (though in the included examples the values do not exceed

±12 (Figure 5.8 and 5.5). The adversarial example is trained for 80,000 iterations.
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Figure 5.1: Skin lesion classification architecture used to perform classification and

later exploited by generated adversarial examples.
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Figure 5.2: Diagram conceptually demonstrating how the learned epsilon is added to

an image before being classified (creating the adversarial example) by the classifier

from Figure 5.1
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5.1.3 Initial Results and Discussion

Confidence, in this section, refers to the output of a sigmoid or softmax function on

the output node (where sigmoid is used for binary, single node, classification and

softmax used for multi-class classification). For example, if the output for the given

class is 0.84, the confidence is then reported at 84%. If the output value is 0.04, a

96% (1� 0.04) confidence is reported for the other class.

The first attack one may consider performing is to make a benign lesion appear

malignant. An image that is currently classified with high confidence as benign (Fig-

ure 5.3) is selected. In this case, the classifier correctly predicts benign with 86.44%

confidence. However, after creating an adversarial example (by training and applying

a small di↵erence to the image) the classifier is now 83.572% confident the image is

malignant (Figure 5.4). The di↵erence in appearance is seemingly indistinguishable

(Figure 5.3 and Figure 5.4), yet the classifier is quite confident, in each case, that they

belong to separate classes. In attempt to visualize the adversarial example trained

and applied to the image, the epsilon (di↵erence between the original and adversarial

example) for each color channel (R,G,B, respectively) is shown in Figure 5.5. In this

instance, the pixel values have been represented by blue and red intensity values, in

which blue is representative of negative values and red, positive i.e. if a particular

pixel value is blue in the figure representing the green (center) color channel, the

adversarial example (right) pixel value at that location is less than the original (left)

image.

Adversarial examples are not limited to converting images to only one class. In

this binary classification task, it is also possible to create an adversarial example

which is misclassified from malignant to benign. Figure 5.6 shows an image that is

originally, correctly, classified as a malignant lesion with 87.75% confidence. After

training and classifying the adversarial example, which is visually seemingly identical,

the classifier is now 93% confident that the image is benign (Figure 5.7). Figure 5.8,
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Figure 5.3: Benign image from the ISIC Archive dataset (left) and a figure represent-

ing the predicted class (right) – benign with 86.444% confidence.

Figure 5.4: Adversarial example created from the benign image in Figure 5.3 (left) and

the predicted class (right). The image, though appearing identical, is now incorrectly

classified as malignant with 83.572% confidence.

63



Figure 5.5: Array showing the original benign image (top, 86.44% confidence), the

learned values associated with each color channel (center, R,G,B, respectively) and the

adversarial example which was classified as malignant (bottom, 83.57% confidence).

The epsilon values in the R channel ranged from (-8.69,11.32), G: (-8.30,9.79), B:

(-9.15,10.97).
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Figure 5.6: Malignant image from the ISIC Archive dataset (left) and a figure repre-

senting the predicted class (right) – malignant with 87.749% confidence.

similarly to Figure 5.5 shows the intensity of the learned changes made to the image

in order to incorrectly classify the image.

MNIST Adversarial Example

In order to explain these results and the methodology, an example using the MNIST

dataset [158], composed of handwritten digits, is presented next. This dataset was

selected because its dimensionality is much smaller 28⇥28, it consists of images with

only one color channel (28⇥28⇥1), and it is well known within the machine learning

and image analysis communities.

Table 5.2) shows the details of the architecture. Additional notable hyperpa-

rameters include: epsilon = 0.07, learning rate = 0.1, 50000 training steps. The

architecture was trained and evaluated, producing the results in Table 5.3).

Adversarial examples were then created using similar methods to creating a skin

lesion adversarial example – where a variable of the same input dimension was added

to the original image and trained to alter the classification output. In this case

an image of class 4 that was classified with over 99% confidence (Figure 5.9) was
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Figure 5.7: Adversarial example created from the malignant image in Figure 5.6

(left) and the predicted class (right). The image, though appearing identical, is now

incorrectly classified as benign with 93.055% confidence.

converted to an image of class 9 with over 80% confidence (Figure 5.10).

Figure 5.11 is similar in principle to the lesion figures (5.4 and 5.5) that show

how pixel information was added to the image. In this case however, only one image

channel is used and so the visualization is easier to interpret. The image on the left

of Figure 5.11 is the original, unaltered, image which is classified correctly with a

high confidence. The image on the right is the adversarial example where it is now

easier to visualize the di↵erence between the unaltered and altered image. As before,

the center image(s) represent the modifications made to a specific channel and blue

intensity is representative of values being decreased and red intensity is representative

of values being increased.

5.1.4 Impact

Adversarial examples pose a real threat to image classification tasks. Though it

is easier to understand how an adversarial example could a↵ect applications like

self-driving cars, skin lesion classification could also be a↵ected e.g. (i) someone
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Figure 5.8: Array showing the original malignant image (top, 87.75% confidence), the

learned values associated with each color channel (center, R,G,B, respectively) and

the adversarial example which was classified as benign (bottom, 93.055% confidence).

The epsilon values in the R channel ranged from (-8.84,9.06), G: (-7.68,8.18), B:

(-8.67,7.71)
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MNIST Classification Architecture

layer type notes (filter size - stride (s) - filters (f))

0 input 28⇥ 28⇥ 1

1 convolution 3⇥ 3 s=1 d=32

2 convolution 3⇥ 3 s=1 d=64

3 max pooling 2⇥ 2 s=2

4 fully connected 64

out fully connected 10 (softmax)

Table 5.2: MNIST classification architecture 3.1

MNIST Classification Results

Loss Accuracy AUC

0.06035 0.98027 0.99906

Table 5.3: MNIST classification results on our custom sample classifier (Table 5.2)

architecture trained and evaluated with the created MNIST dataset

Figure 5.9: Unaltered image from the MNIST dataset which is correctly classified as

a 4 with 99.8% confidence.
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Figure 5.10: Adversarial example from the MNIST dataset in which the previously

correctly classified 4 (Figure 5.9) is altered and now incorrectly classified, with 80.19%

confidence as a 9.

Figure 5.11: Adversarial example from the MNIST dataset showing the original im-

age (left), the created adversarial example (right), and the di↵erence in pixel values

learned (center), where blue intensity is representative of values being reduced and

red intensity of values being increased.
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using an adversarial example on their skin lesion classification application (adversarial

examples can be printed out on standard paper and still function as intended against a

classifier [155]) (ii) an individual intercepting images could alter the image before it is

classified. These may not be immediate concerns, but adversarial examples a↵ecting

skin lesion classifiers will need to be addressed in the future and protecting against

such attacks will be a necessary consideration.

The brute force method of protecting against adversarial examples is to generate

a number of adversarial examples and include them in the training set so that the ar-

chitecture is not easily fooled by the adversarial examples. Another proposed method

is to use defensive distillation [193], where a methodology known as distillation [131],

is used to reduce the severity of gradients thus increasing the di↵erences necessary

to influence the output decision. Yet another technique is gradient masking [192]

in which an attempt is made to block access to useful gradients. However, these

methodologies are not foolproof and, if allowed enough time and computation power,

can be overcome [62]. Additionally, adversarial examples tend to generalize, in that

an adversarial example created on one model tends to also be misclassified on other

model [119] and so even if an attacker does not have access to the specifics of the

target model, they may still be able to develop adversarial examples using another

(even self developed) architecture which would then be misclassified on the target

architecture.

Adversarial examples (and methods to protect against them) is an active area

of research [152, 170]. Recently, an approach using generative adversarial networks

(GANs [118] are further discussed in Section 5.3) was developed in an attempt to make

classifiers more resistant to adversarial examples [215]. State-of-the-art for adversarial

defense is currently claimed to be developed by using a methodology known as logit

pairing [144]. However, the present reality is that this process feels very much like

a cat-and-mouse game in which the someone with enough time and computational
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resources will ultimately, eventually, prevail. Though hesitant to make the argument

that model architectures and parameters should, perhaps, not be displayed publicly,

this may be a valid argument for adding a layer of security to keep architectures and

parameters more secure.

Moving forward, it would be interesting to analyze adversarial examples created on

the same image by di↵erent architectures and analyze their similarities. It would also

be interesting to create an adversarial example for each class of image that generalizes

well and analyze similarities and di↵erences among classes. Maybe this analysis would

provide some additional insights as to how CNNs are classifying benign and malignant

skin lesions which could further aid in improved classification performance.

5.2 SEGMENTATION

5.2.1 Overview

As demonstrated in Section 4.3, segmentation is not only necessary for some im-

ages (see Figure 5.12), the use of segmentation may also help improve segmentation

results [78].

E↵orts to improve skin lesion segmentation can be grouped into three main cate-

gories. These categories are introduced below.

1. semi-automatic: methods which require user interaction in attempt to per-

form segmentation – e.g. gradient vector flow (GVF), adaptive thresholding

(AT), adaptive snake (AS), level set (C-LS), EM level set (EM-LS), fuzzy-based

split-and-merge algorithm (FBSM) [222], and approaches based on deformable

model [169]

2. un-supervised fully automatic: methods which attempt to perform segmentation

automatically without using training data – e.g. thresholding methods [101,
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Figure 5.12: Images from the ISBI 2016 Challenge dataset which contain background

information and artifacts which is likely to be nonessential in the classification of

malignant lesions. Such artifacts include hair, foreign markers, bubbles, etc.

72



114, 117], energy functions [103, 251, 252], saliency [58], and iterative/statistical

region merging [100, 137]

3. supervised fully automatic: methods which use trained classifiers in attempt to

automatically segment the lesions – e.g. where a typical pipeline includes ex-

tract region features, then using various classifiers. Features could include RGB

color features [213], texture features [127], pixel-level Gaussian features [241,

242] and classifiers such as support vector machines [127], Bayes classifiers [241],

and wavelet networks [213].

A survey of skin lesion segmentation [85] further expands on these categories.

Though promising segmentation results have been obtained, there are limitations

that should be mentioned. Semi-automatic methods require user interaction, which

are usually subjective, time-consuming, and may not be reproducible. Unsupervised

methods struggle with accurately segmenting images where the lesion shares an image

boundary and/or contain artifacts (such as those in Figure 5.12). The traditional,

above mentioned, supervised fully automatic are promising, but often rely on cor-

rectly tuning feature extractors prior to segmentation. These limitations, render

these methods unreliable for widespread, high throughput, clinical adaptation.

Deep Learning, CNNs in particular, have found recent success in many medical im-

age analysis tasks (see Chapter 2) and have achieved state-of-the-art performance [86]

on the PASCAL VOC 2012 semantic image segmentation dataset [105]. The current

state-of-the-art architectures fall under the supervised fully automatic category, only

instead, the feature extraction and classification are no longer separate processes that

require handcrafted features, or subjective threshold values.

Some noteworthy recent advancements in skin lesion segmentation using deep

learning include Bi et al. [70], which proposes combining outputs from multiple fully

convolutional networks, or FCNs (originally proposed by Long et al. [166]), and Yu

et al. [246], which proposes a deep residual network. FCNs are networks which are
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primarily, if not fully, composed of convolutional layers. The top performing architec-

tures typically employ a convolutional-deconvolutional design pattern, made popular

by the U-net architecture [208]. In this section, skin lesion segmentation using a fully

convolutional network is investigated.

5.2.2 Methodology

The 2017 ISBI challenge dataset [135] was used during this experiment. The dataset

is similar to the 2016 ISBI Challenge dataset as described in Section 3.1 and is pre-

partitioned into training and test sets, containing 2000 and 600 images and corre-

sponding masks, respectively. The classes of interest during this experiment are at

a pixel level (whether a lesion was present or not), not whether the image (lesion)

belong to a benign or malignant class.

The proposed architecture for this experiment uses only convolutional layers, and

is outlined in Table 5.4. All images were preprocessed to a size of 224⇥224 and scaled

to [0, 1] (Eq. 5.1). The images are three dimensions (R,G,B) and the input binary

masks are only 1 dimension. The final output mask is two dimensions (each dimension

representing a class – lesion or not lesion) and the input GT mask is one-hot encoded

to match this dimensionality. A weighted cross entropy loss function was implemented

(Eq. 5.2), where �
i

is representative of the class weights. Class weights were calculated

by counting the number of lesion and non-lesion pixel values in the training set. The

average number of lesion pixels per image was determined to be 10102.0205, thus the

class weights were determined to be 5:1 ((224⇥ 224)÷ 10102.0205 = 4.967).
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Experimental FCN Segmentation Architecture

layer type notes (filter size - stride (s) - filters (f))

0 input 28⇥ 28⇥ 1

1-4 convolution 3⇥ 3 s=1 d=64

5-8 convolution 3⇥ 3 s=1 d=32

9-16 convolution 3⇥ 3 s=1 d=16

out convolution 3⇥ 3 s=1 d=2 (softmax)

Table 5.4: Experimental FCN segmentation architecture

Metrics of interest correspond to those used in the 2017 ISBI challenge: accuracy,

sensitivity, specificity, dice coe�cient, and jaccard index. Metrics are calculated on a

pixel-wise basis between the predicted output mask and the ground truth mask.

• Accuracy, (Eq. 5.3): the ratio of correct predictions to the total number of

predictions. The number of pixels correctly identified as a lesion divided by the

total number of pixels predicted.

TP + TN

TP + TN + FP + FN

(5.3)

• Sensitivity, (may also be referred to as the True Positive Rate or Recall Eq. 5.4):

the ratio of true positives that are correctly identified. This refers to the ratio

of lesion pixels that are correctly identified.

TP

TP + FN

(5.4)

• Specificity, may also be referred to as the True Negative Rate (Eq. 5.5): the ratio

of negatives that are correctly identified. This refers to the ratio of non-lesion
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pixels that are correctly identified.

TN

TN + FP

(5.5)

• Dice Coe�cient, may also be referred to as the Similarity Coe�cient, or F1

Score (Eq. 5.6): and is used to calculate the similarity between to samples

(images: predicted and GT mask, in this case).

2(TP )

2(TP ) + FN + FP

(5.6)

• Jaccard Index (Jaccard Similarity Coe�cient), (Eq. 5.7): is another measure

used to calculate the similarity between to samples (images: predicted and GT

mask, in this case).

TP

TP + FN + FP

(5.7)

Figure 5.13: Example images and masks used for negative samples. A sample image

from the unrelated dataset (left), and a image composed of all zeros (right). Masks

for each images were one dimensional and composed of all zeros (indicating no lesions

were present)
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The architecture and hyperparameters were held constant and the model was

trained using four di↵erent methods (where each method is representative of the use

of a training dataset that has various degrees of additional, non-skin lesion, images

included). The trained models were then all evaluated on the same test dataset. The

four methods used for training were:

• normal: where no negative samples are added

• zeros: where the training set includes an additional 200 blank images and

masks – the images and masks are all empty (zeros) indicating no presence of

lesions (Figure 5.13)

• unrelated: where the training set includes an additional 200 images of dogs

and cats from the Dogs and Cats dataset [13] and masks – the masks are all

empty (zeros) indicating no presence of lesions (Figure 5.13)

• combined: where the training set includes an additional 200 images – 100

blank images from ‘zeros’ and 100 images from ‘unrelated’

When including the 200 non-lesion containing images (methods ‘zeros’, ‘unrelated’,

and ‘combined’), the class weights were recalculated and determined to be 5.5:1.

5.2.3 Initial Results and Discussion

The result obtained (Table 5.5) are compared to state-of-the-art methods [249] in

(Table 5.6). While evaluating the outlined experiments, two interesting observations

were made and deserve comment:

1. Though unable to empirically confirm (see item 2), the use of negative samples

from an unrelated dataset appear to strengthen the features used to perform

segmentation.
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Segmentation Evaluation Results

Method Normal Zeros Unrelated Combined

Accuracy 0.6151 0.8206 0.6682 0.7740

Sensitivity 0.9214 0.8533 0.9144 0.8692

Specificity 0.5235 0.8204 0.5774 0.7453

Dice Coe�cient 0.4703 0.6479 0.5516 0.5974

Jaccard Index 0.3384 0.5225 0.4090 0.4656

Table 5.5: Skin lesion segmentation results comparing performance metrics of the

proposed architecture with the four methods (normal, zeros, unrelated, combined)

Segmentation Evaluation Results

Method ISBI2017 #1 (CDNN) ISBI2017 #2 Combined

Accuracy 0.934 0.932 0.7740

Sensitivity 0.825 0.820 0.8692

Specificity 0.975 0.978 0.7453

Dice Coe�cient 0.849 0.847 0.5974

Jaccard Index 0.765 0.762 0.4656

Table 5.6: Skin lesion segmentation results comparing performance metrics of the

proposed architecture to the top two scores in the 2017 ISBI challenge
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2. Skepticism of the ground truth dataset. There are some images which appear

to have segmentation ground truth masks that are not accurate at the, required

and expected, pixel level (see Figure 5.18 and Figure 5.17).

These two observations are expanded upon next.

Negative Samples from an Unrelated Dataset

The results shown in Table 5.5 are indicative that the best relative performance

occurs when the dataset includes negative samples composed of zeros. However, in

practice, this did not appear to be the case. Upon manual inspection of the output

images, the unrelated and combined case appeared to do a better job of segmenting

lesion images while ignoring other distracting artifacts (such as hair). A small output

sample from the test set is shown in Figure 5.14. To further investigate, output maps

were created from the final convolutional block for each input case. The output maps

(Figure 5.15) seemingly show an increased degree of classification between lesion and

non-lesion images – where the intensity di↵erence is larger when using images from

an unrelated dataset.

An additional test was performed using these four methods on natural images

taken from a cellphone (as might happen in a skin lesion classification application).

Output results shown in Figure 5.16, all four images subjectively show the best results

from the combined case, with the unrelated case performing next best. Though

this is a (very) small sample, it further strengthens the suspicion that using images

from an unrelated dataset when training an FCN segmentation model, may aid in

performance.

Dataset Skepticism

Manually reviewing the dataset raised a few concerns regarding the ground truth

accuracy. Subjectively, there appear to be many inconsistencies between the care
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Figure 5.14: Lesion confidence and final mask from each method where each column

corresponds to the image and the corresponding mask and the following rows represent

a given method: combined, zeros, unrelated, and normal.
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Figure 5.15: Output values from the last convolutional block (3 ⇥ 3 ⇥ 16, stride=1)

before the output layer. Each column corresponds to the image and the corresponding

mask from the test set in the top row. Sequentially, the next row corresponds to the:

combined, zeros, unrelated case, and normal case. These outputs correspond to the

final output shown in Figure 5.14
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Figure 5.16: Segmentation results of natural images (taken with a personal cell phone)

using the proposed methods. The left column is the raw image. Then each pair of

columns (confidence and binary mask). From left to right: the combined, zeros,

unrelated, and normal
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given to the ground truth creation. In Figure 5.17, the mask appears to have been

carefully created where a mask with seemingly near pixel level accuracy is created for

the corresponding image. In Figure 5.18, several examples are included which show

ground truth masks that appear to have been created with less care and includes

masks that include smooth, straight, and curved, borders, borders that may mistake

hair for lesions, and borders that extend far beyond what may be considered a lesion.

The importance of creating masks that are accurate on the pixel level is important

when creating a pixel level FCN segmentation method. Though not suspected that if

all the masks were accurate on the pixel level that this proposed method would be su-

perior to the current top performing methods, this is an important consideration that

should be mentioned in proposed solutions as well potentially addressed on a larger

scale – with potential recreation and evaluation of proposed methods. Additionally,

if the dataset is proven to be inaccurate at the pixel level and corrected, the results

and evaluation of the relative performance of the above mentioned methods (using

images from unrelated datasets to strengthen the features used to segment lesions),

may change and may match the perceived outlined intuition.

5.2.4 Moving Forward

The importance of segmentation will, overall, depend on the method for capturing

skin lesion images. If dermoscopy is practical and readily available, the role of seg-

mentation will be less important, as a trained specialist will be able to capture the

lesion with as little background information as possible. Sometimes this will be im-

possible e.g. a tattoo is near a lesion, in which case segmenting out the tattoo may be

beneficial. However, when considering other image capturing methods, such as body

scan or from a mobile phone, the role of segmentation becomes more important.

The dataset accuracy should be reevaluated. If the images are not annotated

correctly at the pixel level, the trained classifiers performance su↵ers and the metrics
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Figure 5.17: Good segmentation examples, subjectively. Examples of included im-

ages (left), provided ground truth masks (center), and the resulting segmented image

(right).
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Figure 5.18: Bad segmentation examples, subjectively. Examples of included im-

ages (left), provided ground truth masks (center), and the resulting segmented image

(right).
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become less reliable. A large, publicly available, accurate, skin lesion dataset with

pixel-wise labels is required before segmentation methods can be accurately quanti-

fied.

In order to achieve more competitive results, future work could involve implement-

ing key aspects from the winning proposals [175, 249]. Other than experimenting with

di↵erent kernel sizes, depth, and hyper-parameters, this would involve:

• Implementing the loss function proposed in Yuan et al. [248] and used in Yuan

et al. [249] that is more suited to achieving improved JI scores

• Experimenting with the inclusion of additional input channels (beyond R,G,

and B)

• Using image augmentation techniques (See Figure B.7 in Section B.1.6)

• Investigating the use, and trade-o↵s, of a convolutional-deconvolutional archi-

tecture vs a fully convolutional architecture. Subjectively, it seems that the

use of deconvolutional layers help to smooth the final output. Note: A manual

post-processing with simple image processing techniques like “fillholes” and di-

lations may improve final output, but if the goal was to avoid use of manual,

parameterized, post-processing functions then these would not be used.

Additionally, future work could involve further investigating the use of unrelated

images in the negative sample set. The results in this experiment were subjectively

better but lack quantitative analysis. Improved analysis could be addressed by using

proven architectures (such as the above mentioned) as well as measuring their per-

formance on a dataset that is potentially more accurate on the pixel level. If manual

preprocessing was used, use of hair removal preprocessing techniques [56, 236] such as

the Dull Razor [160], and its potential aid in performance could also be investigated.

Other novel approaches, such as using a generative adversarial networks to improve

skin lesion segmentation performance could be explored [138].
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5.3 GANS

5.3.1 Overview

Generative Adversarial Nets (GANs), proposed in 2014 [118], can be thought of two

networks (a generator and a discriminator) in competition with one another. Where,

in the case of skin lesions and other visual domains, the generator is trying to pro-

duce skin lesions (images) that look as realistic as possible and the discriminator is

responsible for attempting to determine which images are real and which images are

not.

Typically GANs are used to create (generate) new samples that look as realistic

as possible. Some applications of GANs include: image-to-image translation [254],

image manipulation, and converting sketches to images [253], and predicting frames

in a video sequence [173]. However, GANs tend to su↵er from stability during training

and, upon closer inspection, an individual is often able to distinguish a real sample

from GAN generated sample. A notable recent advancement is shown by developing

progressive growing GANs [145] where the achieved results are near photo-realistic.

Creswell et al. provide an overview of the current state of GANs and their use [92].

The generator and its output are often the focus when working with GANs. How-

ever, the focus in this section is related to the discriminator. It is possible that the

features learned for learning to discriminate (classify) real from fake images may may

prove useful for a related task. Specifically, the discriminator parameters learned

while training the GAN for producing lesion images, may be similar and/or useful

to the features learned to classify benign and malignant skin lesions (at least in the

lower layers). In this section, a methodology is proposed to use the discriminator’s

learned parameters in attempt to improve performance of a related classification task.
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Figure 5.19: GAN overview showing the generator architecture (described in Ta-

ble 5.8) and the discriminator architecture (described in table 5.7).
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Figure 5.20: Generalized proposed method of using the GANs discriminator to aid in

the classification of a related task.

5.3.2 Methodology

Transfer Learning: Using the Discriminator to Aid Classification

At a high level, a GAN (see Figure 5.19) is trained, and features learned from the

discriminator are transfered and frozen, layer by layer, to a classifier architecture

where classification on benign and malignant lesions is evaluated. A visual overview

of the proposed methodology is shown in Figure 5.20.
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GAN Architecture: Generator and Discriminator

The discriminator (described in Table 5.7) and generator (described in Table 5.8)

were trained for 200 epochs. In alternating passes: (a) the generator is trained

by producing outputs that look similar to lesions while the discriminator performs

inference, then (b) the discriminator is trained on the real and generated images.

Over time, it is expected that both the generator and discriminator improve such

that the generator output becomes, subjectively, visually similar to real lesion images.

Sigmoid cross entropy and an Adam optimizer [148] (beta1 = 0.2) was used for both

architectures. The batch size was specified to be 48. When scaling up the output

resolution to the desired 224⇥224, creating a stable output proved challenging. Either

the learning rate was too small and the output image never (within a reasonable time

frame) amounted to anything more than the equivalent of tan-ish static (see upper

left subfigure in Figure 5.21), or the learning rate was too high and the output would

quickly become checkered/flannel in appearance before turning to a uniform output.

For this architecture, the balance performed best when the generator’s learning rate

was specified to be 10�4, and the discriminator’s learning rate was set to be 10x

smaller (10�5). Sample output images generated at di↵erent points during training

are shown in Figure 5.21.

Classifier Architecture

The classification architecture used in this experiment is a slightly modified version

of discriminator architecture (Table 5.7). The classifier contains an additional convo-

lutional layer with a 3⇥ 3 filter, stride=1, and a output dimension of 768 followed by

a 2⇥ 2 max pooling layer. The fully connected block contains an additional layer be-

tween the 256 unit layer and output layer consisting of 64 units. Dropout (0.5) is used

on both the last convolutional layer and first fully connected layer. The architecture

is trained for 60 epochs, a batch size of 32, and a learning rate of 10�6.
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GAN Discriminator Architecture

layer type filter size, stride (s), dimension (d) output shape

0 input 224⇥ 224⇥ 3 224⇥ 224⇥ 3

1 convolution 3⇥ 3 s=2 d=64 112⇥ 112⇥ 64

2 convolution 3⇥ 3 s=2 d=128 56⇥ 56⇥ 128

3 convolution 3⇥ 3 s=2 d=256 28⇥ 28⇥ 256

4 convolution 3⇥ 3 s=2 d=512 14⇥ 14⇥ 512

4 reshape flatten, drop=0.25 100352 (14⇥ 14⇥ 512)

5 fully connected 256, drop=0.5 256

out fully connected 1 (sigmoid) 1

Table 5.7: GAN discriminator architecture. All activation functions with the excep-

tion of the output layer are specified to be elu. All convolutional layers were initialized

with xavier initialization [115] and included a l2 kernel regularizer (0.1). The padding

is specified to be ‘same’ and the biases are initialized to zero.
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GAN Generator Architecture

layer type notes (filter size - stride (s) - dimension (d)) output shape

0 input 500 (random uniform -1, 1) 500

1 fully connected 25088 25088 (7⇥ 7⇥ 512)

1 reshape 7⇥ 7⇥ 512 7⇥ 7⇥ 512

2 deconvolution 3⇥ 3 s=2 d=256 14⇥ 14⇥ 256

3 deconvolution 3⇥ 3 s=2 d=128 28⇥ 28⇥ 128

4 deconvolution 3⇥ 3 s=2 d=64 56⇥ 56⇥ 64

5 deconvolution 3⇥ 3 s=2 d=32 112⇥ 112⇥ 32

5 deconvolution 3⇥ 3 s=2 d=16 224⇥ 224⇥ 16

out deconvolution 3⇥ 3 s=1 d=3 (tanh) 224⇥ 224⇥ 3

Table 5.8: GAN Generator architecture.

Test results for GAN TL

Layers loss Accuracy Sensitivity Precision AUC

None 0.64508 0.62791 0.60465 0.63415 0.67599

1 0.64551 0.64535 0.63372 0.64881 0.67957

12 0.64502 0.63663 0.63953 0.63584 0.67847

123 0.64825 0.62500 0.64535 0.62011 67.430

1234 0.64596 0.64826 0.65116 0.64740 68.184

Table 5.9: Skin lesion classification results comparing performance metrics of the

proposed CNN skin lesion classifier methodology. The layers column is representative

of the layers that have been transfered and frozen from the GAN discriminator to the

classifier
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5.3.3 Initial Results and Discussion

Results of transferring and freezing layers from the GAN’s discriminator (Figure 5.20)

to the classifier are shown in Table 5.9. No apparent trend is present. Initial thoughts

are that the lack of a trend could be a result of (in no particular order): (i) experi-

mental error (ii) the features used for determining real/fake lesion are similar to the

features used to classify benign and malignant lesions, (iii) the network is CNN is

“deep/powerful” enough, that any generic features provide enough separation that

the classifier is still able to learn meaningful features and, potentially related, the

performance achieved approaches Bayes error, the lowest possible error rate.

Though not suspected, experimental error is always possible. The possibility that

features learned to classify real and fake lesions are similar to the features learned to

classify benign and malignant lesions is possible, but it seems surprising that even

when higher level layers are transfered and frozen that the classification performance

remains consistent. The possibility that this methodology is approaching Bayes error

is unlikely, yet not impossible, and more experimentation is needed to verify whether

this is the case.

5.3.4 Moving Forward

Further research is needed before the methodology can be adequately evaluated. First,

in order to appropriately evaluate this methodology, the architecture and dataset

would need to be modified such that the GAN is able to produce skin lesion images

that are as realistic as possible. Second, this methodology should be evaluated against

more architectures (of di↵erent sizes) to analyze any trends. Lastly, it would be inter-

esting to benchmark and apply this methodology to other, unrelated, datasets. The

popular Dogs and Cats dataset [13], CIFAR dataset [153], and Celeba dataset [165]

may prove useful for this task.

