You are here
Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster
- Date Issued:
- 2018
- Abstract/Description:
- The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways.
Title: | Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster. |
62 views
15 downloads |
---|---|---|
Name(s): |
Wilson, Kelsey, author Binninger, David, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Biological Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2018 | |
Date Issued: | 2018 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 79 p. | |
Language(s): | English | |
Abstract/Description: | The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways. | |
Identifier: | FA00005980 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2018. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Drosophila melanogaster Methionine Sulfoxide Reductases Oxidative stress |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00005980 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |