

HUMAN-INSPIRED ROBOTIC HAND-EYE COORDINATION

by

Stephanie T. Olson

A Thesis Submitted to the Faculty of

College of Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

 Florida Atlantic University

Boca Raton, FL

August 2018

ii

Copyright by Stephanie T. Olson 2018

iv

ACKNOWLEDGEMENTS

The author wishes to express sincere gratitude to her advisor Dr. Engeberg for his

guidance on and funding of this project. This work was supported by the Department of

Energy Minority Serving Institution Partnership Program (MSIPP) managed by the

Savanah River National Laboratory under SRNS contract TOA#0000332969 in

collaboration with Florida International University’s Applied Research Center and Idaho

National laboratory. This research was also supported by the NIH: NIBIB award #

1R01EB025819 and I-SENSE at FAU. Thanks to Dr. Hashemi and Dr. Masory for being

on the supervisory committee as well as everyone in the BioRobotics lab for their

encouragement and assistance throughout the project.

v

ABSTRACT

Author: Stephanie T. Olson

Title: Human-Inspired Robotic Hand-Eye Coordination

Institution: Florida Atlantic University

Thesis Advisor: Dr. Erik Engeberg

Degree: Master of Science

Year: 2018

My thesis covers the design and fabrication of novel humanoid robotic eyes and

the process of interfacing them with the industry robot, Baxter. The mechanism can reach

a maximum saccade velocity comparable to that of human eyes. Unlike current robotic

eye designs, these eyes have independent left-right and up-down gaze movements

achieved using a servo and DC motor, respectively. A potentiometer and rotary encoder

enable closed-loop control. An Arduino board and motor driver control the assembly. The

motor requires a 12V power source, and all other components are powered through the

Arduino from a PC.

Hand-eye coordination research influenced how the eyes were programmed to

move relative to Baxter’s grippers. Different modes were coded to adjust eye movement

based on the durability of what Baxter is handling. Tests were performed on a component

level as well as on the full assembly to prove functionality.

DEDICATION

This manuscript is dedicated to my Mom, Dad, and sister, Danielle for their love

and support.

vii

HUMAN-INSPIRED ROBOTIC HAND-EYE COORDINATION

TABLES ... xii

FIGURES ... xiii

EQUATIONS .. xx

1 INTRODUCTION .. 1

1.1 Goals and Applications .. 1

1.2 Literature Review ... 1

1.2.1. Baxter Robot ... 1

1.2.2. The Human Eye .. 3

1.2.3. Current Robotic Eyes .. 4

1.2.4. Realism and Robots .. 6

1.2.5. Hand-Eye Coordination .. 9

2 DESIGN .. 12

2.1 Robotic Eyes .. 12

2.1.1 Version 1 ... 12

2.1.2 Final Design .. 15

2.1.3 Customizing .. 18

2.1.4 Sizing Parts ... 20

viii

2.2 Wiring... 22

2.3 Baxter Mount.. 24

3 SOFTWARE ... 27

3.1 System Requirements ... 28

3.2 What to Run ... 28

3.4 Obtaining and Communicating Gripper Coordinates ... 29

3.3 Programming Baxter’s Movements ... 31

3.4 Arduino... 34

3.4.1 DH Parameters .. 35

3.4.2 Servo – Potentiometer ... 39

3.4.3 DC Motor – Encoder ... 42

3.4.4 Verification ... 44

3.4.5 Modes .. 47

3.4.6 Output ... 49

3.4.7 Summary ... 49

4 FABRICATION .. 51

4.1 Preliminary ... 51

4.2 Assembly: Robotic Eyes .. 53

4.3 Assembly: Wiring and Mounting ... 59

4.4 Bill of Materials ... 63

ix

5 TESTING: SYSTEM CHECKS ... 65

5.1 Baxter Gripper Frame Location ... 65

5.2 DH Parameters ... 66

5.3 Servo... 69

5.3.1 Open-Loop: Load Disconnected ... 69

5.3.2 Open-Loop: Load Connected .. 71

5.3.3 Closed-Loop: Load Disconnected... 72

5.3.4 Closed-Loop: Load Connected ... 73

5.4 DC Motor ... 73

5.4.1 Encoder Accuracy ... 73

5.4.2 Speed Index Mapping ... 74

5.4.3 Choosing Velocity Profile... 75

5.5 Lateral and Vertical Motor Movement... 76

6 RESULTS: SYSTEM CHECKS... 78

6.1 Baxter Gripper Frame Location ... 78

6.2 DH Parameters ... 78

6.3 Servo... 80

6.3.1 Open-Loop: Load Disconnected ... 80

6.3.2 Open-Loop: Load Connected .. 81

6.3.3 Closed-Loop: Load Disconnected... 81

x

6.3.4 Closed-Loop: Load Connected ... 82

6.4 DC Motor ... 83

6.4.1 Encoder Accuracy ... 83

6.4.2 Speed Index Mapping ... 83

6.4.3 Choosing Velocity Profile... 85

6.5 Lateral and Vertical Motor Movement... 87

7 TESTING: BAXTER INTEGRATION .. 92

7.1. Circular Path: Tracking .. 92

7.2. Parabolic Path: Tracking .. 92

7.3. Parabolic Path: Block Mode ... 92

7.4. Parabolic Path: Full Glass Mode .. 93

7.5. Linear Path ... 93

8 RESULTS: BAXTER INTEGRATION ... 94

8.1. Circular Path: Tracking .. 94

8.2. Parabolic Path: Tracking .. 99

8.3. Parabolic Path: Block Mode ... 103

8.4. Parabolic Path: Full Glass Mode .. 107

8.5. Linear Path: Tracking ... 110

8.6. Linear Path: Block Mode ... 114

8.7. Linear Path: Full Glass Mode... 118

xi

9 DISCUSSION ... 123

10 CONCLUSIONS... 125

11 APPENDICES .. 126

Appendix A: Servo Calculations .. 127

Appendix B: Thread Pitch & DC Motor Calculations .. 129

Appendix C: Circular Baxter Trajectory Code ... 130

Appendix D: Arduino Code and Pseudocode ... 133

Appendix E: Analog Read Code ... 169

12 REFERENCES ... 170

xii

TABLES

Table 1. Calculated RPM required for each screw size to achieve specified

 maximum saccade velocity ... 21

Table 2. Bill of materials .. 64

Table 3. Sample data table for single trial .. 71

Table 4. Results from first set of target positions ... 79

Table 5. Results from second set of target positions .. 79

Table 6. Results from servo test closed-loop: disconnected ... 82

Table 7. Results from servo test closed-loop: connected .. 82

Table 8. Encoder Accuracy test results ... 83

Table 9. Results from running ideal velocity profile code.. 85

Table 10. Results from final coded velocity profile ... 86

Table 11. Lateral motor test .. 87

Table 12. Vertical motor test .. 89

Table 13. Combined motor test: data after duration ... 90

Table 14. Combined motor test: data after twice the duration .. 90

Table 15. Results label key ... 94

xiii

FIGURES

Fig. 1. Baxter robot ... 2

Fig. 2. InMoov eye mechanism back (left) and bottom (right) [14] 5

Fig. 3. Basis of eye mechanism assembled (left); partially exploded view (right) 13

Fig. 4. Motor-encoder assembly for vertical eye movement .. 14

Fig. 5. Servo assembly for horizontal eye movement (left); top view of servo range

 of motion (right) .. 15

Fig. 6. Servo-potentiometer interface ... 15

Fig. 7. Version 1 (left) versus final (right) servo-potentiometer orientation 16

Fig. 8. Final pin connections ... 16

Fig. 9. Final design replaced certain holes with slots and added support piece 17

Fig. 10. Original plate warped (left); final plate design (right) .. 17

Fig. 11. Components dependent on the distance between eyeball centroids 18

Fig. 12. Moving the eyes forward or back only effects the bar’s location in the slot 19

Fig. 13. Two-piece eyeball to house laser diode module .. 19

Fig. 14: (from left to right) a quarter, the original servo, and the final servo 20

Fig. 15. Maximum angular velocity of eyeball, moment arm, and vertical velocity

 of bar ... 21

Fig. 16. Geared DC motor selected next to quarter .. 22

Fig. 17. Wiring diagram for servo and both sensors ... 23

Fig. 18. Pololu motor driver: diagram (left), parts (top-right), on an Arduino board

xiv

 (bottom-right) [28] .. 23

Fig. 19. BK Precision 1672 variable power supply utilizing one power and one

 ground connection ... 24

Fig. 20. Isometric front views of attached Baxter mount and breadboard mounting

 plate .. 25

Fig. 21. Breadboard plate .. 25

Fig. 22. Isometric back view of attached Baxter mount and breadboard mounting

 plate .. 26

Fig. 23. Back of mask (left); mounted assembly with mask (right) 26

Fig. 24. Communication between components ... 27

Fig. 25. Program windows and terminals ... 29

Fig. 26. Python code to publish gripper information .. 30

Fig. 27. Baxter Test 1: planned path and final coded path ... 31

Fig. 28. Baxter inverted parabolic trajectory .. 33

Fig. 29. Baxter linear trajectory .. 33

Fig. 30. Bar centroid (red) in relation to gaze fixation point (blue) 35

Fig. 31. Reference frames ... 36

Fig. 32. Limitations to vertical eye movement ... 38

Fig. 33. Eyeball rotation about its centroid in the xz-plane .. 39

Fig. 34. Parameters used to calculate Δθ .. 40

Fig. 35. Parameters to map potentiometer analog output to degrees 41

Fig. 36. Instructed versus actual gaze fixation point in yz-plane...................................... 46

Fig. 37. Arduino inputs and logic ... 50

xv

Fig. 38. 3D printed parts and quantities of each ... 51

Fig. 39. Drill bits for enlarging holes (left), filed slot of DC motor housing (right) 52

Fig. 40. Original versus cut and sanded screw.. 52

Fig. 41. Motor driver with soldered headers and power blocks (left); wires soldered

 to DC motor (right) ... 53

Fig. 42. Eyeball and housing disassembled (left) and assembled (right) 53

Fig. 43. L-brackets and standoffs used to mount the eyeball subassemblies 54

Fig. 44. Servo mounted to the plate followed by the servo arm 54

Fig. 45. Attaching the potentiometer and its mount and the servo-pot interface 55

Fig. 46. Attaching the hollow disk (1), support piece (2), and encoder track (3) 55

Fig. 47. Attaching the threaded rod, shaft couplers, and encoder 56

Fig. 48. Subassembly of the bar, eyebolts, shaft collars, DC motor and housing 57

Fig. 49. Clevis pin connections ... 57

Fig. 50. WD-40 application to threaded rod ... 58

Fig. 51. Creating a laser diode eye’s iris and pupil ... 58

Fig. 52. Assembling laser diode eyes.. 59

Fig. 53. Baxter mount parts... 59

Fig. 54. Bending the L-brackets .. 60

Fig. 55. L-brackets and breadboard plate .. 60

Fig. 56. Connecting motor and power supply to the motor driver 61

Fig. 57. Wiring .. 61

Fig. 58. Mounted assembly ... 62

Fig. 59. Washer added to L-bracket .. 62

xvi

Fig. 60. Full mounted assembly .. 63

Fig. 61. Points used to verify DH parameters ... 66

Fig. 62. Points A and B chosen to produce Δz = ±13mm ... 67

Fig. 63. Top-down view of Baxter for calculations .. 67

Fig. 64. Calculating θA and θB; both should equal 20.6° .. 68

Fig. 65. Points C and D chosen to produce Δy = ±20mm .. 68

Fig. 66. Disconnected test setup (left); centering the camera (right) 70

Fig. 67. Measuring angles in Kinovea to calculate the sweep .. 71

Fig. 68. Connected test setup (left); angle from Kinovea (right) 72

Fig. 69. Potentiometer attached to disconnected test setup .. 72

Fig. 70. Velocity profile initially tested .. 75

Fig. 71. Saccade size vs. saccade duration .. 76

Fig. 72. Baxter gripper frame check results .. 78

Fig. 73. Calculating θA and θB .. 80

Fig. 74. Results from servo test open-loop: disconnected .. 80

Fig. 75. Results from servo test open-loop: connected ... 81

Fig. 76. Initial speed index mapping curve-fit .. 84

Fig. 77. Final speed index mapping curve-fit ... 84

Fig. 78. Coded velocity profile ... 86

Fig. 79. Lateral motor test: Δθ = ±14° .. 88

Fig. 80. Lateral motor test: Δθ = ±24° .. 88

Fig. 81. Test 1: X vs. Time ... 95

Fig. 82. Test 1: Lateral Motor Analysis .. 95

xvii

Fig. 83. Test 1: lateral motor error distribution .. 96

Fig. 84. Test 1: Vertical Motor Analysis .. 96

Fig. 85. Test 1: vertical motor error distribution .. 97

Fig. 86. Test 1: Magnitude of Error .. 97

Fig. 87. Test 1: magnitude of error distribution .. 98

Fig. 88. Test 1 YZ plane clockwise analysis .. 98

Fig. 89. Test 1 YZ plane counterclockwise analysis .. 99

Fig. 90. Test 2: X vs. Time ... 99

Fig. 91. Test 2: Lateral Motor Analysis .. 100

Fig. 92. Test 2: lateral motor error distribution .. 100

Fig. 93. Test 2: Vertical Motor Analysis .. 101

Fig. 94. vertical motor error distribution .. 101

Fig. 95. Test 2: Magnitude of Error .. 102

Fig. 96. Test 2: magnitude of error distribution .. 102

Fig. 97. Test 3: X vs. Time ... 103

Fig. 98. Test 3: Lateral Motor Analysis .. 104

Fig. 99. Test 3: lateral motor error distribution .. 104

Fig. 100. Test 3: Vertical Motor Analysis .. 105

Fig. 101. Test 3: vertical motor error distribution .. 105

Fig. 102. Test 3: Magnitude of Error .. 106

Fig. 103. Test 3: magnitude of error distribution .. 106

Fig. 104. Test 4: X vs. Time ... 107

Fig. 105. Test 4: Lateral Motor Analysis .. 108

xviii

Fig. 106. Test 4: lateral motor error distribution .. 108

Fig. 107. Test 4: Vertical Motor Analysis .. 109

Fig. 108. Test 4: vertical motor error distribution .. 109

Fig. 109. Test 4: Magnitude of Error .. 110

Fig. 110. Test 4: magnitude of error distribution .. 110

Fig. 111. Test 5: X vs. Time ... 111

Fig. 112. Test 5: Lateral Motor Analysis .. 111

Fig. 113. Test 5: lateral motor error distribution .. 112

Fig. 114. Test 5: Vertical Motor Analysis .. 112

Fig. 115. Test 5: vertical motor error distribution .. 113

Fig. 116. Test 5: Magnitude of Error .. 113

Fig. 117. Test 5: magnitude of error distribution .. 114

Fig. 118. Test 6: X vs. Time ... 114

Fig. 119. Test 6: Lateral Motor Analysis .. 115

Fig. 120. Test 6: lateral motor error distribution .. 115

Fig. 121. Test 6: Vertical Motor Analysis .. 116

Fig. 122. Test 6: vertical motor error distribution .. 117

Fig. 123. Test 6: Magnitude of Error .. 117

Fig. 124. Test 6: magnitude of error distribution .. 118

Fig. 125. Test 7: X vs. Time ... 118

Fig. 126. Test 7: Lateral Motor Analysis .. 119

Fig. 127. Test 7: lateral motor error distribution .. 120

Fig. 128. Test 7: Vertical Motor Analysis .. 120

xix

Fig. 129. Test 7: vertical motor error distribution .. 121

Fig. 130. Test 7: Magnitude of Error .. 121

Fig. 131. Test 7: magnitude of error distribution .. 122

xx

EQUATIONS

(1) Torque calculation ... 20

(2) Position of {2} w.r.t. {1} .. 36

(3) Vector magnitude .. 36

(4) Unit vector in terms of cosines .. 37

(5) Unit vector in terms of position... 37

(6) Alpha, Beta, and Gamma .. 37

(7) Bar centroid relative to {0} using angles .. 37

(8) Bar centroid relative to {0} using positions .. 38

(9) Position of {3} w.r.t. {1} .. 38

(10) Displacements ... 38

(11) Eyeball vertical range of motion w.r.t. L .. 39

(12) Relative initial servo position .. 40

(13) Projected radius ... 40

(14) Change in servo angle ... 40

(15) Final servo angle ... 40

(16) Interpolation: analog output to degrees ... 41

(17) Interpolation: degrees to milliseconds... 42

(18) Time allotted between servo increments ... 42

(19) Number of vertical motor rotations ... 43

(20) Actual z of {3} w.r.t. {1} .. 45

xxi

(21) Actual y of {3} w.r.t. {1} .. 45

(22) Actual x of {3} w.r.t. {1} .. 45

(23) Actual x of {2} w.r.t. {0} .. 46

(24) Actual x of {2} w.r.t. {1} .. 46

(25) Actual position of {3} w.r.t. {0} ... 46

(26) Directional cosines .. 47

(27) Actual magnitude of vector ... 47

(28) Actual y and z of {2} w.r.t. {1} .. 47

(29) Actual y and z of {2} w.r.t. {0} .. 47

(30) Projected radius for DH parameter check ... 69

(31) Angle for DH parameter check ... 69

1

1 INTRODUCTION

1.1 Goals and Applications

 The overall goal was to design and fabricate novel humanoid robotic eyes and

program them to move logically with a Baxter robot based on hand-eye coordination

research. Two control goals were position and temporal control. Position control in which

gaze accurately followed a Baxter end effector was sought first followed by temporal

control that resulted in human-like eye movement with respect to time.

 The design and its capabilities have the potential to benefit any industry that

employs human-robot interaction. Assembly line robots in manufacturing (like Baxter),

assistive robots in the service industry, and audio-animatronics for entertainment in

theme parks are just a few examples.

1.2 Literature Review

 The research done falls under five categories: the Baxter robot, the human eye,

current robotic eye designs, realism and robots, and hand-eye coordination.

1.2.1. Baxter Robot

The Baxter Robot from Rethink Robotics is depicted in Fig. 1. Baxter has two

arms each with seven degrees of freedom and a maximum reach of 1210mm. Two types

of grippers are available to act as Baxter’s hands: vacuum cup grippers and electric

parallel grippers. There is a camera in each arm and force sensors in each joint. The

mobile pedestal consists of four caster wheels to move him and four anchors to secure

2

him in place. Baxter is mainly used in manufacturing settings, packaging, loading and

unloading items from assembly lines among other tasks.

Fig. 1. Baxter robot

Unlike many robots, Baxter is not programmed but trained. Once Baxter is

enabled, the user can freely move either of Baxter’s arms while holding onto his

respective wrist. An arm holds its orientation when the wrist is released. For a user who

wants to do as little coding as possible, they can run the available joint recorder Python

file. While the user moves the arms, the code samples Baxter’s position at a specified

sampling rate and writes the data to a file. For Baxter to mimic his training movements, a

second Python file called joint trajectory file playback sends commands back to Baxter

by accessing the data file written by the recorder. A slightly more hands-on approach to

training Baxter is also applied in this paper.

3

Baxter’s “face” is a monitor, and the eyes on his display are limited to two

vertical positions, forward and down, and three horizontal positions, left, right, and

center.

1.2.2. The Human Eye

The average diameter of a human eye is 24mm [1], [2]. Contrary to how they are

often modeled, eyeballs are not perfect spheres; the cornea’s radius of curvature is about

4mm smaller than that of the overall eyeball [1]. Pupil diameter can range from 3mm to

7mm [1].

An eye’s mechanical range of motion is referred to as the oculomotor range, or

OMR [3]. The OMR of a human can be defined by how far left, right, up and down the

average person can rotate their eyes. Different sources define the human OMR using

slightly different numbers, ranging from 53° ± 2° to 60° for both left and right eye

rotation [2]–[4]. However, it is agreed that quick eye movements, which are known as

saccades, are neurally limited to the effective oculomotor range (EOMR) of ±45°

horizontally [3], [4]. Ninety-percent of the time, human eyes move within the range of

±20° [5]. There is also a discrepancy between sources as to the vertical limits of the

EOMR; one source claimed it is 20° up and 29° down while another claimed it is closer

to 35° up and 47° down [2], [4].

 The larger a saccade, the larger the saccade’s duration, peak velocity and average

velocity [6]. The maximum velocity of a saccade is around 600°/s [3], [6]–[8]. Saccade

durations range between approximately 25 and 100ms for saccades larger than one-

degree [6], [7], [9], and they take about 200ms to initiate [2].

4

1.2.3. Current Robotic Eyes

Various existing robotic eye designs were analyzed. Every design researched

simplified the eyeball as a perfect sphere. The Agile Eye was used as a base model in

multiple journal papers [2], [5], [10]. The original design consists of three DC servo

motors mounted to the vertices of a triangular plate [11]. The motors are mounted at an

angle with their shafts pointing up towards the center of the plate. Two spherical links

connect each DC motor to the eye, giving a total of six spherical links.

The speed and range of the Agile Eye are greater than that of a human’s; however,

the mechanism does not fit well behind an artificial human face. To remedy this, one

group modified the design just over ten years ago utilizing bent links that allowed the

servos to be reoriented farther behind the eye [5]. Although the capabilities of both

designs are impressive, their complexity makes them bulky.

 More recently, a paper on a bipedal robot named Romeo was released [2]. The

robot contained simplified Agile Eyes that had two activated degrees of freedom while

roll was passive. Although simpler, the eyes’ range of motion was greatly reduced.

In a different mechanical approach, a cable/tendon system was used for robotic

eyes in a face meant to simulate a human having eye surgery [12]. The system was

achieved using servos and wires. The group’s initial design consisted of two servo motors

controlling both eyes simultaneously and relied on wires that would stretch and regain

shape with actuation. A lack of tension in certain wires lead to replacing the connections

with aluminum wire, but the rigidity of the new wire made the old design obsolete. To

accommodate, the final design consisted of two servos for each eye. An issue with servo-

wire mechanisms that was not discussed is the interdependence of the servo motors; the

5

movement of one motor could rotate an eyeball in a way that causes the second motor to

stall.

A group called Inmoov designed robotic eyes made of 3D printed components

and two servos as shown in Fig. 2 [13]. The top servo rotates the eyes left and right by

moving a long piece connecting both eyes. The bottom servo moves both the eyes and top

servo for vertical eye rotation. The low profile, few actuators, and independence of

horizontal and vertical eye movement all make this design appealing. One potential

drawback is lack of speed; the videos of the assembly in motion all have the eyes rotating

relatively slowly [14]. One foreseeable reason is that running the eyes faster could cause

the bottom servo’s elbow connection to jam.

Fig. 2. InMoov eye mechanism back (left) and bottom (right) [14]

Some recent robotic eyes do not utilize any motors for actuation. In one design, an

artificial eye is suspended in fluid within a translucent outer shell [15]. An eight-coil

electromagnetic drive structure attached to the outer shell is used to rotate the eyeball.

The structure consists of pairs of adjacent coils on the top, bottom, left, and right of the

outer shell with one coil from each pair mounted closer to the pupil and one closer to the

back of the eyeball. Small currents are sent to specified coils that cause the

6

electromagnets to either push or pull corresponding fixed magnets, altering the

orientation of the eyeball within its shell.

The design’s small footprint and ease of installation make it practical for

animatronics; the original eyeball mechanisms in older animatronics can be removed and

replaced with the new design with little effect on the rest of the robot. The eyes can move

at a maximum velocity of 500°/s, which is comparable to that of a human eye. One

design limitation is accuracy. Because the eyes move through open-loop control, the eyes

can overshoot the desired position.

Another actuator-free robotic eye design is display eyes. For instance, Disney

Enterprises, Inc. has a patent out for robotic eyes that are simply curved OLED screens

mounted to the inside of animatronics [16]. The concept of display features on

animatronics has already been implemented in some of the rides at Walt Disney World to

bring classic animated characters to life. Disney Research Pittsburgh also came up with

their own display eyes made from printed optics instead of screens [17]. Because display

eyes glow by their nature, they are limited to only appearing “real” for animated

characters.

1.2.4. Realism and Robots

 In the previous section, a lack of realism was said to be a negative design aspect

of robotic eyes. To justify that claim, the following needed to be answered: how does

realism affect how a robot is perceived, and how does that perception affect the robot’s

performance?

 A study done by the MIT Media Lab sought to answer both [18]. First, a test was

conducted using three “characters”: one robotic, one animated, and one human. Only the

7

eyes of each character were visible to test subjects through rectangular openings. The

subjects were given instructions by each character and then rated their perceptions of

each on a questionnaire. The results showed that the robot was perceived as more

credible, informative, and engaging than the animated character. The enjoyability of the

interaction was also greater for the robot than the animated character. In all categories,

the robot’s ratings were comparable to those of the human. As it applies to this report, a

Baxter robot’s interaction with humans would improve in the same categories if it used

robotic eyes in place of display screen eyes.

 A person trusting in something that looks and moves like they do is an instinct

that can be observed in other animals. One study analyzed the behavior of actual guppies

around a robotic guppy [19]. RoboFish, as it was called, was placed in a tank of guppies,

once without its glass eyes and once with. The amount of time guppies spent with the

eyeless RoboFish was significantly less than that spent with the RoboFish with eyes.

Also, the guppies spent the same amount of time with other live guppies as they did with

the RoboFish with eyes. Like in the MIT study, the robot’s results were comparable those

of the real thing.

 The group performed a second test that involved the RoboFish’s movement. It

moved in a natural zig-zag pattern at varied speeds for one trial and at a constant speed in

a straight line for another. The results: the live guppies spent significantly more time with

the naturally moving RoboFish. The journal paper emphasized the importance of realism

in both appearance and movement of robotics in interaction-related applications.

 Going back to human analyses, one study focused on how the movement of

robotic eyes affected the persuasive power of a robot as a storyteller [20]. The results

8

proved that the use of gaze increased a robot’s persuasiveness. Oddly, when the robot

used gestures and NOT gaze, the robot’s persuasiveness diminished. Although gaze and

gesture had clear impacts on persuasion, neither had a statistically significant impact on

the user’s perception of the robot (i.e. likeability, perceived intelligence). The question

arises whether the use of gaze would affect human perception if the robot performed a

task other than storytelling.

 The benefit of gaze in human-robot interactions was found in another study in

which a robot handed an object to test subjects [21]. The results showed that the handoff

time was shorter when the robot used human-like gaze than when it did not use gaze. In

short, the efficiency of the task increased with the use of gaze.

 A recent study went in depth to analyze the effects of three different types of

gaze: averted, situational, and constant [22]. The study had three sample groups, one to

test each gaze type. Subjects would view a game on a monitor in which an object was

placed under one of three cups. The cups would be shuffled, and subjects would have to

guess which cup contained the object. The game had three difficulty levels based on

shuffling speed. An Aldebaran Nao humanoid robot would play along with the subject

employing one of the three types of gaze. It would agree or disagree with the subject’s

answers, sometimes doing the latter even when the subject was correct. Subjects had the

option to change their answer if the robot disagreed with them.

 Gender played an unexpected role in the results. While females were least likely

to change their answers when the robot employed constant gaze and most likely to do so

when the robot employed situational gaze, the opposite was true for males. Due to the

studies small sample size of male subjects, further testing would be required to make

9

definitive conclusions. Regardless of gaze, subjects tended to trust the robot more when

their initial guess was incorrect, suggesting uncertainty in answers increased trust.

1.2.5. Hand-Eye Coordination

 In a study done by Umeå University in Sweden and Queen’s University in

Canada, eye gaze was tracked while test subjects performed a task. The task was to grab a

bar, picked it up, and moved it so the tip of the bar touched a target above the grasp site

[7]. There were three setups: one free of obstacles, one with a square obstacle and one

with a triangular obstacle. Areas or objects of interest in the workspace were referred to

as landmarks, such as the grasp site, obstacle, and target.

 Multiple conclusions were gleaned from the experiment. First, gaze always led

hand movement, typically leading by one-second or less. Additionally, gaze exited a

landmark around the time of a kinematic event at that landmark. An example of a

kinematic event would be when the bar contacted the target. The landmarks were divided

into two categories. The grasp site, target, and support surface were labeled as obligatory

gaze landmarks. The tip of the bar and parts of the obstacles that stuck out were deemed

optional gaze landmarks since fewer and shorter gaze fixations were associated with

them. Interestingly, the eyes never fixated on the hand or the object being moved.

 Another task-based hand-eye coordination study analyzed gaze while test subjects

made tea [23]. Body movement, gaze, and object manipulation were charted on a single

timeline. Gaze was typically directed to an object one-second or less before contacting

the object; however, lead times as large as two-seconds did occur. A separate study was

performed for a sandwich-making task that yielded similar results [24].

10

 The head authors of both studies cowrote a paper comparing the two experiments

[25]. For consistency, they defined an object-related action (ORA) as uninterrupted

single-object manipulation. The example given of one ORA was picking up an object,

moving it, and setting it down. They went on to compare saccade sizes within and

between actions from both studies. The distributions of within-action saccades for both

tests were very similar; both had averages of about eight degrees and maximums less than

40°. There was a large difference in the maximum between-action saccade sizes: 90° for

tea-making versus 30° for sandwich-making. The difference was credited to the fact that

the tea-making task required moving around a room while the sandwich-making task was

done sitting down.

 It was found that task difficulty effected the frequency of gaze fixations on

landmarks. One study conducted an object manipulation test in which subjects had to

drag and drop emails into folders [26]. The test was divided into two trials: easy and

difficult. In the easy task, explicit directions were given to organize the emails. The

difficult task required reading the email and judging which folder it belonged in; i.e. if

the email had to do with travel, the subject would decide to put it in the “travel” folder.

On average, subjects spent 45% of the time looking at landmarks (referred to as areas of

interest) during the easy task versus 62% during the difficult task. After additional testing

beyond object manipulation, the study concluded that the amount of time a subject fixates

on an area of interest is directly related to area’s complexity.

 A similar study was done that found a relation between gaze fixations and the

difficulty of a driving task [27]. The more difficult the driving task, the more time

subjects spent looking at the road and the more concentrated their gaze fixations were at

11

the center of the road. The results are consistent with those of the object manipulation

test.

 By applying the research, the question, “Where will Baxter look?” was answered.

Baxter’s preplanned trajectory had him reach for an object, pick it up, move it, and set it

down. Regardless of what Baxter was handling, the eyes would look at the grasp site until

the object was grabbed. While moving the object, future points along the known

trajectory would be fixated while periodically moving gaze to the target location. The

target would be defined as the object’s final desired location. The proximity of those

future points to the gripper’s current position and the frequency of target fixations would

depend on the difficulty associated with handling a given object. The difficulty would be

an input argument in the code.

 The maximum saccade speed of the robotic eyes was decided based on a data set

of 1316 measured saccades that included saccade amplitude and velocity. The set is from

the previously referenced study by Umeå University and Queen’s University [7].

Although the data agreed with the other studies referenced that a human eye’s maximum

saccade speed was about 600°/s, the data showed that few saccades occur at velocities

over 500°/s. Therefore, a maximum saccade speed of 500°/s was chosen as a design

requirement for the robotic eyes.

 The chosen horizontal range of motion for the robotic eyes was ±35°, which is

10° shy in either direction of the average human EOMR but well beyond the ±20° range

where human eyes operate ninety-percent of the time. Because Baxter usually performs

tasks in which his lower and especially upper peripherals are rarely used, the vertical

range of motion was chosen to be ±20°.

12

2 DESIGN

 The robotic eye design is divided into three subassemblies: the eye mechanism,

wiring, and the hardware to mount the assembly to Baxter’s display screen.

2.1 Robotic Eyes

 The two robotic eyes were designed to move in tandem. In other words, the eyes

look in the same direction and cannot cross. The benefit of the design not seen in current

robotic eyes is independent vertical and horizontal movements that do not sacrifice speed

or accuracy of gaze fixations.

2.1.1 Version 1

 Fig. 3 is the basis of the design: the eyes. The spherical eyes are 15/32 inches

(about 24mm) in diameter, comparable to the size of human eyes. A two-piece shell

secures each eye, acting as a socket for the sphere. L-brackets connect the shells to a

four-by-six-inch plate, and standoff blocks are used to adjust the distance between the

eyes and plate. Each eyeball has a cylindrical extrusion with an eyebolt screwed into the

circular face. Eyebolts screwed into either end of a cylindrical bar are lined up with the

those connected to the eyes. Shoulder screws were placed through the eyebolts and

secured with nuts to form pin connections between the bar and eyes.

13

Fig. 3. Basis of eye mechanism assembled (left); partially exploded view (right)

 The part of the assembly in Fig. 4A enables the eyes to look up and down. The

bar connecting the eyes goes through a slot that is part of the DC motor housing. Two set

screw shaft collars keep the motor housing at the center of the bar. The bar is free to

move along the length of the slot as the eyes rotate to “look” up and down, as shown in

Fig. 4B. The DC motor and rotary encoder shaft are fixed to either end of a threaded rod

(which is simply a screw with its head removed) by set screw shaft couplers, as shown in

Fig. 4C. The encoder outputs the direction and number of DC motor rotations and is used

for closed-loop motor control. The track along which the encoder slides up and down is

attached to extrusions from a hollow disk that sits on top of the plate. The rod is threaded

through a press-in nut fixed into the encoder track. When the motor shaft rotates, it

threads the rod through the press-in nut, causing the motor housing and encoder to move

up or down depending on whether the shaft is rotating counterclockwise or clockwise,

respectively.

