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ABSTRACT 
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Title: Using Deep Learning Semantic Segmentation to Estimate Visual 
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 In this research, image segmentation and visual odometry estimations in real time 

are addressed, and two main contributions were made to this field. First, a new image 

segmentation and classification algorithm named DilatedU-NET is introduced. This deep 

learning based algorithm is able to process seven frames per-second and achieves over 

84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual 

odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual 

odometry error was more significant than could be accurately measured. However, the 

robust framerate speed made up for this, able to process 15 frames per second.  
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1. INTRODUCTION

1.1 Motivation  

 The topics of this research encompass various areas of computer vision, artificial 

intelligence, and photogrammetry. In the rising demand for autonomous vehicles, 

computer vision is an ever-growing field. Similar to how humans use their eyes to 

visually interpret the world around, the science of computer vision aims to give the same 

or better capability to a computer or machine. Comparable to this research, computer 

vision is being investigated exhaustively, i.e., augmented reality (Egodagamage, et al., 

2018), autonomous drones and vehicles (Huang, et al., 2017), and even healthcare 

(Erdan, et al., 2016). Computer vision, photogrammetry and artificial intelligence (AI) 

often overlap in many research interests (Hartley, et al., 2003). The science and art of 

capturing reliable information about physical objects through the process of interpreting 

images is known as photogrammetry (American Society of Photogrammetry, 1980). 

Photogrammetry is used for creating maps and relied upon for producing various aerial 

surveys. Deep learning is another name for artificial intelligence (Goodfellow, et al., 

2016). “Deep learning approaches to machine learning have had a major impact on 

speech recognition and computer vision” (Witten , et al., 2017). In this research we will 

explore various methods for estimating visual odometry along with various deep learning 

based image segmentation classification algorithms. 

An important task in the arena of computer vision is semantic segmentation 

(Huang, et al., 2017). There are many settings that use semantic segmentation. One such 
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is estimating street view scenes. This poses a severe problem, as street views often 

change in location and appearance. Even with the difficulties, this problem must be 

solved to support applications such as autonomous vehicles. In this section, the 

inspiration behind the research is discussed. The topics of this research encompass 

various areas of computer vision, artificial intelligence, and photogrammetry.  When 

object recognition is not enough, and each object per-pixel must be located and 

identified, such as road, vehicle, etc. One of the main limitations with deep learning 

based algorithms is the significant amount of data required. Though, this challenge was 

overcome with the introduction of U-NET. However, with U-NET, real-time image 

processing is not present in the previously presented solution (Ronneberger, et al., 2015). 

By adding an atrous (Kendall, et al., 2016) layers, this will increase the frame rate to be 

closer to real-time processing.  

There are various other methods for tracking a vehicles distance traveled or 

location. Wheel odometry is one of the most widely utilized methods to estimate the 

position of a vehicle (Borenstein J, 1996). This method counts the number of revolutions 

the wheel has made and based on this it estimates the distance traveled. This method is 

inexpensive; however, it is prone to error due to wheel slippages (Aboelmagd N, 2013). 

Another method uses an inertial measurement unit (IMU) (Rone W, 2013). This method 

measures the angle and forces with respect to gravity to estimate the position. An 

advantage of this method is that it does not require an external source, as it is a passive 

device. The disadvantage is that requires a double integration to estimate the position; 

therefore a small error will quickly accumulate (Wang D, 2014). GPS is an additional 

method used to determine location. This method utilizes a receiver and a minimum of 
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four satellites. By using trilateration, ground receivers calculate their position based on 

the time difference between the satellites sending time and the time received on the 

receiver (Aboelmagd N, 2013). One of the main advantages that visual odometry has 

over traditional navigation systems, i.e., GPS, it is not affected by dropouts caused by 

obstacles and can operate where GPS is not available such as tunnels or extraterrestrial 

planet exploration. Visual odometry can be used to determine the distance traveled, and 

position of a camera. The current primary methods rely on a feature detector to detect key 

pixel in an image. Before reconstruction, a scene from a series of overlapping images, the 

position of each frame must be known. A crucial challenge in estimating the visual 

odometry is the image processing. Estimating visual odometry is a passive method for 

determining the cameras position and orientation. Visual odometry relies heavily on the 

feature extraction. Currently ORB and FAST are two prominent feature extractors. By 

reducing the amount of data, the feature detector must process; it will decrease the time 

required and advanced to the next frame sooner. Frame skipping is often a method that is 

used to stay real-time. When skipping frames, valuable information may not be captured. 

There have been many advancements in feature detection algorithms (Taketomi, et al., 

2017). Yet, using the whole image for feature detection produces too many features and 

thus need to be reduced to only the important one. For this reason, this research is 

proposing to use the segmented images and also test the use of only the extracted lines. 

By using only, the edges from segmented images, this could decrease the time for feature 

extraction. By increasing the speed of feature extraction for estimating visual odometry, 

computer vision scientist working with autonomous vehicles will benefit.  

1.2 Literature Review  
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In this section, a literature review camera calibration, deep learning image 

segmentation, feature detectors, and methods of estimating camera visual odometry are 

presented. Some matters, such as camera calibration are well established, and fewer 

studies were required. While others like methods of deep learning image segmentation, 

more focus has been paid due its recently. There’s an extensive list of the literature of 

dense image segmentation methods. In this review, only a small subset is surveyed. 

1.2.1 Camera Calibration  

Camera calibration is needed to remove various distortions from both the camera 

sensor and lens, ensuring the accuracy of final measurements. There are multiple methods 

for camera calibrations (Heikkila, et al., 1997). Camera calibration of intrinsic metrics 

has been meticulously examined in previous research. A brief literature review on 

methods of camera calibration is presented in this section. 

