You are here

Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways.
Title: Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster.
45 views
8 downloads
Name(s): Wilson, Kelsey, author
Binninger, David, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 79 p.
Language(s): English
Abstract/Description: The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways.
Identifier: FA00005980 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Drosophila melanogaster
Methionine Sulfoxide Reductases
Oxidative stress
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00005980
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.