14

Fig. 4. Motor-encoder assembly for vertical eye movement

 When the bar slides back and forth within the DC motor housing slot, the lever

arm of the vertical force acting on the bar changes. The bar’s displacement within the slot

and, consequently the lever arm, does not change linearly. Because the eye is rotating, the

bar’s centroid moves along an arced path in the XZ plane. Therefore, the part of the

mechanism that allows the eyes to look up and down is a nonlinear dynamic system.

 The servo in Fig. 5A enables the eyes to look left and right. The servo arm is

connected to the hollow disk extrusions above the encoder track. The servo acts like a

windshield wiper, sliding the motor-encoder assembly along the plate within the arced

cutout shown in Fig. 5B. As mentioned previously, the eyes were designed to move 35°

left and right. They are kept within this range by the connection points used to assemble

the shells; however, the range could easily be expanded by making shells that had

connection points on the sides instead of in the back. The depicted design was kept for

15

the convenience of having two reference points at which the approximate servo angle was

known.

Fig. 5. Servo assembly for horizontal eye movement (left); top view of servo range of motion (right)

 To measure the servo’s position and enable closed-loop servo control, a

potentiometer is mounted below the plate as shown in Fig. 6. The boxed piece in the

figure acts as an interface between the potentiometer shaft and the servo arm.

Fig. 6. Servo-potentiometer interface

2.1.2 Final Design

 A few design changes were made to Version 1. Although the initial servo motor

was sized based on the expected load of the assembly, it proved incapable of overcoming

the friction between the hollow disk and the plate. Therefore, a servo capable of

A B

16

producing a greater torque was chosen. The stronger servo was larger, which meant its

orientation on the plate needed to rotate ninety degrees as shown in Fig. 7. The change

led to the second modification: elongating the potentiometer mount.

Fig. 7. Version 1 (left) versus final (right) servo-potentiometer orientation

Due to the constant contact between the eyebolts, shoulder screws and nuts during

left and right eye movement, the nuts would loosen and eventually fall off the assembly.

The shoulder screws and nuts were replaced with clevis pins shown in Fig. 8 that used

small screws instead of the usual wire for a more reliable connection.

Fig. 8. Final pin connections

 The final modification was the additional support piece in Fig. 9. The addition

ensured that the hollow disk remained parallel to the plate without raising on the left or

17

right during movement. To prevent the addition from being so close to the plate that it

hindered servo movement, it was attached to the hollow disk extrusions via slots (red),

allowing the distance between it and the plate to be adjusted. Slots also replaced holes in

the servo arm and encoder track (blue) to ensure the servo arm was parallel to the plate.

Fig. 9. Final design replaced certain holes with slots and added support piece

 The rectangular plate from Version 1 was susceptible to warping when removed

from the 3D printer build plate, as shown in Fig. 10A. Therefore, the thickness was

increased for the final plate shown in Fig. 10B. In addition, the front corners of the plate

were chamfered so the assembly could fit behind an artificial face. The length was

increased to make room for four holes to connect the plate to the Baxter mount.

Fig. 10. Original plate warped (left); final plate design (right)

18

2.1.3 Customizing

 In future applications, the distance, D, between the eyes may need to be altered,

especially if the eyes ever need to fit behind a preexisting artificial face. To modify the

assembly given the value of D as a design requirement, only the distance between the sets

of holes used to anchor the eyes to the plate and the distance between bar eyebolts shown

in Fig. 11 need to be adjusted.

Fig. 11. Components dependent on the distance between eyeball centroids

 The distance the eyes are from the front of the plate can limit how close the eyes

can be installed behind a face. Fortunately, the eyes can be placed closer to or farther

from the front edge of the plate by moving the same holes previously mentioned. Fig. 12

shows that this change only affects where the bar sits inside the DC motor housing slot.

The only time the assembly would need to be changed further is if the eyes were placed

so far forward or back that the length of the housing slot would need to be increased.

19

Fig. 12. Moving the eyes forward or back only effects the bar’s location in the slot

 In place of the single-piece eyeballs, two-piece eyeballs shown in Fig. 13 were

designed to house laser diode modules. The modules act as miniature laser pointers, and

each consists of a small cylindrical laser housing with an APC driver circuit attached to

the back with two lead wires. The laser housing sits in the eyeball, and the lead wires

thread out of the elliptical hole in the stem. The eyeball pieces are press-fit together and

cannot twist once secured. The assembly’s range of motion is slightly reduced using the

two-piece eyes because the circular ridge where the pieces meet cannot slide under the

shell.

Fig. 13. Two-piece eyeball to house laser diode module

20

2.1.4 Sizing Parts

As previously mentioned, the servo was sized based on the length of the servo arm

and weight of the attached load. The torque was calculated using Equation 1 where g is

acceleration due to gravity (9.81m/s2), m is mass in kilograms and l is length in

centimeters. The masses of screws and nuts were neglected.

𝜏 = 𝑔(𝑚𝑐𝑜𝑢𝑝𝑙𝑒𝑟𝑠 + 𝑚𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑟𝑜𝑑 + 𝑚𝐷𝐶 + 𝑚𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑚𝑐𝑜𝑙𝑙𝑎𝑟𝑠 + 𝑚𝑝𝑙𝑎𝑠𝑡𝑖𝑐)𝑙𝑎𝑟𝑚 (1)

The full calculation in Appendix A resulted in a required torque of 2.47N⸱cm. A plastic-

gear servo with a maximum torque of 7.85N⸱cm was chosen, giving a factor of safety of

3.18. Unfortunately, the servo was not reliable and often stalled. A slightly larger motor

with metal gears and a stall torque of 17.7N⸱cm was chosen to ensure functionality and

durability. The old and new servo are shown in Fig. 14.

Fig. 14: (from left to right) a quarter, the original servo, and the final servo

 The parts required for vertical bar displacement were sized next. In the

calculations, the bar was approximated to be level with the eyeball eyebolts even though

the former sits on top of the latter. First, the maximum tangential velocity, 𝑉𝑡,𝑚𝑎𝑥, shown

in Fig. 15 was calculated from the maximum saccade speed chosen for the design, 500°/s,

and the eyes’ radius of rotation. The maximum vertical velocity of the bar, 𝑉⃑ 𝑦,𝑚𝑎𝑥, was

found to be equivalent to 𝑉𝑡,𝑚𝑎𝑥 in the y-direction.

21

Fig. 15. Maximum angular velocity of eyeball, moment arm, and vertical velocity of bar

 Next, two parameters needed to be determined simultaneously: the DC motor’s

maximum angular speed, 𝜔𝐷𝐶,𝑚𝑎𝑥, and the threaded rod’s threads-per-inch. The finer the

thread, the faster the motor would need to rotate to achieve 𝑉𝑦,𝑚𝑎𝑥. Table 1 shows the

values of 𝜔𝐷𝐶,𝑚𝑎𝑥 calculated for three of the UNC screw sizes analyzed.

Table 1. Calculated RPM required for each screw size to achieve specified maximum saccade velocity

 All three calculated RPMs could be reached with a small DC motor; however, a

10-24 screw would only require seventy-five percent of the motor speed needed for an 8-

32 screw, ruling out the latter. The 10-24 was chosen over the ¼” because the decrease in

required RPM was not large enough to justify the increase in screw diameter. The

detailed velocity, threads-per-inch and RPM calculations are in Appendix B.

22

 After choosing the 10-24 screw, a DC motor capable of rotating at 2907RPM was

needed. To get a high RPM from a motor small enough to fit in the assembly, a DC motor

with a 5:1 gear ratio was selected as shown in Fig. 16. The motor cost less than $15 and

can rotate at 2500RPM when supplied 6V and 4900RPM when supplied 12V, well over

the 2907RPM required.

Fig. 16. Geared DC motor selected next to quarter

2.2 Wiring

An Arduino Uno R3 controls the servo, potentiometer, and rotary encoder as shown

in Fig. 17. The board is powered by the PC running Arduino through a USB connection.

The encoder requires a 220Ω resistor, and the servo and potentiometer are each connected

to a100uF capacitor. The capacitors, while not required to run the assembly, smooth out

voltage dips in the board such as when the servo motor begins to rotate [28]. The laser

diode modules mentioned in the customization section of the design could also be

powered through the Arduino board. Each module would require a 100Ω resistor in

series.

23

Fig. 17. Wiring diagram for servo and both sensors

 A Pololu Dual MC33926 motor driver shield for Arduino in Fig. 18 controls the

DC motor. The shield can be inserted directly onto the Arduino board, which saves

space.

Fig. 18. Pololu motor driver: diagram (left), parts (top-right), on an Arduino board (bottom-right) [29]

 Because the DC motor requires a 12V power supply to reach the calculated

2907RPM, it cannot be powered by the Arduino board. For testing, the motor was

24

powered by the BK Precision 1672 variable power supply shown in Fig. 19. The power

supply ensured a constant 12V was delivered to the motor, which a draining battery could

not guarantee. A maximum current draw lower than the motor’s specified stall current

was also set to protect the motor. Both aspects made the variable power supply ideal for

testing; however, the supply’s capabilities far exceed what is necessary to run the motor.

The extra capabilities also make it far more expensive than a battery. In short, a 12V

battery would be a better choice to power the DC motor outside of a testing environment.

Fig. 19. BK Precision 1672 variable power supply utilizing one power and one ground connection

2.3 Baxter Mount

 The mounting hardware attached to the assembly is shown in Fig. 20. Two L-

brackets connect the plate to the two mounting supports shown in red. The mounting

supports mirror one another and fit over the top corners of Baxter’s display monitor. A

slim bracket and two sets of screws and nuts can be used to align the mounting supports;

however, because the supports are designed to fit tightly on Baxter’s monitor, this bracket

is optional. On the plate, one L-bracket is secured using two short screws and nuts.

Longer screws are used on the left side of the plate along with spacers to elevate a small

plate shown in purple above the main plate. The small plate is for mounting the

breadboard. Because Baxter’s monitor is tilted down towards the ground, the angle of

25

each L-bracket needed to be less than ninety degrees for the assembly to be level when

mounted.

Fig. 20. Isometric front views of attached Baxter mount and breadboard mounting plate

 To prevent the left mounting support from contacting the breadboard plate, the

latter was designed with a notch as shown in Fig. 21.

Fig. 21. Breadboard plate

26

 The view of the assembly in Fig. 22 shows the six screws attached to the

mounting pieces with the screwheads in the back to reduce contact with Baxter’s display

screen. Countersinks were later made for the six holes to further mitigate screen contact.

Fig. 22. Isometric back view of attached Baxter mount and breadboard mounting plate

 A mask was created in CAD using a 3D scan of a human face. Grooves in the

back of the mask shown in Fig. 23 guide where the robotic assembly sits behind it. A

band made from Velcro (not shown) wraps around Baxter’s display screen and connects

to the mask at the ears. The tension in the band can be adjusted by separating one of the

Velcro connections at an ear, sliding more Velcro through and reestablishing the

connection.

Fig. 23. Back of mask (left); mounted assembly with mask (right)

27

3 SOFTWARE

 Fig. 24 shows the communication between all components. Baxter’s desired poses

are input into the PC through ROS. The gripper location and the percent open the gripper

is are obtained by the Arduino. The Arduino outputs to the servo and motor driver and

receives the output of both sensors. The motor driver sends the Arduino’s speed

commands to the DC motor. Arduino publishes coordinates such as gripper position and

actual gaze fixation point to ROS topics that are written to text files on the laptop.

Fig. 24. Communication between components

28

3.1 System Requirements

 A laptop was used to communicate with Baxter and execute all necessary code.

Baxter’s system requirements as well as his workstation setup instructions were found on

the Rethink Robotics website [30]. The required Linux distribution to run Baxter, Ubuntu

14.04, was installed on the laptop. His recommended programming language, ROS

Indigo, was also installed. An ethernet cable was used to establish communication

between the laptop and Baxter.

 Additional requirements to run the eye assembly were Arduino software and

Python 2.7. For communication from the laptop to the Arduino Uno, the Uno was

connected to one the laptop’s USB ports.

3.2 What to Run

 The following needs to be open on the laptop before running the eyes with Baxter:

the Arduino robotic eye code, the Arduino “Blink” sketch, and between three and ten

Linux terminals depending on how Baxter is asked to move and if data is acquired for

analysis. The setup is shown in Fig. 25. Each terminal needs to source the baxter.sh file to

establish a ROS environment. In the first terminal, Baxter’s motors are enabled. To then

run the eyes with Baxter, the Arduino sketch is uploaded to the Arduino Uno. Once the

upload is complete, serial communication between ROS and Arduino is established in the

same terminal in which the motors were enabled. The second and third terminals are used

to command Baxter’s movements, which is detailed in the next section. The fourth

terminal runs Python code used to publish the left gripper’s x, y, and z location as well as

the degree to which the left gripper is open to ROS topics. Terminals five through ten are

optional for data acquisition, echoing ROS topics published to by the Arduino code and

29

exporting the data to text files. To use those terminals, all six echo commands need to be

executed before the Arduino code is uploaded. To stop the Arduino code when finished,

the serial communication in the first terminal is terminated and the “Blink” sketch is

uploaded to the Uno.

Fig. 25. Program windows and terminals

3.4 Obtaining and Communicating Gripper Coordinates

 As mentioned in the literature review, the joint angles of Baxter’s arms could be

obtained through the joint recorder or other means; however, forward kinematics were

required to solve for the gripper’s location relative to Baxter’s base frame. Therefore, the

Python code in Fig. 26 was written utilizing the forward position kinematics function in

the Baxter PYKL package [31]. The function returns an array of seven numbers, the first

three being the left gripper’s x, y, and z coordinates in meters. For the electric parallel

gripper, the point returned is the fingertip location. The three coordinates were published

separately to three different ROS topics. The degree to which Baxter’s gripper was open,

with 0 being fully closed and 1 being fully open was published to a fourth topic.

30

Fig. 26. Python code to publish gripper information

31

3.3 Programming Baxter’s Movements

 For testing, three trajectories were programmed for Baxter’s left gripper. For the

first test, a circular trajectory was created parallel to the YZ plane just over one meter

from Baxter’s base frame. After selecting the path’s center point and radius, eight points

along the path were planned in Excel as shown in Fig. 27.

Fig. 27. Baxter Test 1: planned path and final coded path

 Although Baxter’s PyKDL package has an inverse kinematics function to

convert Cartesian points to joint angles for programming, attempts to use the function for

gripper positions known to be within Baxter’s workspace returned no results. The process

to program the trajectory, therefore, went as follows: Baxter’s left arm was first moved

into the first desired pose by approximation and altered until the forward kinematics

returned a Cartesian coordinate near the desired point. Current joint angles were obtained

300

400

500

600

700

800

900

1000

-400 -200 0 200 400

Z
(m

m
)

Y (mm)

Test 1 Path

Planned Point Coded Points

32

by echoing the ROS topic /robot/joint_states in a terminal window and copying them

temporarily to a file. The process was repeated to take down the joint angles of all eight

poses. After taking down all sets of joint angles, a simple Python file was written to move

Baxter’s gripper from one coded point to another. The code is in Appendix C. The path

was simple: the gripper started at Point 1 and traversed the circular path twice clockwise

and then twice counterclockwise. Pauses were coded to hold Baxter at each point for one

second. For the gripper to move along the path, the Python file is run in the third

terminal. The fourth terminal is not used.

 The second trajectory was the object manipulation task shown in Fig. 28. In the

task, Baxter reached for an object on a platform, picked it up, moved it to his right along

an inverted parabolic path, set it down, released it, and raised his arm. The target position

is where the object is set at the end of the task. To control the velocity of the task and

prevent awkward pauses at instructed points, the trajectory needed to be programmed

differently than the previous. Specifically, the joint recorder, joint trajectory action

server, and joint trajectory file playback included in Baxter’s software were utilized [32].

With the joint recorder running in a terminal, Baxter’s left gripper was moved by hand at

the desired speed while opening and closing the gripper when needed. The Python file

wrote timestamped joint positions for both arms to a .csv file. For Baxter to repeat the

trained movement, the joint trajectory action server is run in the third terminal followed

by the joint trajectory file playback in the fourth terminal.

33

Fig. 28. Baxter inverted parabolic trajectory

 Using the same programming method, Baxter was taught a third task shown in

Fig. 29. Baxter reached for an elevated object, picked it up, moved down and to his left

along a linear trajectory, set it down, released it, and raised his arm.