Heikkila, et al. (1997) also completed a brief literature review of various camera 

calibration methods and presented a four-step technique for camera calibration. Their 

concern was that there is too little research that focuses on the entire camera calibration 

process and mostly concentrated on model fitting. The four-step method was built upon a 

classic photogrammetric method in (American Society of Photogrammetry, 1980). The 

first parameter values in the two-step method are linearly calculated, then the ending 

values are found using nonlinear minimization (Heikkila, et al., 1997). Extended this 

process with a third step by adding control points whose projections are greater in size 

than one pixel. Finally, the fourth stage of the proposed procedure solves the image 

correction problem by using the new implicit model that interpolates the correct points 

based on the physical parameters. This method presented demonstrated a higher accuracy 
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camera calibration that is advantageous in 3D measurements for camera-based 

applications such as computer vision mapping. Charge-coupled device (CCD) cameras 

have the accuracy capacity higher than 1/50 of the pixel size (Heikkila, 2000). In 

(Bhardwaj, et al., 2017) a method labeled as AutoCalib for the automatic calibration of 

traffic cameras was proposed. AutoCalib is a system that uses deep learning methods to 

extract critical features from traffic camera frames. Using a filtering and aggregation 

algorithm, they were able to derive and implement the needed calibration parameters 

automatically. This method produce was able to perform in real-world settings with a 

metric error less than 12%. 

1.2.2 Segmentation and Classification 

Image segmentation is completed by joining edges of homogeneous image pixels 

that are separated into regions. This area of image segmentation has been thoroughly 

studied, however, is a hot topic in computer vision. Some segmentation methods are 

threshold based, where a pixel or series of pixels meet some criteria, then it is segmented, 

similar to Canny (1986). This method uses a Gaussian smoothing to find edges along 

with local non-maxima suppression to remove false edges. However, is not able to be 

adaptive as it solely relies on thresholds. Other methods use a machine learning approach, 

relying on previously known data. Bayes’ Theorem is a typical architecture for this type 

of approach, as it relies on previous outcomes based on prior sequences or pixel 

relationship to corresponding or surrounding pixels. Settings like nearest neighbor can be 

chosen, along with small selections from the imagery of known pixels. These contribute 

to the creation of a supervised machine learning model. This model is then used or 

applied to the entire image or even a series of analogous images.  
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Another type of supervised learning is the use of Deep Learning, similar to what 

is used in this research. Deep Learning can be viewed as a subsect of machine learning. 

Deep Learning uses a series of hidden layers each with a defined set of instructions then 

outputs to the next, then finally creates an output decision. These outputs can be as 

simple as determining the if an image contains a cat or a dog and as extensive as 

identifying each pixel as done in this research. By using multiple layers, each layer looks 

for specific feature example of Figure 2. The first layer is what a human may look at. 

However, the Deep Learning method might inspect for generalized features of edges on 

the first hidden layer, then corners or contours on the second and so forth, then finally an 

output layer or classification occurs (Goodfellow, et al., 2016).  

 

Figure 1 Deep Learning Layers, Source: Computer Vision for Multiple View Geometry 

In (Kundu, et al., 2014) a method that uses a series of overlapping images and an 

SFM algorithm that generates a 3D point cloud is presented. Then the images are 
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segmented and classified using 2D scene parsing method. The 2D segmented images are 

then overlaid onto the 3D point cloud as shown in Figure 1. Although the 3D sparse point 

cloud can be generated in real-time, however much post-processing is required in order 

the create the 3D segmentation portion. 

 

Figure 2 2D Segmentation overlaid on 3D point cloud, Source: Kundu, Li, Dellaert, Li, & Rehg 

During the literature review of deep learning based image segmentation methods, 

a method named SegNet was found. One of the main limitations with deep learning based 

algorithms is the significant amount of data required. Though, this challenge was 

overcome with the introduction of U-NET (Ronneberger, et al., 2015). The key part of U-

NET is the use of concatenate of the semantic mask. This enables a lower amount of 

required training data. When introduce, Ronneberger, et al. (2015) only used 30 images 

to achieve over 90% accuracy. Erdan, et al. (2016) also presented using the U-NET 

architecture however they used three-dimensional convolutional layers. The primary 

objective was to detect and identify brain tumors using Magnetic Resonance Imaging 

(MRI) brain scans. Due to the extensive amount of resources required by three-

dimensional convolutional layers, tests of various settings were performed using two-

dimensional convolutional layers initially to find the best optimization settings. The final 
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experiments were performed using three-dimensional convolutional layers. With only 

285 brain volumes and only 25 epochs, they were able to achieve accuracy over 70%. 

The first version of SegNet presented by Badrinarayanan, et al. (2015)  proposed an 

original deep architecture for semantics pixel-wise image labeling. SegNet works by re-

purposing previously trained image classification models for semantic segmentation. This 

is performed by applying an Atrous convolution with upsampled filters for feature 

extraction. Atrous convolution is also known as dilated convolution (KERAS and 

TensorFlow) or Atrous Spatial Pyramid Pooling (Chen, et al., 2017). The first 

introduction of the dilated convolution network was in (Yu, et al., 2016). Fundamentally 

this type of convolution supports increasing receptive fields without reducing the 

resolution or coverage via “dilating” the kernel by 1 – 1 pixels (Huang, et al., 2017). In 

(Bláha, et al., 2016) a method for joint 3D reconstruction and semantic labeling of large 

city model from both terrestrial and aerial images was presented. Knowing that the 

observed surface is only a 2D manifold in a 3D space, they used an adaptive 

multiresolution framework for semantic 3D reconstruction. This hierarchical scheme is 

based on the assumption that high spatial resolution and high numerical precision are 

only in regions that are likely to contain a surface. This method claims to save 98% 

memory and 95% time, while still maintaining the accuracy of the existing means of 

creating large 3D semantic models. Then fully connected conditional random fields were 

combined with deep convolutional neural networks to create accurate predictions of 

detailed segmentation maps. This proposed method significantly advanced over the 

PASCAL VOC 2010 semantic image segmentation benchmark. The architecture consists 
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of a concatenation path that captures the context and a proportioned expanding path that 

enables accurate localization.  