The challenge with this task will be related to computational resources. Training
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Figure 5.21: Output images created by the GAN using the ISBI 2016 Challenge

training dataset. Images from left to right, top to bottom, were created on after

batch iteration 10, 30, 50, 100, 1000, 1500, 2000, 4000, 6000
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a GAN is time/power and memory intensive. In the context of the presented work,

it is worth noting that the results obtained in Karras et al. [145] were obtained by

training the architecture for 4 days on 8 state-of-the-art commercial GPUs (Tesla

V100). Results for this experiment were obtained by training for only several hours

on a single, consumer, GPU (1080ti).
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

Melanoma is a particularly deadly skin cancer that, despite advanced clinical methods

and increased awareness e↵orts like “Melanoma Monday” (the first Monday in May),

is estimated to claim the lives of roughly 9,000 individuals in the United States this

year. Early detection is critical, increasing the survival rate from 17% to 98%, and

can save lives. The current diagnosis methodologies are good, but not good enough

and are considered subjective. Advanced technologies, like those presented in this

work, could improve diagnosis rates.

AI’s role in a medical setting is controversial, often for fear that the AI will replace

the MD or make unsupervised invalid medical decisions. In this particular case, it

may be more appropriate to consider AI as augmented intelligence, not artificial

intelligence. The near future will not likely debate whether an MD or AI is better,

but rather whether an MD with AI assistance is better than an MD without AI

assistance. This technology could be used by a medical doctor as a secondary check

which prompts a “second look” at suspicious skin lesions, perhaps initially dismissed

by the MD as benign.

Despite promising early results, AI has not yet been widely implemented in or

outside the dermatology o�ce as a stand-alone solution to detecting and classifying

skin lesions. Not only do ethical concerns exist, but physical concerns such as adver-

sarial examples will need to be discussed in the context of how the user will interact

with the deployed model. Additionally, the present reality is that the datasets are
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small and are not representative of minority skin pigmentations. Regarding the size

constraint, transfer learning has shown to be useful for improving classification per-

formance. However, more samples from a diverse population need to be collected.

Companies exist that are withholding large stores of data that, if released, could help

save lives. A collaborative e↵ort between these companies and a third party, such as

the ISIC archive, could manage the collection and distribution of these datasets. In

addition to managing the datasets, the third party could also publicly display bench-

marks. Ideally the benchmarks could be formated similarly to Kaggle [20], that are

easily understood and possible for other groups to participate in improving.

In addition to the limited quantities, images are often noisy and imperfect and

segmentation may be a necessary component of a classification pipeline. Current

segmentation methods are designed with the intent of creating dermatologist-like an-

notations. These e↵orts may be hindered by potentially imperfect current public

dataset and benchmarks. Additionally, the role of segmentation on classification per-

formance may not be as clear as conventionally thought; performance may be further

improved when the segmented image is dilated to include contextual information

outside the lesion of interest.

Architecture details and dataset splits, at least when claiming state-of-the-art,

should be made public. Not only will this aid in the discovery of any potential errors

in the calculations, this will also help foster an environment in which many groups and

individuals can contribute meaningful research to this problem. Detecting malignant

skin lesions is not trivial technology that only a↵ects a businesses bottom line, this

is a technology that has potential to help save lives.

The future is promising and the technology will only improve. Through release of

tools, documentation, datasets, and public benchmarks, an improved, more accurate

diagnosis exists in the near future.
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6.2 FUTURE WORK

As interest in this field increases, more individuals may wish to become involved.

Getting started, and even simply deciding where to start, can often pose a superficial

barrier. Included is a list of future experimental proposals and ideas, with included

references that may prove useful, which occupy space on my to-do list. I hope these

pique the interest of a reader and help individuals and groups make contributions.

6.2.1 Feature Acquisition and Extraction

Handcrafted Features

Currently, most classification architectures constructed for skin lesion classification

include 3 input channels (RGB). This is partially because when using a transfer

learning based approach, the original network is often constructed and trained with

3 input channels.

One of the more appealing aspects of using deep learning is that the features are

learned during training i.e. the features are not researched and developed by hand.

However, there is no rule that specifies we “can’t” use handcrafted features to our

advantage. It is possible that the best performance (classification or segmentation)

may be achieved when more information is provided as an input to a deep learn-

ing architecture. In addition to the traditional RGB input channels, an experiment

could be performed which manually applies algorithms and handcrafted features to

an image (presumably well-documented methods first, such as described in the Merck

Manual [190]) and creates a new input channel for these features as an additional,

or standalone, input channel to the CNN classifier. A systematic evaluation of each

feature and combinations of features would be useful to aid in achieving higher clas-

sification or segmentation performance.
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Systematic Evaluation of Input Channels

An experiment could be performed which aims to quantify the usefulness of var-

ious color spaces and combinations of color spaces for classifying and segmenting

skin lesions. In Yuan et al.[249], an initial comparison in segmentation performance

with di↵erent color channels is performed. They find that additional channels aid

in classification. Roughly; RGB+HSV+L channels perform better than RGB+HSV

or RGB+L, which perform better than RBG alone. An experiment could be per-

formed which systematically evaluates the importance of color channels and their

combinations across many di↵erent deep learning architectures for classification and

segmentation.

Deep Learning: Dermoscopy vs Macroscopy

The depth of information obtained from a skin lesion image is directly related to

the wavelength used to capture the image. Image information found at di↵erent

depths has been found to be useful in the classification of malignant and benign skin

lesions [83]. A comprehensive study which investigates how well a classifier is able

to perform on macroscopic images after being trained exclusively on dermoscopic

images would be beneficial. Additional work studying combinations of training and

classifying macroscopic and dermoscopic combinations would also be valuable.

Cell Phone Imaging Considerations

After evaluating how macroscopic vs dermoscopic images can a↵ect deep learning

based classification, a next logical step could be to evaluate how well a cell phone is

able to capture an image of a skin lesion. More specifically, it would be advantageous

to perform a study that would investigate the ideal, and threshold, conditions for

certain variables – such as ambient lighting (how much, soft vs white), smudged

camera lenses, blurriness, angles which the image is taken, etc. All of these variables
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could be recorded and reported.

Resolution

Resolution and its relation to classification performance should be further investigated

for two main reasons: (i) it is possible the resizing performed is adversely a↵ecting

classification performance, and (ii) to determine which cameras are capable of taking

high enough resolution images. The di�culties one will face when attempting this

work will largely be related to computing power (memory size). Many large GPUs

will be necessary to perform experimentation of any significance. Valle et al., noted

an increase in performance when using an increased resolution, but did not exceed

a resolution of 598 ⇥ 589 [237]. Resizing skin lesion images to the current sizes

accepted by popular architectures (VGG and Inception are 224 ⇥ 224 and 299 ⇥

299, respectively) is likely removing fine structure information (texture, globules,

vessels, etc.) and performing classification on images an order of magnitude larger

may produce significantly improved classification results.

Dataset Distribution

In addition to the dataset size, the distribution does not appear to be representa-

tive of various skin pigmentations. The dataset is heavily biased in favor of fair skin

individuals. Future work would could include studying the e↵ects classification per-

formance with various degrees of skin pigmentation and could aim to collect more

images from underrepresented pigmentations.

6.2.2 Neural Network Aspects and Architectures

Synthetic Gradients

Use of synthetic gradients [139] o↵er the potential of training neural networks without

waiting for errors to be backpropagated through the entire network, which allows for
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greatly reduced training time. In Czarnecki et al. [93], they show that models trained

using standard backpropagation and synthetic gradients, despite similar convergence

properties, operate on di↵erent features. They also note that synthetic gradients in-

troduce a regularization e↵ect [93]. It would be interesting to see how use of synthetic

gradients a↵ect skin lesion classification. Maybe the regularization a↵ect will further

increase performance. If the classification performance is improved (or unhindered),

this would provide a promising step forward to allowing easier access to training larger

neural networks on larger resolution images.

