You are here

Experiments for Waves Breaking Over a Three-Dimensional Submerged Bar

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
The influence of monochromatic waves interacting with a submerged bar structure is investigated through laboratory experiments in a wave flume. Wave profiles for a range of non-breaking, spilling, and plunging waves were analyzed for three offshore water depths through the interpretation of wave gauge and video imagery data. Evolution of propagating waves was reflected in data which showed increased amplitudes due to shoaling with subsequent breaking, transfer of single frequency spectrum from lower to higher frequency harmonics, and dissipation of energy after breaking onset. Comparisons of collected experimental data with previous theory developed by Yao et al (2013), Smith & Kraus (1991), Galvin (1968) for wave classification showed to be relatively accurate for both relative submergence and surf similarity methods. Wave breaking onset identified by instability in the wave crests allowed for measurements of breaking wave height and depth at breaking. Theory by Johnson (2006) and Goda (1974) compared to experimental data showed little agreement for predicting breaking wave heights.
Title: Experiments for Waves Breaking Over a Three-Dimensional Submerged Bar.
108 views
42 downloads
Name(s): Roy, Travis L., author
Seiffert, Betsy, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 81 p.
Language(s): English
Abstract/Description: The influence of monochromatic waves interacting with a submerged bar structure is investigated through laboratory experiments in a wave flume. Wave profiles for a range of non-breaking, spilling, and plunging waves were analyzed for three offshore water depths through the interpretation of wave gauge and video imagery data. Evolution of propagating waves was reflected in data which showed increased amplitudes due to shoaling with subsequent breaking, transfer of single frequency spectrum from lower to higher frequency harmonics, and dissipation of energy after breaking onset. Comparisons of collected experimental data with previous theory developed by Yao et al (2013), Smith & Kraus (1991), Galvin (1968) for wave classification showed to be relatively accurate for both relative submergence and surf similarity methods. Wave breaking onset identified by instability in the wave crests allowed for measurements of breaking wave height and depth at breaking. Theory by Johnson (2006) and Goda (1974) compared to experimental data showed little agreement for predicting breaking wave heights.
Identifier: FA00013096 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Water waves.
Water waves--Measurement.
Surface waves.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013096
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.