Fig. 29. Baxter linear trajectory

34

 The grasp site, target, average velocity of the gripper in the y-direction, and the

equation for z along a trajectory given y needed to be calculated for each trajectory and

added to the Arduino sketch. Grasp site coordinates were found by taking the gripper’s

location when it closes above the grasp site and subtracting the measured vertical

distance between the gripper and grasp site at the same moment. The targets were found

in a similar fashion. Average velocities in y were calculated in Excel from the time-

stamped data obtained through the joint recorder. Finally, the y- and z-values of each

trajectory were plotted and curve fit, resulting in equations for z as a function of y. The

coefficients of determination, R2, associated with the parabolic and linear curve-fits were

0.96 and 0.98, respectfully.

3.4 Arduino

 The Arduino code was organized into nine tabs. One header file and one CPP file

were written for each of the following sections: DH parameters, servo and potentiometer,

motor and encoder, and verification. The header files initialize variables and functions

and place them into classes, and the CPP files contain the rest of the relevant code and

reference the appropriate header files. The ninth tab is the Arduino sketch that calls the

functions from the CPP files in void setup() and void loop() and defines what “mode” the

eyes are operating under.

 Apart from executing the functions in the CPP files, the sketch file also contains

four subscribers. The subscribers listen to the ROS topics published to in the Python code

and assign the x, y, and z coordinates of the left gripper and the degree to which the

gripper is open to Arduino variables. The final Arduino code and pseudocode flowcharts

are in Appendix D.

35

3.4.1 DH Parameters

 The DH parameter code determines where the centroid of the bar in Fig. 30 needs

to be for the eyes to look at a given point in space. The code then calculates the required

displacement in x, y, and z from the centroid’s current position to reach the desired

position.

Fig. 30. Bar centroid (red) in relation to gaze fixation point (blue)

 Four reference frames were used as shown in Fig. 31: Baxter’s base reference

frame, the midpoint between eyeball centroids, the gripper position, and the bar centroid.

The Rethink Robotics website states that z is zero relative to his base frame “where the

grey lower front panel meets the black metal that connects to the robot’s pedestal” [33].

The default orientation of the base frame’s x-, y-, and z-axes were applied to the other

three frames. The notation 𝑃𝑏
𝑎 used in the coming calculations means the position of {b}

relative to {a}.

36

Fig. 31. Reference frames

 First, the constant 𝑃1
0 was chosen by measuring how high above Baxter’s base

frame the eyes would be mounted. The gaze fixation point 𝑃2
0 was initialized as a point

straight ahead of and level with the eyes. The position of the bar centroid relative the

eyeball midpoint, 𝑃3
1, was then initialized as the servo’s moment arm length, 37mm, all in

the negative x-direction. Note the magnitude of the vector between {1} and {3} is always

37mm. Calculations begin with finding 𝑃2
1 using Equation 2.

𝑃2
1 = 𝑃2

0 − 𝑃1
0 = (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝑗̂ + (𝑧2 − 𝑧1)𝑘̂

(2)

The magnitude of the vector between the bar centroid and gripper position, ‖𝐴 ‖, is found

using Equation 3.

‖𝐴 ‖ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (3)

Equations 4 and 5 are equivalent definitions of the unit vector in the direction of 𝐴 , where

𝛼, 𝛽, and 𝛾 are the angles from the x-, y-, and z-axes, respectfully, to 𝐴 .

Z Y

X

{0}

37

𝑢⃑ = cos(𝛼) 𝑖̂ + cos(𝛽) 𝑗̂ + cos(𝛾) 𝑘̂ (4)

𝑢⃑ =
𝑥2

1

‖𝐴 ‖
𝑖̂ +

𝑦2
1

‖𝐴 ‖
𝑗̂ +

𝑧2
1

‖𝐴 ‖
𝑘̂ (5)

The components of Equations 4 and 5 were equated and rewritten to solve for 𝛼, 𝛽, and 𝛾

as shown in Equation 6.

𝛼 = 𝑐𝑜𝑠−1 (
𝑥2 − 𝑥1

‖𝐴 ‖
)

𝛽 = 𝑐𝑜𝑠−1 (
𝑦2 − 𝑦1

‖𝐴 ‖
)

𝛾 = 𝑐𝑜𝑠−1 (
𝑧2 − 𝑧1

‖𝐴 ‖
) (6)

The three angles give the orientation of the vector that passes through {1}, {2}, and {3}.

Knowing Equation 6 can be written for any pair of {1}, {2} and {3} coordinates resulted

in Equation 7. x3, y3, and z3 are the components of 𝑃3
0, and r = 37mm.

𝑥3 = 𝑥1 − 𝑟𝑐𝑜𝑠(𝛼)

𝑦3 = 𝑦1 − 𝑟𝑐𝑜𝑠(𝛽)

𝑧3 = 𝑧1 − 𝑟𝑐𝑜𝑠(𝛾) (7)

To condense the code, the equations for 𝛼, 𝛽, and 𝛾 were plugged into Equation 7 to form

Equation 8 used in the final code.

𝑥3 = 𝑥1 − 𝑟 (
𝑥2 − 𝑥1

‖𝐴 ‖
)

𝑦3 = 𝑦1 − 𝑟 (
𝑦2 − 𝑦1

‖𝐴 ‖
)

38

𝑧3 = 𝑧1 − 𝑟 (
𝑧2 − 𝑧1

‖𝐴 ‖
) (8)

The new value of 𝑃3
1 is found using Equation 9.

𝑃3
1 = 𝑃3

0 − 𝑃1
0 = (𝑥3 − 𝑥1)𝑖̂ + (𝑦3 − 𝑦1)𝑗̂ + (𝑧3 − 𝑧1)𝑘̂ (9)

Equation 10 gives Δx, Δy, and Δz for the bar centroid.

Δ𝑥 = 𝑥3
1 − 𝑥3

1
𝑜𝑙𝑑

Δ𝑦 = 𝑦3
1 − 𝑦3

1
𝑜𝑙𝑑

Δ𝑧 = 𝑧3
1 − 𝑧3

1
𝑜𝑙𝑑

 (10)

 It is important to guarantee that all gaze fixation points are within the eyes’ range

of motion. The eyes vertical range of motion is shown in Fig. 32 in which the upper and

lower limit occurs when a shaft coupler encounters either the press-in nut or the

horizontal surface of the encoder track.

Fig. 32. Limitations to vertical eye movement

39

 To avoid collisions, all gaze fixation points were chosen for L shown in Fig. 33 to

remain within 11mm. The conservative limitation reduces the eyes’ vertical range of

motion from 40° to 35°.

Fig. 33. Eyeball rotation about its centroid in the xz-plane

The eye’s vertical range of motion, θ, is related to L through Equation 11.

𝜃 = 2𝑠𝑖𝑛−1 (
𝐿

37𝑚𝑚
) (11)

3.4.2 Servo – Potentiometer

 Fig. 34 shows the parameters used to calculate the angle, Δθ, between the initial

and final position of the bar centroid. Because the servo used was not programmable, the

servo arm was attached so its angle would be as close to 90° as possible when the eyes

were aimed straight ahead. Once in the assembly, angle commands were sent to the servo

by trial and error to close in on the actual angle needed to aim the eyes forward. The

result was 97°.

40

Fig. 34. Parameters used to calculate Δθ

 Equations 12 through 15 were used to find θ2 in degrees. The values of 𝑦3
1 and 𝑧3

1

were calculated in the DH parameter section of code. The eyes’ radius of rotation, or the

distance from {1} to {3} is r = 37mm, and rxy is the length of the radius projected onto

the XY-plane. Note that in the final code, Equations 12 through 14 were combined into

one equation to calculate Δθ.

𝛼 = (187° − 𝜃1) (12)

𝑟𝑥𝑦 = √𝑟2 − 𝑧3
1 (13)

∆𝜃 = 𝑐𝑜𝑠−1 (
𝑦3

1

𝑟𝑥𝑦
) − 𝛼 (14)

𝜃2 = 𝜃1 + ∆𝜃 (15)

 The limits to the servo’s range of motion are shown in Fig. 35. The analog read

code in Appendix E was used to obtain the potentiometer’s output for each limit.

41

Fig. 35. Parameters to map potentiometer analog output to degrees

 Using the angles and corresponding potentiometer outputs of the limits, Equation

16 can interpolate any value of 𝜃1 in degrees given the potentiometer output. The

equation was used in place of an Arduino map() function since the latter uses integer

math that would have led to roundoff errors [34].

𝜃1 = 132° −
(962 − 𝑎𝑛𝑎𝑙𝑜𝑔 𝑜𝑢𝑡𝑝𝑢𝑡)(132° − 62°)

962 − 725
 (16)

 The Servo library built into Arduino prevents pins 9 and 10 from acting as PWM

pins [35]. Because the motor shield uses those pins as PWM pins, and because those

motor shield pins cannot be remapped, the open source ServoTimer2 Arduino library was

used in place of the Servo library. Unlike the built-in library, the ServoTimer2 library

controls a servo by writing an input in milliseconds instead of degrees to the servo.

Although the range 1000-2000ms can roughly be mapped to 0-180°, the true mapping

varies between servos. Therefore, the two numbers 1300 and 1800 milliseconds were

chosen, and the analog read code was used to get the equivalent servo degrees for each.

The results were 80° and 128°, respectfully. The four numbers were used in Equation 17

to make a second interpolation equation.

42

𝜃1[𝑚𝑠] = 1800 −
(128° − 𝜃1)(1800 − 1300)

128° − 80°
 (17)

 When an angle is written to a servo, no other code can run until the command has

finished executing. For this reason, the servo instructions were sent in increments of one

degree. Because the Arduino delay() function also hinders any other code from running

until its completion, the millis() function was used to track time. The amount of time

allotted between servo increments, ti, was found using Equation 18 where the constant T

is the total time allotted for the servo to move from its initial to final position. An if

statement based on ti was used to control when a servo angle was incremented.

𝑡𝑖 =
∆𝜃

𝑇
 (18)

 The logic for the servo is follows: first, 𝜃1, ∆𝜃 and the length of time between

each servo command is calculated. The time between commands is set to a minimum of

two milliseconds so the servo is not instructed to move at a speed faster than its specified

maximum. If the calculated time for a servo command is reached, the calculation for 𝜃2 is

run. 𝜃2 is then constrained within the servo’s range of motion. The servo’s current

position is calculated by taking the potentiometer output and converting it to an angle in

degrees. If the servo’s current position is over one degree from the desired 𝜃2, the servo

is told to move one degree closer to 𝜃2. Otherwise, 𝜃2 is written to the servo. 𝜃2 is also

written to the servo if the timer goes 50ms past the allotted 100ms for servo movement.

The process repeats with every new gaze fixation point instruction.

3.4.3 DC Motor – Encoder

 The encoder code was open-source from Arduino [36]. It attaches interrupts to the

pins associated with the encoder’s Channel A and B, respectively. The encoder returns

43

quadrature output; instead of having a continuous reading, a number is returned based on

the number of encoder “ticks” that occur when the shaft rotates. The encoder’s

specifications state it has a resolution of 100ticks/rev; however, because the rise and fall

of both channels is being tracked in the code, the resolution increased to 400ticks/rev

[36]. The output can be positive or negative depending on whether the encoder’s net

rotation is clockwise or counterclockwise from its position when the Arduino sketch was

first uploaded. In the assembly, a positive Δz decreases the number returned while a

negative Δz increases it.

 An Arduino library and example sketch were downloaded from GitHub for the

Pololu motor driver shield [37]. One of the library’s built-in functions used stops the

motor if a fault is found. An example of a fault would be if the voltage reaching the

motor was less than the operating voltage.

 Another function from the same library sets the DC motor’s speed and direction

of rotation. Instead of inputting a speed in RPMs, the motor speed is set using a speed

index between -400 and 400 where the sign differentiated clockwise from

counterclockwise. Therefore, a function relating the speed index to RPMs had to be

determined empirically as explained in Section 5.3.2.

 The motor’s loop function first calculates the number of motor rotations, N,

required to cover the instructed ∆𝑧 using Equation 19.

𝑁 = ∆𝑧 ∗ 24
𝑟𝑜𝑡

𝑖𝑛𝑐ℎ
∗

1𝑖𝑛𝑐ℎ

25.4𝑚𝑚
 (19)

Δz is in millimeters and comes from the DH parameter calculations, 24 rotations-per-inch

comes from the threads-per-inch of the screw, and the final term is a unit conversion. The

loop goes on to calculate the time allotted for acceleration as a set portion of the

44

predefined time given for the motor to move, the motor’s maximum RPM constrained

within the motor’s specifications, and the RPM increment. A new variable equivalent to

the encoder output is defined for the verification code to reference.

 The motor’s speed at a given time is calculated to fit an asymmetrical trapezoidal

velocity profile. The profile was chosen through testing explained in Section 5.3.3.

Besides conditions for acceleration and deceleration, a condition that gave feed forward

control was included. The condition recalculates the desired maximum RPMs at the end

of the acceleration phase if the motor is moving slower than anticipated. When none of

the three conditions are accessed, the motor velocity remains constant, making up the

plateau of the velocity profile. A correction function is accessed after the allotted time of

115ms for the motor reach its destination has passed. The function runs the motor at a

speed index of ±125, or 67RPM, in the appropriate direction to make up for any error in

position. A separate function stops the motor if the vertical motor’s position is within the

allowed error of 0.1mm. The correction function is ended when the timer reaches 300ms.

 Like the servo angle, the DC motor speed was changed in increments of time. The

servo’s time increment, however, was calculated based on the total Δθ while the servo

angle increment was constant at one degree regardless of the time allotted for motor

movement. In contrast, the DC motor’s time increment was a constant while the motor

speed’s increment was calculated to fit the velocity profile.

3.4.4 Verification

 The verification section of code does what its name suggests; it verifies the

orientation of the assembly at a given time. It uses the servo and encoder outputs to

calculate two points: the location of the bar centroid and where the eyes are looking.

45

 When the code starts, the eyes are looking straight ahead, meaning the bar

centroid’s z relative to the eye midpoint is zero, or 𝑧3
1 = 0. The actual value, 𝑧3,𝑎

1 , can be

calculated anytime during a run by converting encoder ticks to millimeters using

Equation 20. A negative sign is required because a positive 𝑧3
1 corresponds to a negative

encoder output.

𝑧3,𝑎
1 = −𝑒𝑇𝑖𝑐𝑘𝑠 ∗

1 𝑟𝑒𝑣

400 𝑡𝑖𝑐𝑘𝑠
∗
25.4𝑚𝑚

24 𝑟𝑒𝑣
 (20)

After converting the potentiometers analog output to degrees to get 𝜃2, 𝑦3
1 is calculated in

Equation 21 where r = 37mm.

𝑦3,𝑎
1 = √𝑟2 − (𝑧3,𝑎

1)
2
∗ cos (187° − 𝜃2) (21)

Having r, 𝑦3,𝑎
1 and 𝑧3,𝑎

1 , 𝑥3,𝑎
1 was found using Equation 22. 𝑥3,𝑎

1 is negative because the

bar centroid is always behind the eye midpoint.

𝑥3,𝑎
1 = −√𝑟2 − (𝑦3,𝑎

1)
2
− (𝑧3,𝑎

1)
2
 (22)

 It’s odd to say the exact point that the eyes are “looking” at can be found; a single

eye orientation has a vector normal to the pupil along which are infinite possible fixation

points. To reduce the vector to one point, the actual x-value of the fixation point was

equated to that of the instructed point. Therefore, the two points lie in a plane normal to

the x-direction as shown in Fig. 36, making it easy to compare them.

46

Fig. 36. Instructed versus actual gaze fixation point in yz-plane

For the full calculation of 𝑥2,𝑎
0 , 𝑦2,𝑎

0 , and 𝑧2,𝑎
0 , the actual fixation point’s x-values relative

to {0} and {1} were equated to their respective input points in Equations 23 and 24.

𝑥2,𝑎
0 = 𝑥2

0 (23)

𝑥2,𝑎
1 = 𝑥2

1 (24)

Next, the actual location of the bar centroid was calculated relative to the base frame in

Equation 25.