Transfer Learning: How Much

Recent work investigated transfer learning from di↵erent datasets and in di↵erent

capacities for malignant classification [179]. Future work could expand on these results

and investigate which layers from di↵erent datasets are useful for classifying malignant

lesions. A quantitative analysis of datasets and architectures with various degrees and

combinations of transfered and frozen layers may also provide additional insights into

how transfer learning can be used for this specific task. It is possible, perhaps likely,

that the best performance will be achieved without any use of transfer learning.

Interpreting CNN Decisions

In addition to helping address the “black box” concern of AI interpreting CNN deci-

sions may also assist human researchers understand what features are important when

classifying malignant lesions. Interpreting CNN decisions is an active area of research

that include di↵erent approaches: SmoothGrad [224] appears to be the most promis-

ing at the moment, but gradient based methods like Integrated Gradients [233] and

Guided Backprop [225] o↵er alternative solutions. Future work could look for insights

provided by applying these methods, particularly SmoothGrad, on a state-of-the-art

skin lesion classifier.
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FCN for Classification Insights

As shown in Section 5.2.2, FCNs are capable of predicting classes at a pixel level.

Rather than only predicting whether a lesion is present, an experiment could be

performed which aims to predict if a pixel belongs to a certain class (benign or

malignant). This could also be extended to a number of skin diseases. In addition

to potentially directly aiding in classification, this may provide insights as to what

features are typically associated with associated diseases.

Model Size Optimization

Once a classifier has been deemed “good enough” to be used in production. An ex-

periment could be performed which compares how well the classifier performs with

di↵erent precision levels (e.g. float16 vs float32). TensorRT [32] is software which

is capable of compiling the model architecture to di↵erent optimization levels, which

include parameter precision level. If developers decide to place models on an individ-

ual’s device (as opposed to use of an API-like call to a hosted server), the team may

decide to optimize the model to be as small as possible. A study outlining the (likely)

performance loss as the model is optimized to be smaller would be of great value.

Capsule Networks

At the present time, there appears to be no work that benchmarks the use capsule

networks [211] in attempt to classify skin lesions. There are many YouTube videos

describing capsule networks and open source adaptations (now in a number of deep

learning frameworks) available that someone could obtain and adapt to classify skin

lesions. It is possible that capsule networks would provide higher classification per-

formance. A study comparing such architectures on skin lesions would be valuable.

A recent study [57] found that capsule networks perform better than traditional

CNNs for brain tumor segmentation. Future work could adapt this methodology for
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skin lesion segmentation.

Prototype CNN Architecture Creation

One of the most exciting areas in deep learning may be in the development of novel

architectures, specifically work which explores the automatic generation of neural

networks. Some interesting advancements in this area are ENAS [198], NAS [255],

auto design, using cartesian genetic programming [232], Auto-Net [178], sequential

model-based optimization (SMBO) [185], evolutionary process with simple building

blocks [205], genetic CNN [243], forward thinking [130], reinforcement learning for

architecture design [80], and, most recently, AmoebaNets [204]. Other related works

propose methods of e�cient hyperparameter optimization [168], which can be used

for quickly ranking architectures [75]. Yet other recent works focus on forecasting

model performance [65].

Future experiments could investigate the intersection of these works and aim to

further improve and contribute to the e↵ort to create novel deep learning architec-

tures.
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APPENDIX A

DEEP LEARNING FRAMEWORKS

Large companies such as Google, Facebook, Microsoft, IBM, Intel, Amazon and Baidu

have all recently open-sourced their deep-learning frameworks. The following is a brief

introduction to many of the current popular frameworks.

A.1 FRAMEWORK PURPOSE

Though it is entirely possible to build deep learning algorithms in the language of

choice, doing so can quickly become overwhelming, especially when considering per-

formance. Current deep learning frameworks are able to provide a layer of abstraction

on top of the complex operations required to perform the training and inference of

deep learning models. There are many advantages to using a deep learning framework.

Some advantages may include:

• Community – provide a central location in which users are able to access one

another and contribute to common problems and solutions

• Performance – provide abstractions on top of hardware specific optimizations

like CUDA programming

• Correctness – the scope of deep learning is wide, having a community to oversee

implementations reduces the risk of correctness errors

• Interoperability – a deep learning framework provides a common language that

can be used and understood in di↵erent environments by di↵erent individuals

A.2 EXISTING FRAMEWORKS

A non-exhaustive introduction to a number of popular deep learning frameworks is

included in this section.
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• BigDL [5] – an Intel backed deep learning framework that is focused on working

with apache spark. BigDL is advertised to include; rich deep learning support,

e�cient scale out, and extremely high performance. The framework is modeled

after Torch and allows for loading of pretrained Ca↵e or Torch models. BigDL

uses Intel MKL (Math Kernel Library) and is optimized to be run on Intel Xeon

processors.

• Ca↵e2 [6] – a deep learning library created by Facebook that is designed to be

lightweight, modular, and scalable.

• Chainer [7] – advertises that they are a define-by-run approach rather than a

define-and-run approach. Meaning, the framework allows users to modify the

network during runtime. Some companies supporting chainer are IBM, intel,

Microsoft, and Nvidia.

• Keras [46] – a high level library that provides a high level abstraction to spe-

cialized, existing, deep learning frameworks and was initially developed as part

of the research e↵ort of project ONEIROS (Open-ended Neuro-Electronic In-

telligent Robot Operating System). Franois Chollet (https://keras.io/) is the

primary author and maintainer. Keras has since been merged into Tensorflows

(see below) core library but also exists on its own as as standalone library.

• Lasagne [21] – similar to keras in that it is a high level library that uses another

deep learning framework (in this case only Theano) as the main implementation.

• Microsoft Cognitive Toolkit [24] – Microsoft Cognitive Toolkit (previously CNTK)

is Microsofts deep learning toolkit.

• MxNet [26] – MxNet is AWSs deep learning framework of choice. There is some

speculation (around hardware and cloud services) as to why AWS chose MxNet

as opposed to other popular frameworks like Tensorflow.
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• Neon [27] – an Intel backed project that is designed with ease-of-use and ex-

tensibility in mind. Intels MKL (math kernel library) is enabled and allows for

high performance on qualifying CPUs and Xeon Phi compute cards. GPUs and

nervana hardware is also supported.

• PaddlePaddle [37] – Paddle (PArallel Distributed Deep LEarning) is Baidus

deep learning framework.

• Pytorch [41] – a python package that advertises two main high-level features 1)

tensor computation with GPU acceleration and 2) deep neural networks built

on a tape-based autograd system. One of PyTorchs main goals is to be a simple

and intuitive framework that executes fast and is easy to debug. Many large

companies are using Pytorch for their internal purposes.

• Tensorflow [53] – Tensorflow was originally developed by researchers and en-

gineers working on the Google brain team for performing machine and deep

learning neural network research. However, the framework has become multi-

purpose and is suitable for a wide variety of tasks. Many large companies (such

as Airbnb, Nvidia, Uber, SAP, Dropbox, ebay, Google, Snapchat, Intel, and

Twitter, to name a few) are using tensorflow.