Advancing on the original SegNet, the Bayesian SegNet, a probabilistic pixel-

wise semantic segmentation with a deep-learning backbone was presented in (Kendall, et 

al., 2016). This deep learning approach showed to be functional for smaller size data sets. 

One advantage the method has is the output of uncertainty that is produced. This is a 

visual way of representing the effectiveness of the model. Another positive note is the 

ability to be run in real-time on a GPU. The main contribution was expanding deep 

convolutional encoder-decoder neural network architectures to Bayesian-based 

convolutional neural networks.  

1.2.3 Edge Detection and Visual Odometry 

It is worth noting that Simultaneous Location and Mapping (SLAM), or Bundle 

Adjustment methods topics have previously been investigated. Tomasi, et al. (1992) 

presented a factorization method that can overcome the difficulty of inferring scene 

geometry and camera motion from a stream of images. Today this method is known as 

visual odometry. They displayed an accurate method that uses the rank theorem to 

factorize the measurement in shape and motion tracking. They factored the measurement 

matrix into two separate matrices; one for the rotation of the camera and the other for the 

object shape in a scene. Also since two of the three translations are taken care of in 

preprocessing, it can handle a partially completed matrix that resulted from tracking 

failures or distortions.  

Sturm, et al. (1996) proposed using a factorization based algorithm to solve for 

the location and motion tracking of a series of sequential images and can be view as an 
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extension of methods presented in (Tomasi, et al., 1992). However, in (Sturm, et al., 

1996) the main technical contribution is a novel method to recover the unknown 

projective depths, using fundamental matrices and estimated from the image data. After 

normalizing the image coordinates, they estimated the matrices and epipoles. 

Subsequently, the scale factors were determined and rescaled the measurement matrix W. 

Matrix W was then balanced via scalar multiplication. Afterward, the Singular Value 

Decomposition (SVD) is computed, and the recovery of both the motion and shapes are 

completed. SVD is both an efficient and accurate method, being able to use in real time.  

Later Poelman, et al. (1997) compared the previous orthographic projection 

factorization method with the newer Para perspective method. One of the difficulties with 

orthographic factorization method is that when objects move into, away from the camera, 

or across the scene, inaccurate motion results and errors in the shape occur. They 

discovered by adding iterations into the perspective refinement step can significantly 

reduce the perspective distortions. However, one of the leading complications with this 

method is the efficiency that it lacks and is not able to be used for a real-time application. 

NASA first introduced visual odometry for the Mars Exploration Rovers (MER) 

project. Visual odometry was developed so that the rovers could navigate, as there is no 

global position sensor (GPS) satellites present (Helmickreceived, et al., 2004). Visual 

odometry uses a series of algorithms to find the location, position, and orientation of the 

camera. 

Commonly a vital part of estimating visual odometry is feature detection. When 

humans navigate up or down stairs, the edges and corners are located before making a 

step. This is analogous to how a feature extraction or feature matching algorithm 
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operates. At the heart of many computer vision technologies are feature point descriptors 

(Calonder, et al., 2010). There are multiple feature detector algorithms available. Like 

most approaches, some perform better than others. The Harris corner (Harris, et al., 1988) 

detector uses the differential of the corner weight and directly references the direction. It 

has been improved and adopted by many for other subsequent applications (Hartley, et 

al., 2003), (Rosten, et al., 2006). Also, worth mention, Scale Invariant Feature Transform 

(SIFT) converts data from images into scale-invariant coordinates to local features 

(Lowe, 2004). This is performed by generating numerous feature points that cover most 

of the image. These points are then extracted, stored in a database. On the following 

frame, this occurs again, and the two files are compared to find matches based on the 

Euclidean distance. Due to the comparison of files, SIFT computationally costly, thus not 

able to perform in real-time. Similarly, Speeded-Up Robust Features (SURF) is a scale 

and rotation invariant detector and descriptor that uses integral images for image 

convolutions (Bay, et al., 2007). This method is faster than SIFT, however similar to 

SIFT, the creators have patented it and there are use restrictions (Rublee, et al., 2011). 

The Features from Accelerated Segment (FAST) algorithm is a high-speed feature 

detector that was designed to be used as a tool to enable faster 3D scene reconstruction 

for SLAM problems (Rosten, et al., 2006). Explicitly, the FAST algorithm was 

specifically designed to be able to be used for full frame rate speed. Although this method 

is faster than previous methods and ready to repeat under various kinds of features, it is 

not refined. It is threshold dependent, not robust to high levels of noise and can only 

respond to the one-pixel width at certain angles. An apt feature point descriptor that uses 

binary channels is named accordingly. Binary Robust Independent Elementary Features 
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(BRIEF) was introduced in (Calonder, et al., 2010). Similarly to SURF, it uses the 

Hamming distance which has proved to be very efficient for computations. When 

compared to SURF on standard benchmarks, BRIEF shows to be similar or better 

(Calonder, et al., 2010). 

Another feature detector is the Oriented FAST and Rotated BRIEF (ORB) 

(Rublee, et al., 2011) which was built on the existing framework of FAST. This feature 

extraction algorithm combines the efficient computation of oriented BRIEF on top of 

FAST. Unlike FAST, ORB is rotation invariant and resistant to noise. The inventors of 

ORB also contributed a BSD license for the computer vision community to enjoy it 

freely. 

There have been many successful results for monocular setups over long distances 

that estimate visual odometry. In  (Nist´er, et al., 2004) they presented one of the first 

real-time largescale visual odometry with monocular camera setup. This method works 

by tracking features over a specific number of frames, then triangulates the features track 

and makes estimations on the trajectory or visual odometry. This method was tested using 

a robotic platform with Differential Global Positioning System(DGPS) as the baseline. 