𝑥3,𝑎
0 = 𝑥3,𝑎

1 + 𝑥1
0

𝑦3,𝑎
0 = 𝑦3,𝑎

1 + 𝑦1
0

𝑧3,𝑎
0 = 𝑧3,𝑎

1 + 𝑧1
0 (25)

47

The cosines of the angles that define the vector 𝐴 𝑎 from the fixed eye midpoint to the

actual bar centroid were calculated in Equation 26, and the magnitude of the vector was

calculated in Equation 27.

cos(𝛼) =
𝑥1

0 − 𝑥3,𝑎
0

𝑟

cos(𝛽) =
𝑦1

0 − 𝑦3,𝑎
0

𝑟

cos(𝛾) =
𝑧1

0 − 𝑧3,𝑎
0

𝑟
 (26)

‖𝐴 𝑎‖ =
𝑥2,𝑎

1

cos (𝛼)
 (27)

Finally, after calculating 𝑦2,𝑎
1 and 𝑧2,𝑎

1 in Equation 28, 𝑦2,𝑎
0 and 𝑧2,𝑎

0 were found using

Equations 29.

𝑦2,𝑎
1 = ‖𝐴 𝑎‖ ∗ cos(𝛽)

𝑧2,𝑎
1 = ‖𝐴 𝑎‖ ∗ cos(𝛾) (28)

𝑦2,𝑎
0 = 𝑦2,𝑎

1 + 𝑦1
0

𝑧2,𝑎
0 = 𝑧2,𝑎

1 + 𝑧1
0 (29)

3.4.5 Modes

 The Arduino code was written for three modes of eye movement. Mode 1 equates

the left gripper position to the instructed gaze fixation point; i.e. the eyes always look at

the gripper. Mode 1 can be used for any gripper position within the eyes range of motion.

The remaining two modes give the eyes more human-like eye movement but are

only programmed to work for the object manipulation tasks discussed in Section 3.3. The

modes are called block mode and full glass mode. As the mode names suggest, Baxter’s

48

eye movements in full glass mode make him appear to be handling the object more

cautiously than in block mode.

In both modes, the eyes are programmed to look forward until the Python code

begins publishing left gripper information to ROS topics. Then, the eyes look at the grasp

site as the gripper moves towards the object. After the gripper is thirty-percent closed just

before grabbing the object, the eyes switch between fixating on the object’s desired final

position, referred to as the target, T, and a temporally offset point ahead of the gripper.

The first target fixation always occurs right after the gripper is thirty-percent closed, and

subsequent fixations occur at fixed time intervals. Both aspects keep eye movement

consistent between trials. A special time condition was added to the Arduino code when

the linear trajectory was run to ensure the eyes were fixating the target and not an offset

point before the gripper opened. The condition was not necessary in the parabolic

trajectory due to the timing of the saccades. In the middle of the gripper releasing the

object, the eyes looked straight ahead to indicate the completion of the task.

 The two differences between the modes are as follows: the target is fixated more

frequently and thus for a greater portion of the total time in full glass mode, and the

temporal offset in full glass mode is less than that of block mode. The temporal offsets

chosen for block mode and full glass mode were 1.5s and one second, respectively. The

equivalent distance offsets are calculated by multiplying the temporal offsets by the

known average gripper velocity in the y-direction. Note the parabolic trajectory was

stretched far enough in the y-direction that the velocity in z was negligible. When the

conditions are met to look at a point offset from the gripper, the offset y-value is

calculated and plugged into the equation to find the offset value of z.

49

3.4.6 Output

 Eight publishers were coded in the Arduino sketch file, one for each of the

following: the time in milliseconds, the instructed gaze fixation point coordinates X, Y,

and Z, the actual gaze fixation point coordinates YEYES and ZEYES, and the left gripper’s

coordinates YHAND and ZHAND. Note that XHAND = XEYES = X, which is why there is only

a publisher for X. All coordinates are returned relative to the base frame; however, the

code has the calculations done if the user wanted to return the instructed and actual gaze

fixation points relative to the point between the eyeballs. To store the data, six of the

eight topics can be echoed in their own terminals and written to texts files by executing a

single command in each terminal. For reasons yet to be determined, running all eight

publishers in the Arduino code created communication issues over the serial port. The

way in which data was recorded and analyzed to work around the issue is discussed later.

3.4.7 Summary

 Fig. 37 summarizes the Arduino inputs and logic. The mode predefined by the

user and the gripper’s location and percent open are used to determine the desired gaze

fixation point. The algorithm goes on to calculate the horizontal and vertical bar

displacements required to look at that point given the eyes’ current gaze fixation point.

The displacements dictate the movements of the lateral and vertical motors. After the

time given for the eyes to reach their desired orientation, forward kinematics are

performed to return the updated current gaze fixation point for the next run of the

algorithm.

50

Fig. 37. Arduino inputs and logic

51

4 FABRICATION

4.1 Preliminary

 Excluding the mask and eyes for housing laser diode modules, Fig. 38 specifies

all parts and quantities that were 3D printed for the assembly. The SolidWorks part files

were converted to STL files, and the parts were printed on an Ultimaker 3 using Cura

software. All pieces were printed using PLA and a twenty-percent infill.

Fig. 38. 3D printed parts and quantities of each

52

 After printing, many of the holes needed to be enlarged to meet the modeled

dimensions. The holes were enlarged by hand using the drill bits shown in Fig. 39. Some

parts like the plate were sanded to reduce friction. A file was used to smooth out areas

that were printed with PLA supports like the DC motor housing slot.

Fig. 39. Drill bits for enlarging holes (left), filed slot of DC motor housing (right)

 The 10-32 threaded rod was made by sawing the head off a 2-1/2” screw as

shown in Fig. 40. The final length was two inches, and the cut end was smoothed out on a

sander.

Fig. 40. Original versus cut and sanded screw

 Two parts needed soldering: the DC motor and the motor shield shown in Fig. 41.

The DC motor had soldering tabs for its two terminals. The wires were initially sized

based on the motor’s stall current; however, the 21AWG wire was too rigid to move

within the assembly, which caused the soldering tabs on a test motor to snap. 26AWG

wire was chosen knowing that if the motor ever stalled, the user would quickly stop the

53

code, causing no damage to the thin wires. Next, three power blocks and four of the five

included female headers were soldered to the motor shield.

Fig. 41. Motor driver with soldered headers and power blocks (left); wires soldered to DC motor (right)

4.2 Assembly: Robotic Eyes

 The beginning of the assembly in Fig. 42 focuses on the eyes. An eyebolt with an

inner diameter of 1/8” was screwed into the cylindrical extrusion of an eye. The two-

piece shell was then placed around the eyeball and secured with two M1.6 screws and

nuts. The process was repeated for the other eye.

Fig. 42. Eyeball and housing disassembled (left) and assembled (right)

 The L-brackets and standoffs shown in Fig. 43 were mounted to the plate with M2

x 20mm screws and nuts. Note that a thinner, rectangular version of the plate is depicted;

however, the assembly is the same using the final plate. The eyeball assemblies from the

previous step were then mounted to the L-brackets using M2 x 8mm screws and nuts.

54

Fig. 43. L-brackets and standoffs used to mount the eyeball subassemblies

 After positioning the servo horn on the servo as discussed in Section 3.4.2, the

servo was mounted to the plate using two M2 x 8mm screws as shown in Fig. 44. To

align the servo arm on top of the horn, an M1.6 screw was placed through the arm and

horn while the screw for the servo shaft was inserted and tightened. The M1.6 screw was

then removed and set aside for later.

Fig. 44. Servo mounted to the plate followed by the servo arm

 The potentiometer was press-fit into the square cutout of its mount as shown in

Fig. 45. The potentiometer and servo interface in the bottom left of the figure were placed

on the servo arm with the round cutout going over the servo shaft screw head. The M1.6

screw from the last step and a nut were used to connect the interface, servo arm and horn.

The potentiometer assembly was then mounted to the bottom of the plate with four M2 x

8mm screws once the potentiometer shaft was fit through the semicircular hole in the

interface piece.

55

Fig. 45. Attaching the potentiometer and its mount and the servo-pot interface

 Fig. 46 shows the hollow disk, support piece, and encoder track that were added

next. Each of the three pieces were secured using two M2 x 8mm screws; the hollow disk

was screwed to the servo arm, and the support piece and encoder track were screwed

between the hollow disk extrusions.

Fig. 46. Attaching the hollow disk (1), support piece (2), and encoder track (3)

 Next, the shaft coupler for the DC motor and threaded rod was secured to one end

of the rod using an Allen wrench as shown in Fig. 47. The free end of the rod was placed

through the arced cutout in the plate and threaded through the press-in nut. The remaining

coupler was then secured to the encoder shaft and then attached to the free end of the rod.

56

Fig. 47. Attaching the threaded rod, shaft couplers, and encoder

 An eyebolt was screwed into one end of the bar shown in Fig. 48, and one shaft

collar was slid onto the bar. The free end of the bar was slid into the slot on top of the DC

motor housing. The second shaft collar was then slid onto the bar, and the second eyebolt

was screwed into the free end of the bar. The motor housing was then centered along the

bar, and the shaft collars were secured to the bar using an Allen wrench. Enough

clearance was left between the housing and shaft collars for the bar to slide smoothly

within the slot but not so much that the bar could twist about its centroid’s z-axis. The

spacing was controlled by putting paper between the housing and final shaft collar during

assembly. The DC motor wires were then threaded into the bottom of the housing and out

through one of the side openings. The motor was press-fit into the housing while ensuring

the motor’s soldering tabs did not hit the end of the cavity.

57

Fig. 48. Subassembly of the bar, eyebolts, shaft collars, DC motor and housing

 The DC motor shaft was placed inside of the coupler and secured as shown in Fig.

49. With the eyeball eyebolts sitting on top of the bar eyebolts, the pins were inserted

through the bolts, and an M1.6 screw was used to compete each pin connection.

Fig. 49. Clevis pin connections

 Without a lubricant on the threaded rod, the vertical motor would occasionally

stall. To fix this, a few milliliters of WD-40 were sprayed through a nozzle into a small

container shown in Fig. 50. Using a Q-tip, the lubricant was applied to the exposed

portion of the rod between the two couplers.

58

Fig. 50. WD-40 application to threaded rod

 To construct each laser diode eye, the two-piece eye was 3D printed using white

PLA. A slit was cut into an adhesive hole reinforcement as shown in Fig. 51. The

reinforcement was then colored with a marker to look like a human iris. The

reinforcement was centered on the front of the eyeball. One cut end of the reinforcement

slightly overlapped the other for the reinforcement to attach flushed to the eyeball’s

curved surface. The area of the eye within the inner diameter of the reinforcement was

colored to match the reinforcement. A pupil of an approximate diameter of 3.5mm was

dotted on using a black permanent marker.

Fig. 51. Creating a laser diode eye’s iris and pupil

 As with the other eyes, an eyebolt was screwed into the cylindrical extrusion as

shown in Fig. 52. The laser diode terminal wires were shortened, leads were soldered

59

onto them, and heat shrink was put on the newly soldered connections. The laser diode

was then placed in the eyeball. The leads were thread through the elliptical hole in the

side of the cylindrical extrusion, and the two pieces of the eye were snapped together.

Fig. 52. Assembling laser diode eyes

4.3 Assembly: Wiring and Mounting

 Fig. 53 shows most of the parts required for mounting the breadboard and

mounting the plate to Baxter’s display screen. Four #8-32 screws and nuts not pictured

were also used.

Fig. 53. Baxter mount parts

 To increase the bend in each L-bracket, one end of the bracket was secured in a

vice as shown in Fig. 54. The bend was then hit lightly with a mallet until the final angle

was approximately 85°.

60

Fig. 54. Bending the L-brackets

 One L-bracket was attached to the plate behind the right eye using the two short

#8-32 screws and nuts. After sticking the breadboard onto the blue plate, two three-inch

#8-32 screws were slid through the breadboard plate’s holes. Spacers that added up to

two-inches in length were added onto each screw. Fig. 55 shows that three one-inch

spacers and four quarter-inch spacers were used. The long screws were then placed

through the main plate and second L-bracket and secured with nuts.

Fig. 55. L-brackets and breadboard plate

 Next, wires that connected to the variable power supply’s terminals and the wires

connected to the DC motor were secured to the motor driver on the Arduino board as

shown in Fig. 56.

61

Fig. 56. Connecting motor and power supply to the motor driver

 The Arduino was placed on the main plate after covering the two shorter

screwheads it was sitting on with electrical tape. All on board wiring was completed as

shown in Fig. 57.

Fig. 57. Wiring

 The two mounting supports were secured to the L-brackets using two #8-32

screws and nuts each. Recall that the bracket from the design that secured the two

mounting supports to one another is optional. Next, the supports were slid over the top

corners of Baxter’s monitor as shown in Fig. 58. The mask was then placed over the eyes

and secured by Velcro that was wrapped around the back of Baxter’s monitor and looped

through and fastened at both ears.

62

Fig. 58. Mounted assembly

 It was discovered that the L-brackets had not been bent enough for the plate to be

perfectly level. While bending the L-brackets further was a viable option, the plate was

made level by adding a washer to the bottom screws of both brackets as shown in Fig. 59.

Fig. 59. Washer added to L-bracket

 The full assembly is shown in Fig. 60 with and without the laser diode modules

powered on.

63

Fig. 60. Full mounted assembly

4.4 Bill of Materials

 Table 2 lists the cost and quantity of parts required in the assembly. The only

difference between the table and the components used for testing is the power supply. As

previously stated, a simple 12V battery can power the DC motor if the application does

not warrant a variable power supply. The total is just over two-hundred dollars with the

encoder and motor shield accounting for about half of the cost. Using the optional laser

diode modules increases the total cost by thirty-three percent.

64

Item Cost /

Item

of

Items

Total

Cost

Vendor

ENS1J-B20-L00100L Optical

Encoder

 $ 61.99 1 $ 61.99 Arrow

Pololu Dual MC33926 Motor

Driver Shield for Arduino

 $ 29.95 1 $ 29.95 Pololu

Arduino Uno R3 $ 22.00 1 $ 22.00 Arduino

12VDC Battery $ 14.99 1 $ 14.99 Home Depot

ROB-12408 Gearmotor

4900 RPM 12VDC

 $ 12.95 1 $ 12.95 Digi-Key

10-24 Press-In Nut $ 6.88 1 $ 6.88 McMaster-Carr

SER0039 9G Metal Gear Micro

Servo 1.8kg

 $ 5.90 1 $ 5.90 Digi-Key

Breadboard $ 5.00 1 $ 5.00 Adafruit

Shaft Couplers

3mm-5mm & 1/4in-5Mm

 $ 4.99 2 $ 9.98 ServoCity

Potentiometer $ 2.41 1 $ 2.41 Digi-Key

Shaft Collar 1/4" diameter $ 2.23 2 $ 4.46 McMaster-Carr

Male-Female Jumper Wires $ 0.18 7 $ 1.28 Digi-Key

Eyebolt $ 0.09 4 $ 0.36 McMaster-Carr

Screws, Nuts, Spacers

 $ 22.85 Multiple

Misc. (PLA, capacitors, etc.)

 $ 14.00 Multiple
Total $ 215.00

Laser diode modules (optional) $ 35.48 2 $ 70.96 Digi-Key

 Total $ 285.96

Table 2. Bill of materials

65

5 TESTING: SYSTEM CHECKS

 Before testing the final assembly, the locations of Baxter’s base and gripper

frames were verified, DH parameter calculations were verified, the servo and DC motor

were tested individually, and the full assembly was tested using single-point commands.

Note that for all testing in this report, it was assumed the eyes were 750mm above

Baxter’s base frame. When the assembly is mounted to Baxter, the true distance is closer

to 650mm. The midpoint between eye centroids is also a few centimeters in front of

Baxter’s base frame when mounted, not directly above.

5.1 Baxter Gripper Frame Location

 Although the location of Baxter’s base frame was known, Baxter’s PyKDL

package did not specify what point on the gripper was being returned by its forward

kinematics function. It was found that echoing the topic /robot/limb/left/endpoint_state

returned the fingertip location of the electric parallel gripper [38], [39]. For this reason, it

was hypothesized that the forward kinematics function also returned the fingertip

location.

 To test the hypothesis, the forward kinematics function was run for one left

gripper position. Without moving the gripper, the endpoint state topic was then echoed.

Results for x, y, and z within two-millimeters of one another would prove that the

forward kinematics function returned the fingertip location. Otherwise, measurements by

hand would be performed to determine the true point location using the fingertip location

as a reference.

66

5.2 DH Parameters

 The purpose of this test was to ensure that the equations written in the DH

parameter section of code return the correct values for Δx, Δy, and Δz. First, the delta

values needed for the eyes to look from straight ahead to a target point were calculated in

both Excel and the code. The hypothesis was that the difference between the delta values

output by the code and the true values would be less than one millimeter. The one-

millimeter limit allowed for negligible rounding errors. Any larger errors would have

indicated significant rounding errors caused by breaking the calculation up into too many

steps or a typo.

 Two sets of target positions were chosen along arcs shown in Fig. 61. In the firsts

set, the points were on the arc that contained possible positions of Baxter’s right gripper

when his fully extended arm moves up and down. The second set was on an arc that

contained possible right gripper positions when Baxter’s fully extended arm moves left

and right. The limitations of Baxter’s arm movement were not considered when choosing

the twenty-two individual points.

Fig. 61. Points used to verify DH parameters

-500

0

500

1000

1500

2000

0 500 1000 1500

Z
(m

m
)

X (mm)

Gaze Fixation Points: Set 1
Y=0mm

-1500

-1000

-500

0

500

1000

0 500 1000 1500

Y
(m

m
)

X (mm)

Gaze Fixation Points: Set 2
Z=450mm

67

 Matching Excel and Arduino results would rule out rounding errors and typos in

the code, but it would not guarantee that the equations themselves were correct.

Therefore, the next step was to test the calculations geometrically. Working backwards in

Excel, Points A and B in Fig. 62 were derived from the chosen Δz values -13mm and

+13mm, respectively. Recall that {1} is the center point between the eyes.

Fig. 62. Points A and B chosen to produce Δz = ±13mm

 Fig. 63 is a top-down view of Baxter. The value of M, or the distance between

{1} and a point, was found for both A and B using the Pythagorean Theorem.

Fig. 63. Top-down view of Baxter for calculations

68

 After finding MA and MB, the tilt angles θA and θB shown in Fig. 64 were

calculated using tangent functions. In theory both angles should equal the angle of tilt of

the eyeballs create by Δz = ±13mm, which is 20.6°.

Fig. 64. Calculating θA and θB; both should equal 20.6°

 The second geometric verification used two new points shown in Fig. 65 along

the same arc as the second set of target positions. The value of Δy associated with Point

C is 20mm and that of Point D is -20mm. Using simple trigonometry, θC and θD are 34.3°

and 33.6°, respectfully.

Fig. 65. Points C and D chosen to produce Δy = ±20mm

69

 In Excel, the values of Δz for Points C and D were found to be 10.35mm and

8.07mm, respectfully. Note that the values of Δz were not equal even though both points

were the same vertical distance from the base frame. Equations 30 and 31 were used to

find θC and θD for both points. The results should match those found through the simple

trigonometry from Fig. 65.

𝑟𝑥𝑦 = √𝑟2 − 𝑧3
1 (30)

𝜃 = sin−1 (
20𝑚𝑚

𝑟𝑥𝑦
) (31)

5.3 Servo

 The servo was put through two sets of tests: one without potentiometer feedback

(open-loop control) and one with feedback (closed-loop control). Each set consisted of

one test disconnected and one test connected to the entire assembly. The hypothesis was

that regardless of whether the servo arm was connected to load or not, the servo would

have greater accuracy under closed-loop control than under open-loop control.

5.3.1 Open-Loop: Load Disconnected

 Fig. 66 shows the setup for the first open-loop test. A piece of blue tape was stuck

along the middle of a mousepad with its long edges parallel to two of the pad’s edges.

The servo was screwed to the plate, and the plate was propped on its side and set flushed

against a side of the pad perpendicular to the long piece of tape. A camera phone was set

flushed against the opposite side, ensuring the plate and camera were parallel. The plate

was moved so the servo’s shaft was centered above one of the tape’s long edges. Finally,

the camera was moved until the edge of tape appeared vertical through the camera lens,

70

which meant the camera was centered in front of the servo’s shaft. Smaller pieces of tape

were used to mark where to keep the plate and camera.

Fig. 66. Disconnected test setup (left); centering the camera (right)

 The servo “Sweep” example that came with Arduino was used. In the example,

the servo is told to “sweep” back and forth from one angle to another. The same two

angles were used for all trials that set a total sweep of 70°. Accuracy was determined by

how close to this distance the servo swept across at various speeds. The speed of each

trial was controlled by changing the servo’s delay, or the amount of time in milliseconds

the servo was given to move one degree. The larger the delay, the slower the servo

rotated.

 Five trials were performed with the delay ranging from 5ms to 25ms. In each trial,

the servo arm would begin in a position near the lower limit that was not recorded. It

would then move back and forth twice, covering two sweeps. Because it would have been

difficult to use a protractor, the videos were analyzed in a program called Kinovea. The

servo arm’s positions at the extremes of each sweep were measured as shown in Fig. 67.

71

Fig. 67. Measuring angles in Kinovea to calculate the sweep

 The measurements from each trial were recorded in Excel as shown in Table 3.

The average sweep and its standard deviation were calculated.

Trial 1

Delay=25 Cycle Start (°) End (°) Sweep (°) SD (°)

 1 140

 2 79 141 61

 3 79 62

 Average: 79 140.5 61.5 0.71

Table 3. Sample data table for single trial

5.3.2 Open-Loop: Load Connected

 With the load connected to the servo arm, the test setup was altered to the one

shown in Fig. 68. The bottom and one side of a bucket were cut out, and the bucket was

placed upside down on a table. The eye assembly was placed on top, and a camera phone

was slid through the side and centered under the servo. The same data collection process

from the previous section was used.

72

Fig. 68. Connected test setup (left); angle from Kinovea (right)

5.3.3 Closed-Loop: Load Disconnected

 The same physical test setup from Section 5.3.1 was used with the addition of the

potentiometer, mount, and servo-pot interface piece as shown in Fig. 69.

Fig. 69. Potentiometer attached to disconnected test setup

 The code, however, did not use Arduino’s Sweep example. Instead, one target

angle at a time was written to the servo and the delay remained constant at 10ms, which

was the second-lowest delay tested in the no feedback trials. After the servo.write()

command was executed, the code calculated the actual angle from the potentiometer’s

analog output. If the actual angle differed from the target angle, the servo was instructed

to move one degree in the proper direction until the target angle was achieved, creating

73

closed-loop control. The target angles and calculated final angles from the potentiometer

were recorded. Note that the code used was not the same as the final code.

 Although the angles obtained through Kinovea were also recorded, the data was

not analyzed. The Kinovea data would have only been useful if Kinovea angles were also

obtained in the connected feedback test described in the coming section. Unfortunately,

centering the camera under the assembly with the potentiometer blocking the servo shaft

could not be done accurately.

5.3.4 Closed-Loop: Load Connected

 The potentiometer, mount and servo-pot interface were added to the previous

connected setup, and the code from the other feedback test was used. The target angles

and the calculated final angles from the potentiometer were recorded. As previously

stated, no analysis was done using Kinovea.

5.4 DC Motor

 Three preliminary tests were run with the DC motor. The first tested different

encoder codes to ensured that the code chosen accurately tracked the motor’s rotation.

The second empirically found the relation between the speed index used by the open

source code and motor RPMs. The third tested motor accuracy using slightly different

velocity profile.

5.4.1 Encoder Accuracy

 Three versions of open source encoder code were tested. The first was a the

“Simple Example” from the Arduino rotary encoder playground, the second came from

code for a ROS-Arduino Bridge, and the third used the “Interrupt Example” from the

Arduino rotary encoder playground [40], [41].

74

 The purpose of this test was to determine what code could accurately track the

motor’s rotation at low and high RPMs. Any version that fell short would be removed

from the list of options for use in the robotic eye code. The hypothesis was that all three

would perform equally, meaning the simplest one would be implemented in the final

code.

 The same motor code was added to each set of encoder code. Each version was

run for two trials at two different speeds: i=400, which is the maximum, and i=100. The

former had a run time of T=5000ms and ramp times of 1000ms up and down while the

latter had a run time of T=4250ms and ramp times of 250ms up and down.

5.4.2 Speed Index Mapping

 The purpose of this test was to find the conversion between the motor’s speed

index and RPMs. The hypothesis was that the relation between the two was linear.

 After the encoder code was chosen, the same motor code from the previous

section was run at ten different maximum speed indices ranging from 85 to 395. For each

trial, the time in milliseconds, number of encoder ticks, and speed index were output into

the Arduino serial monitor after every loop, and the values were copied into Excel at the

end of the trial. The two data points at either end of the trapezoidal velocity profile’s

horizontal line were taken and used to calculate the motor’s maximum speed in RPMs for

that trial. The process was repeated for all ten trials, and a scatter plot of maximum RPMs

versus maximum speed indices was created. The points were curve fit in Excel using

various types of equations. The best fit indicated by an R2 value closest to one and no

lower than 0.95 would be implemented in the final code.

75

5.4.3 Choosing Velocity Profile

 A new DC motor velocity profile needed to be calculated in Arduino with every

new gaze fixation point. Ideally, the bar centroid would reach its desired vertical position

every time an accurate velocity profile was provided; however, there was a chance that

factors such as friction would alter performance.

The purpose of this test was to find out if the DC motor performed as expected

given a velocity profile free of post-calculation adjustments. In other words, the velocity

profile was calculated exactly for the desired Δz. Accurate performance was defined as

consistently moving the bar centroid to within ±1mm of its desired vertical position.

Proving the hypothesis wrong would lead to testing a slightly modified velocity profile

under the same standards.

 The initial profile tested was a trapezoidal velocity profile in which the value of

Δz determined the maximum velocity of each trial. Three trials had a total run time of

T=250 milliseconds and three had T=500 milliseconds. In both cases, twenty percent of

the run time was allotted for the ramp up (acceleration) and the same for the ramp down

(deceleration) as shown in Fig. 70. A condition was added to the code ensuring the motor

reached the trial’s maximum velocity at 0.2T.

Fig. 70. Velocity profile initially tested

76

5.5 Lateral and Vertical Motor Movement

 Although the final Arduino code used with Baxter gave the motors fixed amounts

of time to reach an orientation regardless of saccade size, a test was run to see how the

eyes would operate if given a saccade duration based on saccade size. Fig. 71 shows lines

A and R created from human eye performance data from two previously mentioned

journal papers [6], [9]. The “Test” line was created using the average slope and y-

intercept of lines A and R.

Fig. 71. Saccade size vs. saccade duration

 Three sets of tests were performed: one for lateral eye movement, one for vertical

eye movement, and one for a combination of the two. A set of points were chosen from

the Test line for each test set, and each point was tested in multiple trials for both positive

and negative Δθ’s. Each trial began with the eyes level and approximately aimed straight

forward.

 Three versions of Arduino code were used. The code used in the lateral motor test

was a subset of the final code that took arguments for time allotted for lateral motor

y = 0.6759x - 17.618
R² = 0.9974

y = 0.5443x - 18.252
R² = 0.9882

y = 0.6061x - 18.182

-10

0

10

20

30

40

50

60

0 20 40 60 80 100 120

M
ag

n
it

u
d

e
(d

eg
re

es
)

Duration (ms)

Saccade Size vs. Saccade Duration

R

A

Test

Linear (R)

Linear (A)

Linear (Test)

77

movement and Δθ. That of the vertical motor test was also a subset of the final code. It

took arguments for time allotted for vertical motor movement and Δz. Finally, the final

code (excluding the code required for ROS) was used for the combined motor test. It took

two time arguments: one for lateral motor movement and one for vertical motor

movement. It also took the X, Y, and Z of a gaze fixation point. The position output

returned by each test was in the same form as their inputs (e.g. the vertical test returned

the actual Δz obtained, etc.). For the vertical and combined tests, the position inputs and

outputs were converted to degrees for analysis. The hypothesis was that the averaged

actual saccade sizes of each test set would produce a line that falls somewhere between

lines A and R.

78

6 RESULTS: SYSTEM CHECKS

6.1 Baxter Gripper Frame Location

 The results from both methods are shown in Fig. 72. The forward kinematics

function returned the point (0.4841, 0.3741, -0.5254), and the end state topic returned

(0.4848, 0.3755, -0.5250), both in meters. The components of each point were all well

within two millimeters of each other; therefore, it was confirmed that the forward

kinematics function returns the gripper’s fingertip location.

Fig. 72. Baxter gripper frame check results

6.2 DH Parameters

 Tables 4 and 5 show the delta values found in the Arduino code and Excel. All

data is in millimeters. As hypothesized, the difference never exceeded one millimeter. On

average, the values differed by about half of a millimeter. The test proved that the code

does not contain any significant rounding errors or typos in the intended equations.

79

Gripper Movement in Right Shoulder XZ Plane

Input Point Arduino Delta Excel Delta Difference

X Y Z X Y Z X Y Z X Y Z

500 -280 1552 18 10 -30 18.23 10.51 -30.10 0.23 0.51 -0.10

600 -280 1501 14 10 -27 14.83 10.35 -27.75 0.83 0.35 -0.75

700 -280 1437 11 10 -24 11.61 10.16 -24.92 0.61 0.16 -0.92

800 -280 1358 8 9 -21 8.62 9.93 -21.57 0.62 0.93 -0.57

900 -280 1259 5 9 -17 5.91 9.67 -17.58 0.91 0.67 -0.58

1000 -280 1131 3 9 -12 3.55 9.37 -12.74 0.55 0.37 -0.74

1100 -280 954 1 8 -6 1.71 8.98 -6.54 0.71 0.98 -0.54

1200 -280 605 1 8 4 1.21 8.35 4.32 0.21 0.35 0.32

1200 -280 295 3 7 12 3.20 7.89 12.82 0.20 0.89 0.82

1100 -280 -54 7 7 21 7.74 7.45 21.39 0.74 0.45 0.39

1000 -280 -231 11 7 25 11.10 7.25 25.41 0.10 0.25 0.41

 Average Magnitude 0.52 0.54 0.56

Table 4. Results from first set of target positions

Gripper Movement in Right Shoulder XY Plane

Input Point Arduino Delta Excel Delta Difference

X Y Z X Y Z X Y Z X Y Z

500 822 450 18 -30 11 18.64 -30.18 11.01 0.64 -0.18 0.01

600 771 450 15 -27 10 15.28 -27.91 10.86 0.28 -0.91 0.86

700 707 450 12 -25 10 12.08 -25.17 10.68 0.08 -0.17 0.68

800 628 450 9 -21 10 9.09 -21.91 10.47 0.09 -0.91 0.47

900 529 450 6 -18 10 6.34 -18.02 10.22 0.34 -0.02 0.22

1000 401 450 3 -13 9 3.92 -13.27 9.92 0.92 -0.27 0.92

1100 224 450 1 -7 9 1.97 -7.13 9.55 0.97 -0.13 0.55

1200 -125 450 1 3 8 1.29 3.72 8.93 0.29 0.72 0.93

1200 -435 450 3 12 8 3.14 12.28 8.47 0.14 0.28 0.47

1100 -784 450 7 20 8 7.59 20.96 8.02 0.59 0.96 0.02

1000 -961 450 10 25 7 10.93 25.06 7.82 0.93 0.06 0.82

 Average Magnitude 0.48 0.41 0.54

Table 5. Results from second set of target positions

 The values of MA, MB, zA and zB calculated from the first geometric test are

shown in Fig. 73. θA and θB were then found to both equal 20.6°, which was the exact

angle calculated for Δz = ±13mm. The test proved that the equations for Δz were correct.

80

Fig. 73. Calculating θA and θB

 The second geometric test resulted in θC and θD equal to their previously

calculated values of 34.3° and 33.6°, respectfully. The results prove the equations used to

find Δy and the servo angle were correct. Because the method used to find Δx was

identical to that of Δy and Δz, it was concluded that the equations for Δx were correct as

well.

6.3 Servo

6.3.1 Open-Loop: Load Disconnected

 The results for the first open-loop test are shown in Fig. 74. The average sweep

for every trial fell short of the instructed 70° by at least 9.5°. The data suggested that

smaller delays resulted in narrower sweeps, which made sense because smaller delays

meant the servo was given less time to move.

Fig. 74. Results from servo test open-loop: disconnected

81

6.3.2 Open-Loop: Load Connected

 Fig. 75 shows the results for the second open-loop test. The same five delays as

before were analyzed as well as delays of 2ms and 50ms.

Fig. 75. Results from servo test open-loop: connected

 Again, smaller delays resulted in narrower sweeps, but the two new delays gave

additional information. Decreasing the delay from 5ms to 2ms resulted in a drastically

narrower sweep, but doubling the delay from 25ms to 50ms did not create a statistically

significant difference in the sweep. The following conclusions were reached for the open-

loop control: first, servo performance drops with decreases in delay, and it drops more so

when the delay is low. Additionally, the servo reaches a maximum sweep with a large

enough delay but may never achieve the instructed sweep angle.

6.3.3 Closed-Loop: Load Disconnected

 The results of the closed-loop test with no load are shown in Table 6. The ranges

calculated from the potentiometer output were always within three degrees of the input

range, and the average difference was only 1.36°. It was concluded that the servo was

significantly more accurate in closed-loop control than open loop control when

disconnected from a load.