• Theano [50] – no longer being actively developed [25] but was once one of the

most popular deep learning frameworks.
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Framework’s Github Release Date

Theano 10-Aug-2011

Lasagne 11-Sep-2014

Neon 16-Oct-2014

Keras 28-March-2015

MxNet 30-April-2015

Chainer 05-June-2015

Ca↵e2 25-June-2015

TensorFlow 07-Nov-2015

CNTK 26-Nov-2015

Pytorch 13-Aug-2016

PaddlePaddle 15-Aug-2016

BigDL 29-Aug-2016

Table A.1: Date framework was released on Github. Note: this is not necessarily the

date the framework was created or o�cially released.
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Framework’s Github Information

BigDL 2341 50 2,779

Ca↵e2 7626 183 3,563

Chainer 3594 158 13,348

CNTK 14,048 173 15,580

Keras 27,199 643 4,422

Lasagne 3398 64 1,150

MxNet 13418 494 6,768

Neon 3437 78 1,112

PaddlePaddle 6576 104 12,656

Pytorch 13,088 424 6,747

TensorFlow 93,298 1384 30,283

Theano 8039 328 27,953

Table A.2: Date framework was released on Github as of 20March2018. Note: this is

not necessarily the date the framework was created or o�cially released.
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Figure A.1: Framework’s relative Github Information as of 20March2018. See Ta-

ble A.2
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APPENDIX B

QUICK REFERENCE

B.1 INNER WORKINGS

B.1.1 Parameters: CNN vs NN

Table B.1 demonstrates how to calculate the number of parameters a CNN may

contain. Within the table, it can be seen how convolutional layers and pooling layers

help reduce the overall number of parameters used. Depending on the precision

(float32 vs float64, etc.), the model may consume large amounts of memory.

B.1.2 Convolution Kernel

Demonstration of an 2-d matrix being processed by a convolution function with a ker-

nel [[1, 0, 1], [0, 1, 0], [1, 0, 1]]. The input data (green) and first convolutional function

output (pink) and are shown on the left and the output after all but one convolutional

function are shown on the right.

Figure B.1: Convolution example. Figure adapted from [15].

A example of using a convolution operation across multiple input channels is

shown in Figure B.2.

Sample convolutional layer output using common kernels on a color image is shown

in Figure B.3.
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Number of VGG-16 Parameters

Layer Out Shape Weights Bias Total

Convolution (in)⇥ (h⇥ w)⇥ (out) (out) weights+ bias

Conv3-64 224⇥ 224⇥ 64 3⇥ (3⇥ 3)⇥ 64 64 1792

Conv3-64 (p) 112⇥ 112⇥ 64 64⇥ (3⇥ 3)⇥ 64 64 36928

Conv3-128 112⇥ 112⇥ 128 64⇥ (3⇥ 3)⇥ 128 128 73856

Conv3-128 (p) 56⇥ 56⇥ 128 128⇥ (3⇥ 3)⇥ 128 128 147584

Conv3-256 56⇥ 56⇥ 256 128⇥ (3⇥ 3)⇥ 256 256 295168

Conv3-256 56⇥ 56⇥ 256 256⇥ (3⇥ 3)⇥ 256 256 590080

Conv3-256 (p) 28⇥ 28⇥ 256 256⇥ (3⇥ 3)⇥ 256 256 590080

Conv3-512 28⇥ 28⇥ 512 256⇥ (3⇥ 3)⇥ 512 512 1180160

Conv3-512 28⇥ 28⇥ 512 512⇥ (3⇥ 3)⇥ 512 512 2359808

Conv3-512 (p) 14⇥ 14⇥ 512 512⇥ (3⇥ 3)⇥ 512 512 2359808

Conv3-512 14⇥ 14⇥ 512 512⇥ (3⇥ 3)⇥ 512 512 2359808

Conv3-512 14⇥ 14⇥ 512 512⇥ (3⇥ 3)⇥ 512 512 2359808

Conv3-512 (p) 7⇥ 7⇥ 512 512⇥ (3⇥ 3)⇥ 512 512 2359808

dense (in)⇥ (num) (out) weights+ bias

fc1 (4096) 4096 (512⇥ 7⇥ 7)⇥ 4096 4096 102764544

fc2 (4096) 4096 (4096)⇥ 4096 4096 16781312

fc3 (1000) 1000 (4096)⇥ 1000 1000 4097000

Total 138,357,544

Table B.1: Calculation of VGG parameters. (p) denotes that the layer is followed by

a pooling layer (which does not a↵ect the parameter count)
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Figure B.2: Output of a convolutional layer with three input channels and one output

channel. Figure from [43]

B.1.3 Pooling

Pooling is used to reduce the spatial size of the input, thus reducing the parameters

and computation. Two of the most popular pooling schemes are max pooling and

average pooling. Figure B.4 shows an example of a max pooling operation. Some

favor stacking convolutional layers, with larger strides to reduce the dimensionality, as

opposed to using pooling. This concept is further explored in Springenber et al. [225].

B.1.4 Padding

Though the terminology may vary slightly, two main types of padding (‘valid’ and

‘same’) are shown in Figure B.5. If the padding is specified as ‘valid’, the input shape

will not be altered and if the operation’s shape and stride (such as a convolutional

filter) do not align with the input, the remaining values will be e↵ectively dropped.

Padding attempts to compensate for this loss by adding additional zeros to the input.
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Figure B.3: Output of a convolutional layer with various kernels. Original image is a

publicly available image of Grand Boulevard in Kansas City.
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Figure B.4: Max pooling example. Figure adapted from [9].

‘Same’ padding will attempt to pad the input with an equal number of zeros on all

sides of the input, but if the columns/rows needed are odd, they will be added to the

end (right, bottom).

B.1.5 Activation Functions

Activation functions centered around 0 are shown in Figure B.6. All activation func-

tions have previously been introduced, with the exception of the selu activation,

which is described in Klambauer et al [150]. Selu activations intend to help reduce

the vanishing and exploding gradients problems typically encountered in deep neural

networks.

Output Activation: Sigmoid vs Softmax

The output layer of many architectures is typically either softmax or sigmoid, fol-

lowed by a corresponding cross entropy function. Softmax is employed when per-

forming multiclass classification and sigmoid is employed when performing binary

classification, however solftmax can also be used for binary classification [133]
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Figure B.5: Valid vs same padding.
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Figure B.6: Activation Functions.
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B.1.6 Image Augmentation

Figure B.7: Augmentation Examples.

B.2 SAMPLE JSON FROM ISIC

{

” i d ” : ” ISIC 0011400 ” ,

” img id ” : ”558 d64f8bae47801cf735680 ” ,

”meta data ” : {

” i d ” : ”558 d64f8bae47801cf735680 ” ,

” modelType ” : ” image ” ,

” c r ea ted ” : ”2015�06�26T14 :43 :04 .363000+00 :00” ,

” c r e a t o r ” : {
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” i d ” : ”54 cb974fbae47819d8e4c727 ” ,

”name” : ”User GQZH”

} ,

” datase t ” : {

” i d ” : ”5627 f5 f69 f c3c132be08d852 ” ,

”name” : ”ISIC MSK�2 1 ” ,

”updated ” : ”2015�10�21T20 :33 :29 .916000+00 :00”

} ,

”meta ” : {

” a c q u i s i t i o n ” : {

” p ixe l sX ” : 1024 ,

” p ixe l sY ” : 768

} ,

” c l i n i c a l ” : {

” age approx ” : 50 ,

” benign mal ignant ” : ” benign ” ,

” c l in s i z e l ong d iam mm ” : 4 ,

” d i a gno s i s ” : ” l e n t i g o NOS” ,

” d i a gno s i s c on f i rm type ” : ” h i s t opatho logy ” ,

” family hx mm ” : ”no ” ,

”melanocyt ic ” : ” Fa l se ” ,

”personal hx mm ” : ”no ” ,

” sex ” : ” female ”