The error ranged from 1% to 5% pending on the environment. The homogenous setting, a 

meadow proved to have the highest error. Also, similar to (Nist´er, et al., 2004) and 

(Lhuillier, 2005), they too used RANSAC to remove outliers. In (Lhuillier, 2005) and (E. 

Mouragnon, 2006) a method that performed a bundle adjustment over a set of frames to 

recover the motion a pose was presented. In (Garc´ıa, et al., 2012) two different methods 

for monocular based visual odometry was presented. Firstly Appearance-Based Visual 

Odometry was presented. Using the whole image without any feature extraction, a real-
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time algorithm that computes an appearance-based map. The second method like (Nist´er, 

et al., 2004), used the feature based system to estimate the visual odometry. The error rate 

using feature proved to be more consistently low (less than one sigma), while the image 

based continued to increase as the frame increased (close to 2 sigmas). To improve upon 

the localization of autonomous vehicle driving in an urban setting. Ballardini, et al. 

(2016) presented a method that uses the façade of detected vehicles to produce an 

accurate lane-level localization of the vehicle. Localization is being performed using a 

probabilistic framework called “Road Layout Estimator.” Using images from a stereo rig 

mounted camera system, a mathematical representation of building fronts is matched 

against buildings that are available on OpenStreetMap. 

1.3 Objective 

Several studies have been performed that segment and classify images using deep 

learning. More specifically a convolutional neural network (CNN) with U-NET 

framework was explored.  During the downsampling of the model, each of the pixels is 

analyzed by the convolution layers, causing the speed of the model to slow.  This 

research aims to improve the on the image processing speed while maintaining or 

improving the accuracy by implementing an Atrous layer into the existing U-NET 

framework. Also, investigations have been conducted to estimate the visual odometry of 

a camera.  

When image segmentation and visual odometry are performed, it is common that 

they are performed separately. Then the data must then put realigned in a later step. This 

method is prone to introduce error during the realignment process and adds time delay to 

the process. This research intends to explore a new method that performs both of these 
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steps in a sequence, thus reducing the chance of introducing error while decreasing the 

process time.  By utilizing only, the edges from a semantic segmentation frame sequence, 

time could be saved while maintaining accuracy.  

To perform this, the following tasks were carried out; 

• Setup and Calibrate Monocular Camera Setup 

• Create a new image segmentation and classification algorithm that 

combines the U-NET framework with Atrous convolution layers 

• Create a process to extract edges from segmented images without losing 

the classifications 

• Implement method presented in (Garc´ıa, et al., 2012) to compare the 

Visual Odometry estimation between using images versus using the edges 

of the segmented images. 

1.4 Thesis Structure 

 The overall layout of the thesis consists of four chapters. In Chapter 1, a concise 

literature review was executed. Chapter 1 also provides information on the motivations 

and challenges for current in practice methods. The methodology is discussed in Chapter 

2, which includes camera calibration, data preparation, image segmentation and 

classification, 2D line extraction, and estimation of each camera pose using visual 

odometry. Chapter 3 presents the experiments and findings of stages of the methodology. 

Chapter 4 states essential observations and advises future recommendations. 

1.5 Presentations and Publications 

 Significant findings and research works carried out during completion of this 

research have been presented as a poster in the 2018 American Society of 



 

15 

Photogrammetry and Remote Sensing Annual Conference at Denver, Colorado, USA, 

under the title “Using Computer Vision to Create Perpetual Map.” A journal manuscript 

related to the findings of creating a new method for semantic segmentation titled 

“DilatedU-NET Image Segmentation” is being prepared and is expected to be ready for 

review by the end of April 2018. 
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2. METHODOLOGY

2.1 General 

As previously mentioned each solution comes with both strengths and 

weaknesses. The method being presented functions by combining computer vision 

algorithms with photogrammetry. It is intended to overcome the need to look at a raw 

image more than once for visual odometry. The techniques used in this study relies on 

previous topics, i.e., image segmentation, camera calibration, deep learning, and 

photogrammetry.  

Due to the multipart procedures of this research, the methodology is organized 

into three sub-categories as shown in Figure 3. The camera calibration section which 

includes; the video feed was input process; extraction of calibration parameters; and how 

the parameters are implemented will be presented first. The second section describes the 

creation process for defining the model weights along with other aspects of creating the 

image processing algorithm. Lastly, the method for estimating the camera position or 

visual odometry is presented. 
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2.2 Camera Calibration 

Latency is the period it takes for an image to be captured and processed. Real-

time processing is a high priority, and video streaming is one area where this could hinder 

the process. Realizing this issue, we needed to find a method that would both have low 

latency while maintaining the video quality. The solution for this was to use the OpenCV 

library to collect video stream. At 30 frames per second(FPS), no delay was present. 

An essential part of any research involving video capture is having the camera 

calibration parameters, as this can introduce errors if not performed. In this section, the 

method used for camera calibration is presented. Image distortions can be introduced via 

irregularities in both camera sensors and lenses. Errors caused by these distortions will 

propagate the level of uncertainty throughout the entire procedure. In this section, the 

intrinsic calibration method is explained. Briefly stated, the distortions were taken care of 

by calibrating the camera using the OpenCV library similarly to (Y. M. Wang, 2010). 

The measurements of the camera lens independently and concerning the camera sensor 

are taken into consideration in order to find the intrinsic parameters.  

Principally, two types of distortions occur within a camera, radial distortion, and 

tangential distortion. Radial distortion occurs when the rays of light entering the frame 

bend more at edges than in the optical center (Zhang, 2000). Figure 4 Radial distortion is 

a common issue with a pinhole style of camera, like the one being used for this research. 

Tangential distortion takes place when the lens is not perpendicular to the sensor of the 

camera. Often with lower quality cameras, tangential distortion occurs if the glue that 

holds the sensor is placed incorrectly or the lens does not seat completely, thus causing 

the sensor and lens not to be parallel.  
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Figure 4 Radial Distortion, Source: www.mathworks.com 

 

 

Figure 5 Tangential Distortion, Source www.mathworks.com 

 

To correct the distortions first the existing conditions, need to be extracted using 

known parameters. The Radial distortion occurs when the lens of the camera is curved. 

For the radial distortion factors, equations 1 and 2 were used. 

 

 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥(1 +  𝑘𝑘1𝑟𝑟2 +  𝑘𝑘2𝑟𝑟4 +  𝑘𝑘3𝑟𝑟6)  (1) 
   
 𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦(1 +  𝑘𝑘1𝑟𝑟2 +  𝑘𝑘2𝑟𝑟4 +  𝑘𝑘3𝑟𝑟6) (2) 
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𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the corrected output for each of the previous x and y pixels 

respectively.  

 k1, k2, k3 are the symmetric radial distortion coefficients, and r is the collinearity equation 

terms. 

As previously mentioned, when the camera lens is not perfectly parallel to the face of the 

CCD sensor, tangential distortions occur. It is correct using equations 3 and 4. 

 

 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑥𝑥 +  𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2)] (3) 

 

 𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦 + [𝑝𝑝1(𝑟𝑟2 +  2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑥𝑥] (4) 

 

p1, p2 are the decentering distortion coefficients. 

Finally using equation 5, we calculated the unknown focal length. (Camera Matrix) 
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(5) 

 

Using the homographic coordinate system (w = z).  

The unknowns fx and fy (focal lengths in x and y) and cx and cy locates the center of the 

camera sensor in pixel coordinates. If we use a as the aspect ratio and then fy = fx * a.  We 

then have a single focal length f. Worth mentioning, in this research lens in use, is a fixed 

focal length. 

During the calibration stage, it was recommended to have a minimum of 18 

images. However, after testing with only 18 images, the radial distortion was still visible. 

After it was tested up to 100 images in intervals of 10 and after 50 images were used for 

calibration, no difference could be seen. Also, the correction parameters had minimal 
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changes after 50 images. Even worth noting that after 30 images the time for processing 

began to increase rapidly. This process took a total of three hours; this includes testing 

the various parameters and implementation of the Python code. This step was performed 

for both cameras. This procedure was performed with the OpenCV 3.3.0 library using 

checkerboard patterns (OpenCV Dev Team, 2014). 

 

Figure 6 Uncalibrated Image 

 

Figure 7 Calibrated Image 

 

Now that the intrinsic parameters of the camera are known (focal length f, the 

pixel size s, and the image center Ox and Oy), setup and testing for field collection are 

performed. These parameters are then implemented when video or image collection is 

performed.  

One of the main limitations of the algorithm being used for this study is that the 

input image height and width must be equal. Using OpenCV, two methods are available 
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to solve this issue. The first option is to resize the image. This method performs a 

geometric image transformation and has increased the time for processing over the image 

crop method. The cropping method is just that; it crops off the image using the predefined 

values defined by the user without slowing down the overall process. 

Upon successful video feed and record test in the lab, the cameras were then 

mounted to the vehicle for field collection. During the field collection or video recording, 

permission was granted from the university police department. It was conducted over 

winter break, so that traffic interference was minimal. Using a 3D printer, custom mounts 

were created for the cameras to be mounted to a piece of steel channel. Using strong 

magnets, the steal channel was held in place in the front bumper of a vehicle. Long USB 

cables routed from the cameras to the interior, where the laptop was located. All video 

capture was performed also using OpenCV. 

Although there are video and image processing techniques to remove 

environmental occlusions and distortions, careful thought was applied for selecting the 

time of day when the video was recorded for training. The objective of this research is 

not to process these types of distortions. Mid-day was chosen to eliminate any 

introduction of lighting difficulties. After all field capture was completed, a total of 22 

minutes of road-related video was recorded.  

2.3 Data Preparation and Augmentation 

A fundamental part of all machine learning is preparing the data. In this section, 

the data preprocessing methods that were incorporated are discussed. There are many 

datasets they are designed to contribute for computer vision purposes. Cityscapes is a 
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benchmark suite and large-scale dataset to train and test approaches for pixel-level and 

instance-level semantic labeling (Marius Cordts, 2016).  

Once images are downloaded, they are then uploaded to the web-based software 

Supervisely, an image processing tool (Supervisely, 2017-2018). Supervisely provides 

various tools for image data preparation for machine learning purposes. Each image 

needs to be resized, tagged for training or validation, and the classes determined. Data 

augmentation is essential to train the network the desired invariance and robustness 

properties when only few training samples are available (Li, et al., 2017). Finally, with 

the Supervisely tool, a .json file was used to organize, export and create the download 

package. The output file consists of the segmented images in a .png format, a .json file 

that contains the descriptions for each color in the segmented images, the original image, 

and finally a ground truth image that is substantially three images in one. The ground 

truth contains from left to right, the original image, the segmented image, and the original 

image with a transparent overlay of the segmentation.  

2.4 Image Segmentation 

Convolutional Networks also known as CNN employ a specialized linear math 

operation known as a convolution. In a less complicated form, CNN’s are neural 

networks that use a convolution in at least one of the layers in place of general 

multiplication (Goodfellow, et al., 2016). In each one of the CNN layers, there are 

usually three stages. The first stage consisting of the input, where multiple convolutions 

are performed in parallel in-turn produces a set of linear operations. The second stage is 

occasionally referred to as the detector stage, runs the set of linear operations through a 

non-linear activation function, for example, a rectified linear (ReLu). The third stage acts 
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a method of grouping or pooling stage. In the pooling stage, the output is further 

modified by using a series of nearby statistical values to produce the results in 

preparation for being the next layers input. These layers will repeat as much as the data 

scientist sees fit until there will be a final output layer for classification and show in 

Figure 8. 