82

Range
Index

Input
Range

(°)

Calculated
Range

(°)
Error

(°)
Range
Index

Input
Range

(°)

Calculated
Range

(°)
Error

(°)

1 70 68 2 8 2 1 1

2 70 68 2 9 30 29 1

3 70 69 1 10 30 32 2

4 35 36 1 11 5 6 1

5 20 19 1 12 5 5 0

6 20 19 1 13 10 13 3

7 2 2 0 14 10 13 3

 Average 1.36

Table 6. Results from servo test closed-loop: disconnected

6.3.4 Closed-Loop: Load Connected

 Table 7 shows the results of the second closed-loop test. The average error was

2.5° even though the maximum error was six degrees. Although the average and

maximum errors were larger than those of the disconnected closed-loop test, the results

are significantly better than those from the open-loop connected test. As expected, the

servo was more accurate in closed-loop control than open-loop control when connected to

the load.

Range
Index

Input
Range

(°)

Calculated
Range

(°)
Error

(°)
Range
Index

Input
Range

(°)

Calculated
Range

(°)
Error

(°)

1 70 70 0 8 2 0 2

2 70 70 0 9 30 31 1

3 70 71 1 10 30 24 6

4 35 32 3 11 5 4 1

5 20 21 1 12 5 1 4

6 20 14 6 13 10 7 3

7 2 0 2 14 10 5 5

 Average 2.50

Table 7. Results from servo test closed-loop: connected

83

6.4 DC Motor

6.4.1 Encoder Accuracy

 The results of all six trials are shown in Table 8. The simple encoder code had an

output of 1 for imax=100 and -218 for imax=400. Knowing the encoder’s resolution was

100ticks/rev, the code picked up almost no rotation at the lower speed and just over two

rotations at the higher speed over the period of five seconds. It was clearly concluded that

the simpler encoder code did not work at the required speeds.

Trials: Set 1 Trials: Set 2

Code i Run
Time
(ms)

Ramp
Time
(ms)

Encoder
Ticks

i Run
Time
(ms)

Ramp
Time
(ms)

Encoder
Ticks

Simple 400 5000 1000 -218 100 4250 250 1

RAB 400 5000 1000 -124729 100 4250 250 -15493

Interrupts 400 5000 1000 55818 100 4250 250 7068

Table 8. Encoder Accuracy test results

 After analyzing the results and conducting further research on encoder code, it

was found that the interrupt example code quadrupled the encoder’s resolution to

400ticks/rev and the ROS-Arduino Bridge code increased the resolution by a factor of

eight. Specifically, each interrupt in interrupt example code doubled the encoder

resolution; however, it was not clear how the ROS-Arduino Bridge code achieved a

resolution of 800ticks/rev. For that reason, even though the last two sets of code produced

comparable results, the interrupt example code was chosen.

6.4.2 Speed Index Mapping

 The graph of RPMs versus speed index of the ten trials fitted with a linear curve

through the origin is shown in Fig. 76. The line has an R2 value of 0.8577, which is lower

than the minimum 0.95 desired.

84

Fig. 76. Initial speed index mapping curve-fit

 From analyzing the figure above, it was decided to curve-fit the data without

forcing the curve to pass through the origin. After testing multiple types of functions, the

polynomial graphed in Fig. 77 was chosen. The line’s R2 value was 0.9977 which was

very close to 1, indicating a very good fit to the data.

Fig. 77. Final speed index mapping curve-fit

y = 0.0975x
R² = 0.8577

0

100

200

300

400

500

0 1000 2000 3000 4000 5000

Sp
ee

d
, i

RPMs

RPM and Speed Index Relation

y = -4E-06x2 + 0.0912x + 55.364

R² = 0.9977

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
p
ee

d
,
i

RPMs

RPM and Speed Index Relation

85

6.4.3 Choosing Velocity Profile

 The results of the velocity profile trials are shown in Table 9. The error was

greater than one millimeter in all trials, proving the hypothesis false.

Trial

Run Time
(milliseconds)

Δz
(mm)

Encoder
Ticks

Distance
Traveled (mm)

Error
(%)

Error
(mm)

1 250 -10 3077 -8.14 18.6 1.86

2 250 5 -726 1.92 61.6 3.08

3 250 5 -802 2.12 57.6 2.88

4 500 -10 3241 -8.58 14.2 1.42

5 500 -10 3085 -8.16 18.4 1.84

6 500 -5 45 -0.12 97.6 4.88

Table 9. Results from running ideal velocity profile code

 It was clear adjustments needed to be made to improve performance; however, it

was discovered after the test that a large part of the issue was mechanical. With a light

application of WD-40 to the threaded rod, the vertical motor’s performance improved

significantly. The following changes were still made to optimize performance. First, a

condition was added to the code to check how far the bar centroid had traveled ten

milliseconds before the end of the acceleration stage based on encoder output. If it had

not travelled as far as expected, a “buffer” speed was calculated and added on to the

instructed maximum velocity to make up for lost displacement as shown in Fig. 78. The

condition acts as a feed forward control. In addition, feedback control was implemented

between the end of the vertical motor’s designated runtime and before three-hundred

milliseconds had passed. During this time, the vertical motor would run at ±67RPM as it

closed in on its desired position.

86

Fig. 78. Coded velocity profile

 Eight trials shown in Table 10 were run using the final vertical motor code. All

trials were given a run time of 115ms, less than half the time given in the previous trials.

The correction condition of the code was accessed after the run time had passed. Δz was

the independent variable. The results were a significant improvement from the previous

set of trials. The vertical motor was able to obtain its instructed Δz within 350ms in all

trials. The motor often overshot its instructed position after obtaining it, but never by

more than half of a millimeter. The motor always levelled out within 0.1mm of its

instructed Δz, well within the acceptable one-millimeter from the original hypothesis.

Run
Time
(ms)

Instructed
ΔZ (mm)

Time
(ms)

ΔZ at
Time
(mm)

Steady
State ΔZ

(mm)

Steady
State
Error
(mm)

Steady
State Error

(%)

115 10 329 10.04 10.05 -0.05 0.5

115 -10 286 -10.04 -9.90 -0.10 1.0

115 7 187 7.02 6.97 0.03 0.4

115 -7 171 -7.05 -6.93 -0.07 1.0

115 4 171 4.02 4.03 -0.03 0.8

115 -4 157 -4.05 -3.97 -0.03 0.7

115 2 174 2.03 2.00 0.00 0.0

115 -2 174 -2.00 -1.93 -0.07 3.5

Table 10. Results from final coded velocity profile

87

6.5 Lateral and Vertical Motor Movement

 The results of the lateral test are shown in Table 11. For a better understanding of

what the eyes were doing, a second data point was recorded for each trial at a time after

the duration had passed.

Trial Duration
(ms)

Instructed
Δθ (deg)

Time
1

(ms)

Δθ
(deg)

%
Error

Time
2

(ms)

Δθ
(deg)

%
Error

T2 - T1
(ms)

1 53 14 55 3 78.6 117 14 0.0 62

2 53 14 55 3 78.6 117 13 7.1 62

3 53 14 55 1 92.9 117 13 7.1 62

4 53 14 55 3 78.6 117 13 7.1 62

5 53 -14 55 1 107.1 159 -11 21.4 104

6 53 -14 55 0 100.0 159 -12 14.3 104

7 53 -14 55 0 100.0 159 -12 14.3 104

8 53 -14 55 1 107.1 159 -12 14.3 104

9 70 24 72 6 75.0 155 24 0.0 83

10 70 24 72 5 79.2 155 23 4.2 83

11 70 24 72 5 79.2 155 24 0.0 83

12 70 24 72 6 75.0 155 23 4.2 83

13 70 -24 72 -5 79.2 155 -22 8.3 83

14 70 -24 72 -6 75.0 155 -22 8.3 83

15 70 -24 72 -6 75.0 155 -23 4.2 83

16 70 -24 72 -6 75.0 155 -22 8.3 83

Table 11. Lateral motor test

It was clear that the eyes were not able to come near their desired position within

the instructed durations, the lowest error for that dataset being seventy-five percent. Thus,

the hypothesis was proven false. Giving the eyes between one-twentieth and one-tenth of

an extra second reduced the error by at least eighty percent and in some cases one-

hundred percent.

The reason the eyes could not operate within the tested durations is better

understood by graphing the results of all sixteen trials as shown in Fig. 79 and 80. Notice

the lateral motor does not even start moving until around thirty and in some cases fifty-

88

five milliseconds have passed. Therefore, the hypothesis failed not because the lateral

motor could not achieve the maximum acceleration to complete the task but rather

because motor movement does not begin immediately after the code is uploaded.

Fig. 79. Lateral motor test: Δθ = ±14°

Fig. 80. Lateral motor test: Δθ = ±24°

 The results from the vertical motor test are in Table 12. The error was at least

seventy-four percent by the end of the given duration in all cases, reflecting the same

delay in movement seen in the lateral motor. Again, the hypothesis was proven false.

Unlike in the previous test, however, the vertical motor does not quickly reach its desired

position one-tenth of a second later. The reason is that the vertical motor is coded to

80

85

90

95

100

105

110

115

120

999 1199 1399 1599 1799 1999

A
n

gl
e

(d
e

gr
ee

s)

Time (milliseconds)

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 8

70

80

90

100

110

120

130

999 1099 1199 1299 1399 1499 1599 1699

A
n

gl
e

(d
e

gr
ee

s)

Time (milliseconds)

Trial 9

Trial 10

Trial 11

Trial 12

Trial 13

Trial 14

Trial 15

Trial 16

89

rotate at a speed index of ±125 after the allotted duration has passed, which is only

±67RPM. If the motor were allotted more time to move before correcting its position

with a constant, low RPM, the error would decrease. The statement is proven by the

vertical motor’s accuracy in the final tests with the Baxter robot.

Trial Duration
(ms)

Inst.
ΔZ

(mm)

Inst.
Δθ

(deg)

T1
(ms)

ΔZ
(mm)

Δθ
(deg)

%
Error

T2
(ms)

ΔZ
(mm)

Δθ
(deg)

%
Error

T2 -
T1

(ms)

1 37 -3 -4.7 38 -0.77 -1.2 74.4 104 -3.05 -4.7 1.7 66

2 37 -3 -4.7 38 -0.67 -1.0 77.7 104 -2.97 -4.6 1.0 66

3 37 -3 -4.7 38 -0.69 -1.1 77.0 104 -2.99 -4.6 0.3 66

4 37 -3 -4.7 38 -0.70 -1.1 76.7 104 -3.00 -4.7 0.0 66

5 37 3 4.7 38 0.74 1.1 75.4 109 3.08 4.8 2.7 71

6 37 3 4.7 38 0.61 0.9 79.7 109 2.96 4.6 1.3 71

7 37 3 4.7 38 0.71 1.1 76.4 109 3.05 4.7 1.7 71

8 37 3 4.7 38 0.67 1.0 77.7 109 3.00 4.7 0.0 71

9 47 -6 -9.3 48 -1.09 -1.7 81.9 221 -6.02 -9.4 0.3 173

10 47 -6 -9.3 48 -1.08 -1.7 82.1 221 -5.97 -9.3 0.5 173

11 47 -6 -9.3 48 -1.06 -1.6 82.4 221 -5.96 -9.3 0.7 173

12 47 -6 -9.3 48 -1.07 -1.7 82.2 221 -5.97 -9.3 0.5 173

13 47 6 9.3 48 0.94 1.5 84.4 250 5.93 9.2 1.2 202

14 47 6 9.3 48 1.02 1.6 83.1 250 6.00 9.3 0.0 202

15 47 6 9.3 48 0.97 1.5 83.9 250 5.94 9.2 1.0 202

16 47 6 9.3 48 1.06 1.6 82.4 250 6.03 9.4 0.5 202

17 55 -10 -15.7 56 -1.39 -2.2 86.3 416 -9.98 -15.6 0.2 360

18 55 -10 -15.7 56 -1.40 -2.2 86.2 416 -9.98 -15.6 0.2 360

19 55 -10 -15.7 56 -1.31 -2.0 87.1 416 -9.92 -15.6 0.8 360

20 55 -10 -15.7 56 -1.38 -2.1 86.4 416 -9.96 -15.6 0.4 360

21 55 10 15.7 56 1.29 2.0 87.3 485 9.97 15.6 0.3 429

22 55 10 15.7 56 1.30 2.0 87.2 485 9.87 15.5 1.3 429

23 55 10 15.7 56 1.98 3.1 80.4 485 10.19 16.0 2.0 429

24 55 10 15.7 56 1.29 2.0 87.3 485 9.90 15.5 1.0 429

Table 12. Vertical motor test

 The first set of results from the combined motor test are shown in Table 13. As

expected after the previous tests, the eyes never travelled as far as instructed within the

time allotted. The error was at least seventy-seven percent in each trial.

90

Duration (ms) Time (ms) Instructed Δθ (deg) Δθ (deg) Difference (deg) % Error

53 57 14.1 2.9 11.2 79.36

53 56 14.1 2.7 11.4 81.12

53 56 14.1 3.2 10.9 77.63

53 55 14.1 2.6 11.5 81.23

53 56 14.1 3.9 10.2 72.57

70 72 24.4 4.6 19.8 81.21

70 72 24.4 3.7 20.7 84.98

70 73 24.4 4.1 20.3 83.38

70 71 24.4 4.0 20.4 83.77

70 72 24.4 4.0 20.4 83.48

86 89 34.6 6.8 27.8 80.40

86 89 34.6 6.6 28.0 81.03

86 90 34.6 5.1 29.5 85.12

86 88 34.6 6.7 27.9 80.59

86 88 34.6 5.9 28.7 82.86

Table 13. Combined motor test: data after duration

 As was done in the lateral and vertical motor tests, an additional data point was

recorded in each trial as shown in Table 14. Given between one-tenth and one-fifth of a

second total to move, the eyes were able to obtain within 1.5° of their desired orientation.

Duration (ms) Time (ms) Instructed Δθ (deg) Δθ (deg) Difference (deg) % Error

53 113 14.1 13.15 1.0 6.76

53 113 14.1 13.22 0.9 6.22

53 113 14.1 12.59 1.5 10.69

53 114 14.1 13.33 0.8 5.44

53 113 14.1 13.28 0.8 5.81

70 148 24.4 23.78 0.6 2.54

70 148 24.4 22.87 1.5 6.27

70 147 24.4 22.88 1.5 6.22

70 147 24.4 23.78 0.6 2.55

70 149 24.4 23.77 0.6 2.58

86 179 34.6 34.87 -0.3 0.78

86 180 34.6 33.91 0.7 1.99

86 180 34.6 33.95 0.7 1.89

86 180 34.6 33.90 0.7 2.01

86 181 34.6 34.87 -0.3 0.77

Table 14. Combined motor test: data after twice the duration

91

 Although the hypothesis was proven false, the analysis justified the decisions

made for the final robotic eye code implemented with Baxter.

92

7 TESTING: BAXTER INTEGRATION

7.1. Circular Path: Tracking

 In this test, Baxter’s gripper moves in the circular path explained in Section 3.3

while the eyes track the gripper. The hypothesis was the eyes would look on average at a

point within a 50mm radius of the instructed point. In addition, the distance between the

instructed and actual point, or the error, would never exceed 100mm. Data sets of time,

X, Y, Z, YEYES, and ZEYES were output to text files.

7.2. Parabolic Path: Tracking

 Baxter performed the first object manipulation task explained in Section 3.3 for

the next three tests. Recall that the task was to pick an object up off a platform, move it to

the right along an inverted parabolic path, and set it down. The same hypothesis as that of

the previous test was used here with the exception that errors larger than 10cm were

expected within the first second of the eyes switching from looking forward to looking at

the gripper. The same data sets as those in the previous test were collected.

7.3. Parabolic Path: Block Mode

 The second tracking test was mimicked after changing the mode in the Arduino

code to block mode. The same hypothesis as previous was tested, expanding the

exception to include large errors one second after the start and end of target saccade

instructions. To work around the issue of publishing to eight ROS Topics from Arduino,

the test was performed twice: once obtaining time, X, Y, Z, YEYES, ZEYES and once

93

obtaining time, X, Y, Z, YHAND, ZHAND. The values of YHAND and ZHAND after the eyes

leave the grasp site and before the task is complete are simply added to the first set of

results for a comprehensive data analysis. To do this, the data sets are aligned based on

the first target fixation, not time.

7.4. Parabolic Path: Full Glass Mode

 The testing and data acquisition processes from the block test were repeated for

full glass mode. The same hypothesis as previous was used.

7.5. Linear Path

 The same hypothesis tested using the parabolic path were tested using the linear

path explained in Section 3.3.

94

8 RESULTS: BAXTER INTEGRATION

 The following are the results from all tests performed with the Baxter robot.