} ,

” unst ructured ” : {

”change ” : ”no ” ,

” changedtypeapr02 2015 ” : ”0” ,
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” l o c a t i o n ” : ”Upper Ext remi t i e s ” ,

” p a t i e n t l o c a t i o n ” : ”�1”,

” ptconcern ” : ”no ” ,

” quant loc ” : ”upper ext ”

}

} ,

”name” : ” ISIC 0011400 ” ,

” notes ” : {

” reviewed ” : {

” accepted ” : ”True ” ,

” time ” : ”2015�07�08T17 :14 :59 .159000+00 :00” ,

” use r Id ” : ”5450 e996bae47865794e4d0d”

} ,

” tags ” : [

” ISBI 2016 : Train ing ”

]

} ,

”updated ” : ”2015�10�02T15 :33 :48 .576000+00 :00”

}

}
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APPENDIX C

PREFERRED TOOLS AND ENVIRONMENT

C.1 INTERACTIVE PLAYGROUNDS

It can be di�cult to understand how neural network hyper-parameters a↵ect model

performance. A few tools have been written to help visualize some of these concepts:

deeplearn.js [11], Tensorflow playground [28], ConvNetJS [8]. An example screenshot

from the Tensorflow playground is shown in Figure C.1 displaying how a user can

build a model (using simple buttons, not code) and test di↵erent parameters like

number of hidden layers, number of nodes in a layer as well as hyperparameters like

learning rate and activation type.

C.2 CLOUD PROVIDERS

Some of the most popular cloud providers o↵ering GPUs for deep learning applications

are listed below:

• AWS [3]

• Microsoft Azure [23]

• GoogleCompute [18]

• FloydHub [16]

• Nvidia [31]

C.3 OS

The majority of software required can be run on Linux, MacOS, and Windows. In

my experience, many developers are more commonly using Linux or Windows distri-
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Figure C.1: Screen shot of the tensorflow playground

butions to execute their models on Nvidia GPUs, as support for necessary drivers are

typically easier to obtain and install.

C.4 LANGUAGE

Programming Language

Though deep learning could be performed many (any) programming language, there

seems to be a collective e↵ort to advance support for python [47]. Deep learning

frameworks most commonly support python and many data science related packages

and libraries are actively developed for python. Python isnt the only language choice,

but it does currently feel like the front runner.

C.5 ADDITIONAL LIBRARIES

When using deep learning frameworks in python there exist a few libraries that are

often used or mentioned in projects. It is important to be aware and familiar with
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these libraries as they are often dependencies to the project.

• Conda [4] is a package and environment manager. Conda is often used in place

of virtual env and pip.

• Jupyter Notebooks [39] is an application that allows users to better structure,

document, and execute code. Rather than running an entire program at once, a

jupyter notebook allows the program to broken down into logical sections that

can then be run individually – the output of each of these cells is also then

displayed inline.

• Numpy [29] is a fundamental package to python that performs e�cient dimen-

sional (matrix) operations.

• Scikit Learn [48] is a tool (built on top of numpy, scipy [49], and matplotlib)

that encapsulates many machine learning algorithms. Additionally, there are

many built-in functions that help streamline the machine learning process, from

data preprocessing to visualization.

• OpenCV [35] is a computer vision package that is often used to help visualize

and manipulate images in python. NOTE: scikit learn, numpy, and PIL [40]

are typically more popular dependencies, but OpenCV is often used by individ-

uals in addition to deep learning frameworks if additional, or advanced, image

processing is needed.

• Matplotlib [22] is a plotting library in python that is used to visualize data.

• CUDA/cuDNN Simplified, CUDA [10] and cuDNN [30] are low level libraries

that provide the deep learning framework access to GPU resources. Typically

users do not perform any CUDA programming, rather it is used as a supporting

library by the deep learning framework.
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• TensorRT [32] is an Nvidia product that helps accelerate deep learning frame-

works for inference. TensorRT optimizes a model so that the delay of inference

execution is minimized. This can be useful for high demand, low latency appli-

cations such as when used in driverless cars. The optimizer also allows the user

to specify how to optimize the model e.g. if the application does not require the

highest degree of accuracy, the model can be converted to use 16bit, or even 8bit

values to help increase speed and decrease computation needed. Additionally,

TensorRT can be configured to produce models that are optimized for specific

types of hardware (like embedded cards, for instance). Relative performance

increase shown in Figure C.2

Some other current trending libraries to be aware of are: i) Pachyderm [36], a tool

for data pipelines and a version control for data ii) ONNX [34], (Open Neural Network

Exchange Format) is advertised as an ecosystem for interchangeable AI models, iii)

Pipeline.ai, PipelineAI [38] aims to provide a pipeline for machine learning models

in which users can rapidly train, test, roll-back, optimize, deploy, and scale models

directly from a command-line interface and iv) Facets [14], a library for visualizing

datasets

C.6 HARDWARE

Hardware manufacturers are now o↵ering, or developing, custom hardware with an

advertised focus in deep learning performance.

Though performing deep learning on a CPU is possible, training even a relatively

simple architecture with a modest amount of data becomes painfully slow. Each epoch

could take minutes to hours. When first learning a framework, the lag can become

excruciatingly painful for debugging. Some processors with a high core count, like

Xeon-phi, may increase performance, but this performance gain typically depends on

whether the framework is written with multicore support in mind. Frameworks will
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Figure C.2: TensorRT performance increase. Figure from [32]
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Figure C.3: CPU vs GPU performance. Figure from [128]

typically will allow for a simple configuration change (in the form of a configuration

file or environment variable) that will allow access to di↵erent hardware without any

change to the user interface.

Generally speaking, a developer will likely first learn and execute a deep learning

framework on a personal computer without any custom hardware support. A personal

computer often provides enough power for getting a program running and may even

provide a user with the capability of running the hello world equivalent in deep

learning (MNIST classification), but little beyond this. The hardware limitations of a

personal computer are quickly realized and the next step will likely be to attempt to

access a GPU. GPUs, specifically Nvidia GPUs with CUDA support, provide a much

faster environment to execute code. See Strigl et al. [231] for an overview of GPU vs

CPU for CNNs.

Relative CPU/GPU hardware performance is shown in Figure C.3. Note that for

ResNet to be trained in Tensorflow, the upper bound for a desktop CPU is 21.63 sec-

onds and the best performance on a GPU (Nvidia 1080 in this case) is 0.085 seconds.

Figure C.4 shows a comparison between k80 and Nvidia latest GPUs designed specif-

ically for deep AI (tesla V100). The chart indicates a near 6x speed up in training
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Figure C.4: relative performance between latest nvidia GPUs designed for AI work-

loads. The V100 is shown to be roughly 3x faster than the P100 and roughly 6x faster

than the K80. Figure from [33]

time from K80 to V100.

Beyond GPUs, custom hardware like ASICs and FPGAs are being developed on

to provide more e�cient hardware. For example, Google is actively developing a

“tensor processing unit”, TPU [143], a custom ASIC that was designed specifically

with machine/deep learning and their machine/deep learning framework, Tensorflow,

in mind. There is a lot of debate on how fast these components are. Google claims to

be faster than Nvidia (Figure C.5) and Nvidia claims Googles benchmarking strategy

is incorrect [52].
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Figure C.5: A controversial relative GPU and TPU performance benchmark in which

the TPU appears to be superior to a GPU. Figure from [132]
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