 

Figure 8 CNN Overview, Source: Deep Learning 

 

Although the general basis of a CNN is usually similar, there are various other 

frameworks. A U-NET style architecture was first introduced in (Ronneberger, et al., 

2015). It is primarily agreed on that for successful training of deep learning networks 

requires many thousand annotated training samples (Ronneberger, et al., 2015). They 

presented a novel method that relies heavily on the data augmentation to use the 

annotated training data more efficiently using fewer data. Their motivation is due to the 

limited amount of biomedical data, as it is challenging to acquire. This type of network 

proved to be successful. Only using 30 images with size 512x512, they were able to 

achieve 92.03% accuracy. Unlike a standard CNN being Feedforward, with U-NET each 

layer input segmentation mask is then concatenated to its corresponding mirrored output 

layer as shown in Figure 9. 
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The framework that was used for the video/image classification and segmentation 

portion of this manuscript uses a U-NET style CNN. This type of network was selected 

due to its performance and efficiency. When first introduced by Ronneberger, et al. 

(2015), only a small number of images were used. The type of network overcomes the 

difficulties of large datasets.  

 

Figure 9 Simplified U-NET Architecture 

 The training of deep learning segmentation typically takes more time than 

conventional CNN’s trained for object identification. The extended training time is due to 

the comparison of each convolution between the images and the masks annotations. 

Another limitation of the U-NET is the requirement of square images. However, even 

with these limitations, the advantage of the accuracy outweighs for this research.  

Much like (Ronneberger, et al., 2015) and (Erdan, et al., 2016), a UNET style 

CNN was used for this research. However, modifications were made to increase the 

performance outcomes. In this section, a modified version of U-NET is presented as 

DilatedU-NET. Some of the other modifications include adding padding and creating a 
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deeper network. However, the most significant contribution to deep learning is the 

implementation of dilated convolution layers for the downsampling portion. 

During the convolutional portion of the network, padding can be disabled. 

However, if padding is disabled, the output image will not be the same size as the input 

image. Permanently padding adds a placeholder type border around the image to ensure 

the output size equals the input. As the final product needs as much data to reconstruct 

the 3D scene, the choice of not using the padding was not an option. Figure 10 

 

Figure 10 CNN with Padding 

As the motivation is to increase the speed for the estimation of the visual 

odometry. Therefore acute accuracy is desired. It was for this reason that more layers 

were added. DeepU-NET was presented for segmentation of remote sensing images (Li, 

et al., 2017). They used a total of 42 layers to classify land and water. Using their dataset, 

they compared their method with that of SegNet (Badrinarayanan, et al., 2015) and the 

original U-NET (Ronneberger, et al., 2015). The DeepU-NET outperformed both.  

Using Atrous Spatial Pyramid Pooling or Dilated Convolution for deep learning 

based image segmentation has shown to decrease noise when edges are created for 

segmentation (Badrinarayanan, et al., 2015) and (Chen, et al., 2017). Atrous Spatial 
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Pyramid Pooling selects the next nearest pixel or the next-next most adjacent pixel during 

the downsampling portion of the Convolutional Neural Network. Figure 11  

 

Figure 11 Dilated Examples 

The overall network framework illustrated in Figure 9 consists of a downsample 

paths on the left and upsampling paths on the right. The downsampling paths follow the 

stages of a CNN composed of two 3x3 dilated convolutions with padding, detector stage 

uses a rectified linear (ReLu), and finally, the grouping stage uses a 2x2 max pooling 

operation. Figure 12 The number of feature channels doubles at each downsampling step. 

Each step of the upsampling consist of a 2x2 up-convolution, halving the number of 

feature channels, the concatenation with the corresponding copy and cropped feature, two 

3x3 convolutions, followed by a ReLu. Once at the final layer, a 1x1 convolution is used 

to map each component to the final output using a SoftMax activation. 
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Figure 12 CNN Max Pooling, Source: Deep Learning 

Deep learning algorithms need various methods of optimization. The job of either 

minimizing or maximizing some function f(x) by altering x is known as an optimization 

(Goodfellow, et al., 2016). Another requirement for the algorithm combined with this 

type of data is to have a type loss function where the error is zero when there is no error 

and get larger the as the error increases. Binary cross entropy functions are able to fulfill 

this need. The binary cross entropy loss function is a type of logistic regression model. 

This type of loss functional was also used with the U-NETs used by Li, et al. (2017) and 

Erdan, et al. (2016).  

Only one of the two terms will matter at a time; therefore, it is referred to as a 

binary. The target is either one or zero If the objective is one only the first term is 

imperative, whereas if the goal is zero then only the second term matters. Since log(y) 

will never be positive, the whole is multiplied by a negative. 

𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑦𝑦 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

log(𝑦𝑦) = −∞ 𝑡𝑡𝑡𝑡 0 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  −� 𝑡𝑡𝑛𝑛 log(𝑦𝑦𝑛𝑛) + (1 −  𝑡𝑡𝑛𝑛) log(1 −  𝑦𝑦𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

Finally, the total error needs to be calculated to optimize over all the training data 

simultaneously. This is accomplished by summing over all the individual errors that give 

the sum over all the individual cross entropy. 

Probabilities that are associated with a multinomial distribution is often performed 

using a SoftMax prediction. Fundamentally, multinomial distribution involves the 

prediction of two or more outcomes, i.e., this research 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =  
exp (𝑥𝑥𝑖𝑖)

∑ exp (𝑥𝑥𝑖𝑖)𝑛𝑛
𝑗𝑗=1

 

2.5 Extract 2D Vectors 

In this section, the method for extracting the edges from the semantic images is 

presented. In many practices, the classification of the edges is lost during edge extraction. 

The technique being presented preserves the classification and carries it through to the 

visual odometry portion. Starting with the classified segmented images, each class is 

represented by a unique color and is explicitly assigned these colors by the  

DilatedU-NET model. For each category, a threshold is created. All classified segments 

are selected in parallel. Once selected, each is converted to greyscale using OpenCV 

(OpenCV Dev Team, 2014). Each class is temporally stored in the temporary memory. 

The edges are then extracted from each segment using a Canny Edge (Canny, 1986) 

detection algorithm and converted into 2D polylines utilizing the find contours command 

in OpenCV.  
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2.6 Feature Detection and Visual Odometry 

Similar to how humans can recognize edges or corners is second nature, feature 

detection needs to be accurate and speedy. Visual odometry and feature detection work in 

conjunction with each other. Unlike a bundle adjustment, visual odometry is used 

primarily for advancing moving image sequences, i.e., video to obtain the position and 

rotation of the camera. Visual odometry and a bundle adjustment are similar in the sense 

that they both solve for the location of the camera positions. However, a bundle 

adjustment is designed for more significant differences in camera positions and can 

compensate for using different types of cameras. Visual odometry was created when 

there are only slight changes in camera positions, i.e., video image sequences can be used 

for real-time applications (Hartley, et al., 2003). 

The KITTI dataset was used to maintain a standard point of reference for the 

estimated visual odometry. The KITTI dataset is benchmark data that contains twenty-

two stereo sequences. It also provides ground truth data for eleven of the sequences. For 

our purposes, only the left view of the was used. 

Much consideration was taken when selecting the algorithm for feature extraction. 

Based on the literature reviewed, using the ORB algorithm give the impression to be the 

preferred method. However, the evaluation of both the ORB and the FAST were 

performed using the KITTI dataset (Vision meets Robotics: The KITTI Dataset, 2013).  

During testing a visual way to locate the error is to view a ground truth map and 

look for drift; i.e., Figure 19 and Figure 20. Drift occurs when the feature detector selects 

points or landmarks in frame one and the predicted corresponding points in frame two. 
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There can be some small errors in the difference of location estimation. As the frames 

advance, so does the error propagate and gives the appearance of drifting off course.  

Principally the methodology for estimating the visual presented in (Garc´ıa, et al., 

2012) is what was used for this portion. However, ORB and FAST feature detectors were 

used instead of SURF and SIFT. In this research, we compared the original images, the 

color segmented images, and the 2D lines extracted from the segmented images to one 

another using both ORB and FAST. 
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3. Experiment Implementation and Results 

3.1 Hardware and Software 

Prior to performing any experiments, consideration for the types of hardware and 

software must be taken. Majority cameras sold today are digital and are also incorporated 

into many devices ranging from smartphones to automobiles. Before camera selection 

begins, some criteria were set and are listed, 

 Fixed Focal Length 

 5 Megapixels or Greater 

 Each Camera Cost less than $50.00USD  

 Linux/Windows Fully Compatible 

 Transfer Data/Powered by USB 

Based on this criterion we selected the "ELP 5 Megapixel" sensor with fixed 

focus lens of 2.8mm, costing $45.00USD. Two cameras were purchased for redundancy. 

Though not labeled as such, these are a pinhole style of camera. Pinhole cameras use a 

small sensor. However, due to the size, only a limited amount of light can be sensed. To 

alleviate this issue, a highly curved lens is added, this is not as extreme as a fisheye style 

of lens. Though a significant amount of radial distortion is introduced, this was accounted 

for in 2.2 Camera Calibration 

Also, a powerful computer with a robust GPU was necessary for training the 

algorithms. A custom-built lab computer containing an Intel Xeon processor, 128gb of 

memory, 256gb SSD, and an NVidia GeForce Titan Black GPU proved to be more than 
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enough for the training. A Dell laptop with an Intel I7 CPU, 16gb of memory, 1TB SSD, 

and an NVidia GeForce GTX970 was used for the mobile applications. This laptop was 

provided by other sources. 

Ubuntu 16.04LTS is the operating system used. The crucial software and libraries 

used were Python 3.5 (Python Software Foundation), OpenCV 3.3.0 (Itseez, 2017), Keras 

2.1.4 (Chollet, 2015), TensorFlow 1.4 (Martín Abadi, 2015), and Numpy 1.14 (Anon, 

2018).  

3.2 Image Preprocessing 

 In this section, the setup and results of the experiments are discussed. Prior 

to downloading the Cityscapes dataset, an account needed to be approved by the 

Cityscapes team. This took four days after registration to obtain approval. Upon approval, 

“gtFine_trainvaltest.zip” and “leftImg8bit_trainvaltest.zip” were downloaded.  The 

segmented annotations are contained in “gtFine_trainvaltest.zip” and the images in 

“leftImg8bit_trainvaltest.zip”.  

Before uploading to Supervisely, initial preparation steps were taken, so that the 

Supervisely web tool would recognize the data accordingly. Both files must be extracted, 

then, the folder “leftImg8bit” within the “leftImg8bit_trainvaltest.zip” and the “gtFine” 

folder within “gtFine_trainvaltest.zip” must be compressed into a new folder. Once the 

new compress file is created, it can then be uploaded to the Supervisely web tool as 

shown in Figure 14.  

Upon files being uploaded, the images were then resized, tagged for training and 

validation as shown in Figure 15. Due to the limitations of the purchased cameras, the 

image size was resized to 416 X 416. Then using these settings, they were exported and 



 

34 

downloaded for training purposes. To simplify the experiments, the classes were reduced 

from 31 to 5 to include road, vegetation, sky, lamp post, and vehicle classes. Only 3 of 

the cities were used for the training, consisting of 230 for training, 100 for validation, 

totaling 330 images comprised of the Cityscapes dataset. 

 

Figure 13 Supervisely Project Creation 

 

 

Figure 14 Supervisely Image Preprocessing 
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3.3 Deep Learning Results 

Using KERAS with TensorFlow on the backend, the DilatedU-NET script was 

created. When training the network, two different methods were evaluated. Type 1, non-

dilated and Type 2 containing the dilated layers. The separate models were created to 

evaluate if adding dilated layer would increase the accuracy while decreasing the 

processing time within the DilatedU-NET. 

Other than the dilated layer, both Type 1 and Type 2 settings remained constant. 

The learning rate was set 0.00001, batch size set to eight and a total of 1000 epochs. Five 

models from each of the compared algorithms were saved during the training at 100, 250, 

500, 750, and 1000 epoch intervals. The entire time for each training session was a little 

over 26 hours.  

Accuracy for Type 1, the standard U-NET was 81.6420% whereas the accuracy 

for DilatedU-NET was 84.3839% as shown in Table 1, Figure 16, and Figure 17. An 

example DilatedU-NET processed frame is shown in Figure 18. 

Table 1 Model Output Metrics 

  Validation Accuracy Frame Rate(fps) 
Epochs DilatedU-NET U-NET DilatedU-NET U-NET 

100 76.4898% 74.8880% 7 5 
250 81.9801% 78.9968% 7 5 
500 83.9027% 80.3077% 7 5 
750 84.3839% 81.6420% 7 5 

1000 83.8285% 80.8482% 7 5 
 

When testing for the framerate comparison, the DilatedU-NET also outperformed 

the U-NET with seven frames per second and five frames per second respectively. 

Framerate testing of the model was performed using the Dell laptop. 
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Figure 15, U-NET Training Curves 

 

Figure 16, DilatedU-NET Training Curves 

3.4 Visual Odometry Results 

In this section, the implementation of the 2D edge extraction along with results of 

the estimated Visual Odometry are presented. Many libraries are available for use with 

the Python programming language. With OpenCV, canny edge detection is one of the 

tools available. Each one of the segmented classes has a predefined unique color assigned 
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to them. Knowing these colors, a threshold was used to extract only the road edges. A 

Gaussian blur was also tested, however, the results of the output proved better not use the 

Gaussian blur before the canny edge detection. The edges produced by the canny edge 

detection do not produce an actual line, but a series of points. Therefore, find contours 

also from OpenCV was used to convert the edges into lines for 2D extraction. 

The baseline was set using the KITTI benchmark. The odometry color dataset 

contains the images in sequences; the ground truth poses provide the coordinates of the 

location when the images were acquired, and the calibration files include the parameters 

of the camera that was used for obtaining the images. 

When testing the proposed method of using the edges to estimate the visual 

odometry, the Root Mean Square Error (RMSE) of Euclidean distance between the 

ground truth and the estimated location was used to determine the blunder. Firstly, we 

compared FAST and ORB, to each other to determine which would be the best baseline. 

The frame rate for FAST was eight frames per second, whereas the ORB outperformed 

with nine frames per second. However, they both performed identically with regards to 

accuracy as shown in Table 2. Using “sequence 00” and the ORB feature detector, the 

standard baseline was determined. Secondly, we used the segmented edges and the 

extracted lines using both FAST and ORB. The speed of the segmented edges was 

noticeably faster at 43 frames per second, however also very evident was the error of 

14.412m. Figure 19 and Figure 20 are plots of the estimated path location in red versus 

the ground truth location in green. More specifically Figure 19 is a plot of the existing 

method described in (Garc´ıa, et al., 2012) using the ORB as feature extractor. Whereas 
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in Figure 20, displayed is the plot of the ground truth versus using the segmented images 

for the source of the ORB feature extractor. 

 

Table 2 Visual Odometry Results 

  ORB FAST Segmented 
Edge(ORB) Line(ORB) Segmented 

Edge(FAST) Line(FAST) 

RMSE(m) 2.444 2.444 14.412 26.654 14.412 26.654 
Framerate(fps) 9 8 15 4 10 4 

 

  

 

Figure 17 ORB & FAST using existing methods compared to ground truth 
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Figure 18 ORB and Segmented Image compared to ground truth 

 

3.5 Field Collection Results 

 In this section, the results of processing the field collected data are presented. The 

process for capturing and calibrating the video frame in real-time was discussed in 2.2 

Camera Calibration and 3.2 Image Preprocessing. The pre-calibrated field video was 

processed using the DilatedU-NET. The overall results of the DilatedU-NET 

segmentation and classification algorithm are displayed Figure 18. There are many 

variances between the type of data the DilatedU-NET was trained on and the field 

collected data; one being the color of the road appears. When processing the field 

collected video, it was noticed that large portions of the road were misclassified as 
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vehicle class. Since no ground truth data is available to use a reference, the field collected 

video was not processed through the visual odometry method presented in this research.  

            

Figure 19 Field Capture Classification, (Left Image Calibrated Video Frame, Right Image: Process 
Framed Results via DilatedU-NET) 
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4. CONCLUSIONS AND RECOMMENDATIONS 

We presented a novel method to estimate the visual odometry of a monocular 

camera setup that uses segmented images. This method could process 15 frames per 

second using the segmented images. However, the accuracy was subpar. Though the 

accuracy performance of the visual odometry estimation was not adequate, it is 

encouraging to research this method further due to the speed achieved. Due to the 

framerate achieved, this provides a significant advantage to future computer vision 

research. Also, a new image segmentation algorithm was introduced as DilatedU-NET. 

This algorithm was used to prepare the segmented images that were used for the visual 

odometry portion. DilatedU-NET provides a more accurate segmentation over the 

existing U-NET 84.3839% and 81.6420%, respectively. DilatedU-NET also processes 

images 1.4x faster than U-NET, proving to be more robust when performing image 

segmentation and classification. Although DilatedU-NET was primarily used for creating 

the data used for a visual odometry estimation, it displays excellent potential to be used in 

many other areas of the computer vision field.
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