Butterworth filters were applied to the actual gaze fixation point data sets using

MATLAB, and the filtered data was exported to Excel. Analysis was performed in Excel

and MATLAB. Note that all error distributions only extend so far as to show at least

ninety-five percent of the data. Brackets with labels were used to convey where the eyes

were instructed to look throughout each trial. A key for the labels is given in Table 15.

Label Instructed Gaze Fixation

Forward Straight Ahead

Hand At the left gripper

Grasp At the grasp site

T At the target

O At a point temporally offset ahead of the left gripper

Table 15. Results label key

8.1. Circular Path: Tracking

 The instructed and actual gaze fixation points during the first test are shown in

Figures 81, 82, and 84. Recall that the x-coordinate of the gaze fixation point was equated

to that of the gripper. When the Arduino code is run, the value of x is its initialized value

of 500mm until the gripper’s location begins publishing to ROS. At that point, the value

of x remains within 1029mm and 1067mm.

95

Fig. 81. Test 1: X vs. Time

 Fig. 82 plots the y-values of the gripper location and actual gaze fixation point

versus time. The average difference between Y and YEYES, or the error, was 27mm. The

error distribution is in Fig. 83. The error fell within 53mm ninety percent of the time and

within 70mm ninety-five percent of the time. Overall, tracking from right to left was

worse than tracking left to right; however, even the larger errors such as that when Time

= 133.4s was only three degrees. In terms of servo angle, the average error was 1.45°.

Fig. 82. Test 1: Lateral Motor Analysis

96

Fig. 83. Test 1: lateral motor error distribution

 Fig. 84 plots the z-values of the gripper location and actual gaze fixation point

versus time. The eyes tracked better in the z-direction than in the y-direction; the average

error was only 5.5mm compared to 27mm. The error distribution is in Fig. 85. The error

fell within 15mm ninety percent of the time and within 26mm ninety-five percent of the

time.

Fig. 84. Test 1: Vertical Motor Analysis

2655

3212

1775 1710
1471

509
309

0

500

1000

1500

2000

2500

3000

3500

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

97

Fig. 85. Test 1: vertical motor error distribution

 The distance between the gripper location and gaze fixation point was defined as

the magnitude of error shown in Fig. 86. The average magnitude of error was 29mm,

which is less than the hypothesized average of 50mm. The first part of the hypothesis

was, therefore, proven true. Excluding the spike in error when the eyes were first

instructed to track the gripper, five spikes in error exceeded the hypothesized 100mm

maximum but were all less than 130mm. Even though the second part of the hypothesis

was proven false, the eyes’ performance was close to expected. The error distribution is

in Fig. 87. The actual gaze fixation point was within 56mm of the instructed point ninety

percent of the time and within 72mm ninety-five percent of the time.

Fig. 86. Test 1: Magnitude of Error

10406

966 472
0

5000

10000

15000

[0,10] (10,20] (20,30]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

98

Fig. 87. Test 1: magnitude of error distribution

 Tracking in the YZ plane over time is plotted in Figures 88 and 89. In both

figures, the data points prior to the gripper location being obtained in Arduino were

excluded. For a clearer visual, the first half of the test in which the gripper moved in two

clockwise circles and the second half of the test in which the gripper moved in two

counterclockwise circles were plotted separately.

Fig. 88. Test 1 YZ plane clockwise analysis

2252

3025

1963 1843
1532

621
350 270

0

500

1000

1500

2000

2500

3000

3500

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

99

Fig. 89. Test 1 YZ plane counterclockwise analysis

8.2. Parabolic Path: Tracking

 The instructed and actual gaze fixation points during Test 2 are shown in Figures

90, 91 and 93. The gripper position began publishing to ROS about 16.5 seconds after the

Arduino code was started, at which point the eyes began tracking the gripper.

Fig. 90. Test 2: X vs. Time

100

 Fig. 91 plots the y-values of the gripper location and actual gaze fixation point

versus time. The steady-state error after the eyes began to follow the gripper but before

the gripper began to move right was about 30mm. The average error for the entire track

was 29mm. The error distribution is in Fig. 92. The error fell within 59mm ninety percent

of the time and within 79mm ninety-five percent of the time. As the gripper moved left to

right, the eyes lagged behind the gripper in the y-direction by between half and one

second, accounting for most of the error.

Fig. 91. Test 2: Lateral Motor Analysis

Fig. 92. Test 2: lateral motor error distribution

453

1475

410

118 42 99 73 62

0

200

400

600

800

1000

1200

1400

1600

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

101

 Fig. 93 plots the z-values of the gripper locations and actual gaze fixation points

versus time. Again, the eyes tracked better in the z-direction than in the y-direction; the

average error was 4.5mm compared to 29mm in y. The error distribution is in Fig. 94.

The error fell within 9mm ninety percent of the time and within 13mm ninety-five

percent of the time.

Fig. 93. Test 2: Vertical Motor Analysis

Fig. 94. vertical motor error distribution

2658

158

0

500

1000

1500

2000

2500

3000

[0,10] (10,20]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

102

 The magnitude of error is shown in Fig. 95. The average error was 30mm, which

is less than the hypothesized 50mm. Excluding the spike in error when the eyes are first

instructed to track the gripper, the largest magnitude of error was 106mm, just over the

hypothesized 100mm maximum. The two statistics are very close to those from Test 1.

Fig. 95. Test 2: Magnitude of Error

The error distribution is in Fig. 96. The actual gaze fixation point was within

59mm of the instructed point ninety percent of the time and within 79mm ninety-five

percent of the time.

Fig. 96. Test 2: magnitude of error distribution

340

1545

435

133 43 97 77 60

0

500

1000

1500

2000

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

103

8.3. Parabolic Path: Block Mode

 The instructed and actual gaze fixation points during Test 2 are shown in Figures

97, 98, and 100. The gripper position began publishing to ROS about 4.6 seconds after

the Arduino code was started, at which point the eyes began looking at the grasp site.

Fig. 97. Test 3: X vs. Time

 Fig. 98 plots the y-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

of the last. The steady-state error while the eyes fixated the grasp site was 22mm. The

eyes always looked ahead of the gripper when instructed to during the offset phases;

however, there was some delay in achieving those instructed points. The error

distribution is in Fig. 99. The average error was 37mm, and the error fell within 36mm

ninety percent of the time and within 63mm ninety-five percent of the time.

104

Fig. 98. Test 3: Lateral Motor Analysis

Fig. 99. Test 3: lateral motor error distribution

 Fig. 100 plots the z-values of the instructed and actual gaze fixation points versus

time. The gripper’s z location is also plotted from the first target fixation through the end

of the last. The average error was 12mm. Most larger errors occurred directly after abrupt

changes in the instructed gaze fixation point. Additionally, for larger saccades such as

those to and from the target, the vertical motor briefly overshot its instructed position.

332

1044 1028

99 72 24 11
0

200

400

600

800

1000

1200

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

105

Fig. 100. Test 3: Vertical Motor Analysis

 The error distribution is in Fig. 101. The error fell within 13mm ninety percent of

the time and within 52mm ninety-five percent of the time.

Fig. 101. Test 3: vertical motor error distribution

 The magnitude of error is shown in Fig. 102. The average error was 42mm, which

is within the hypothesized average error of 50mm. Apart from the spikes in error when

gaze instructions changed abruptly, the error never exceeded 100mm for points that

2426

119 31 18 7 15
0

500

1000

1500

2000

2500

3000

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60]N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

106

occurred at least one second after those spikes. Therefore, the second part of the

hypothesis was also proven true.

Fig. 102. Test 3: Magnitude of Error

The error distribution is in Fig. 103. The actual gaze fixation point was within

43mm of the instructed point ninety percent of the time and within 162mm ninety-five

percent of the time.

Fig. 103. Test 3: magnitude of error distribution

247

1077
1016

99 77 41 12 4 4 3 2 3 6 6 4 1 6
0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

107

8.4. Parabolic Path: Full Glass Mode

 The instructed and actual gaze fixation points during Test 2 are shown in Figures

104, 105, and 107. The gripper position began publishing to ROS about 4.5 seconds after

the Arduino code was started, at which point the eyes began looking at the grasp site.

Fig. 104. Test 4: X vs. Time

 Fig. 105 plots the y-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

of the last. The average error was 40mm. The steady-state error when the eyes fixated the

grasp site was 28mm, equivalent 1.1° in this case. Unlike in the test running block mode,

the eyes were not always ahead of the gripper; the delay in movement caused the eyes to

look at or slightly ahead of the gripper during parts of the offset phases. Those errors,

however, were usually within three degrees and never exceeded four degrees.

108

Fig. 105. Test 4: Lateral Motor Analysis

The error distribution is in Fig. 106. The error fell within 35mm ninety percent of

the time and within 97mm ninety-five percent of the time.

Fig. 106. Test 4: lateral motor error distribution

 Fig. 107 plots the z-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

of the last. The average error was 11mm, 29mm less than that of the lateral motor. Again,

the vertical motor briefly overshot its instructed position during the larger saccades.

341

962
1035

96
21 36 38 13 2 6

0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

109

Fig. 107. Test 4: Vertical Motor Analysis

The error distribution is in Fig. 108. The error fell within 11mm ninety percent of

the time and within 45mm ninety-five percent of the time.

Fig. 108. Test 4: vertical motor error distribution

 The magnitude of error is shown in Fig. 109, and the error distribution is in Fig.

110. The average error was 43mm, which is less than the hypothesized 50mm average

error. The error never exceeded 100mm for points that occurred at least one second after

abrupt gaze fixation changes. Therefore, as it was in Test 3, the second part of the

hypothesis was also proven true.

2409

88 31 15 12
0

500

1000

1500

2000

2500

3000

[0,10] (10,20] (20,30] (30,40] (30,40]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

110

Fig. 109. Test 4: Magnitude of Error

Fig. 110. Test 4: magnitude of error distribution

8.5. Linear Path: Tracking

 The instructed and actual gaze fixation points during Test 5 are shown in Figures

111, 112 and 114. The gripper position began publishing to ROS about 16.6 seconds after

the Arduino code was started, at which point the eyes began tracking the gripper.

309

949
1040

97
23 52 44 20 1 2 3 3 6

0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

111

Fig. 111. Test 5: X vs. Time

 Fig. 112 plots the y-values of the gripper location and actual gaze fixation point

versus time. The average error was 20mm. The error distribution is in Fig. 113. The error

fell within 48mm ninety percent of the time and within 55mm ninety-five percent of the

time. As the gripper moved right to left, the eyes lagged behind the gripper in the y-

direction by between half and one second, accounting for most of the error.

Fig. 112. Test 5: Lateral Motor Analysis

112

Fig. 113. Test 5: lateral motor error distribution

 Fig. 114 plots the z-values of the gripper locations and actual gaze fixation points

versus time. Again, the eyes tracked better in the z-direction than in the y-direction; the

average error was 4.9mm compared to 20mm in y. The error distribution is in Fig. 115.

The error fell within 13mm ninety percent of the time and within 19mm ninety-five

percent of the time.

Fig. 114. Test 5: Vertical Motor Analysis

982

1558

261
160

257 217

0

200

400

600

800

1000

1200

1400

1600

1800

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

113

Fig. 115. Test 5: vertical motor error distribution

 The magnitude of error is shown in Fig. 116. The average error was 22mm, which

is less than the hypothesized 50mm. Excluding the spike in error when the eyes are first

instructed to track the gripper, the largest magnitude of error was 77mm, below the

hypothesized 100mm maximum. Both hypotheses were proven true.

Fig. 116. Test 5: Magnitude of Error

 The error distribution is in Fig. 117. The actual gaze fixation point was within

49mm of the instructed point ninety percent of the time and within 55mm ninety-five

percent of the time.

3026

326

0

500

1000

1500

2000

2500

3000

3500

[0,10] (10,20]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

114

Fig. 117. Test 5: magnitude of error distribution

8.6. Linear Path: Block Mode

 The instructed and actual gaze fixation points during Test 6 are shown in Figures

118, 119, and 121. The gripper position began publishing to ROS about 17.7 seconds

after the Arduino code was started, at which point the eyes began looking at the grasp

site.

Fig. 118. Test 6: X vs. Time

 Fig. 119 plots the y-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

817

1510

361
225 280 234

0

500

1000

1500

2000

[0,10] (10,20] (20,30] (30,40] (40,50] (50,60]N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

115

of the last. The eyes always looked ahead of the gripper when instructed to during the

offset phases. Again, there was some delay in achieving those instructed points.

Fig. 119. Test 6: Lateral Motor Analysis

 The error distribution is in Fig. 120. The average error was 18mm, and the error

fell within 30mm ninety percent of the time and within 43mm ninety-five percent of the

time.

Fig. 120. Test 6: lateral motor error distribution

 Fig. 121 plots the z-values of the instructed and actual gaze fixation points versus

time. The gripper’s z location is also plotted from the first target fixation through the end

of the last. The average error was 14mm. Most larger errors occurred directly after abrupt

2654

236 196 146 35
0

500

1000

1500

2000

2500

3000

[0,10] (10,20] (20,30] (30,40] (40,50]N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

116

changes in the instructed gaze fixation point. Additionally, for larger saccades such as

those to and from the target, the vertical motor briefly overshot its instructed position.

The behavior was the same as that observed with the parabolic path.

Fig. 121. Test 6: Vertical Motor Analysis

 For approximately one second after the first target fixation, the eyes are instructed

to look above the hand instead of below as desired. Recall that the trajectory was curve-

fit; although the resulting equation fit the data extremely well (R2=0.98), it did not reflect

the more lateral hand motion at the start of the trajectory. An if statement could be

written specifically for this trajectory that would prevent Z from exceeding ZHAND.

 The error distribution is in Fig. 122. The error fell within 9mm ninety percent of

the time and within 45mm ninety-five percent of the time.

117

Fig. 122. Test 6: vertical motor error distribution

 The magnitude of error is shown in Fig. 123. The average error was 25mm, which

is within the hypothesized average error of 50mm. Apart from the spikes in error when

gaze instructions changed abruptly, the error never exceeded 100mm for points that

occurred at least one second after those spikes. Therefore, the second part of the

hypothesis was also proven true.

Fig. 123. Test 6: Magnitude of Error

3111

107 16 13 15
0

500

1000

1500

2000

2500

3000

3500

[0,10] (10,20] (20,30] (30,40] (40,50]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

118

 The error distribution is in Fig. 124. The actual gaze fixation point was within

34mm of the instructed point ninety percent of the time and within 90mm ninety-five

percent of the time.

Fig. 124. Test 6: magnitude of error distribution

8.7. Linear Path: Full Glass Mode

 The instructed and actual gaze fixation points during Test 7 are shown in Figures

125, 126, and 128. The gripper position began publishing to ROS 15.4 seconds after the

Arduino code was started, at which point the eyes began looking at the grasp site.

Fig. 125. Test 7: X vs. Time

2620

201 195 165 46 12 4 5 5
0

500

1000

1500

2000

2500

3000

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

119

 Fig. 126 plots the y-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

of the last. The average error was 27mm. The steady-state error during target fixations

was 20mm, equivalent 0.9° in this case. Unlike in the test running block mode, the eyes

were not always ahead of the gripper; the delay in movement caused the eyes to look at

or slightly ahead of the gripper during much of the offset phases. Those errors, however,

were always under three degrees. The results are similar to those of the parabolic path.

Fig. 126. Test 7: Lateral Motor Analysis

 The error distribution is in Fig. 127. The error fell within 43mm ninety percent of

the time and within 91mm ninety-five percent of the time.

120

Fig. 127. Test 7: lateral motor error distribution

 Fig. 128 plots the z-values of the instructed and actual gaze fixation points versus

time. The gripper’s y location is also plotted from the first target fixation through the end

of the last. The average error was 20mm, only 7mm less than that of the lateral motor.

Again, the vertical motor briefly overshot its instructed position during the larger

saccades.

Fig. 128. Test 7: Vertical Motor Analysis

 The error distribution is in Fig. 129. The error fell within 16mm ninety percent of

the time and within 157mm ninety-five percent of the time.

1882

417 372

90 84 48 29 9 6 4
0

500

1000

1500

2000

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

121

Fig. 129. Test 7: vertical motor error distribution

 The magnitude of error is shown in Fig. 130, and the error distribution is in Fig.

131. The average error was 37mm, which is less than the hypothesized 50mm average

error. The error never exceeded 100mm for points that occurred at least one second after

abrupt gaze fixation changes. In all linear path tests, both hypotheses were proven true.

Fig. 130. Test 7: Magnitude of Error

2739

62 23 13 11 24 5 7 7 6 7 6 7 6 9 16
0

500

1000

1500

2000

2500

3000

[0
,1

0
]

(1
0

,2
0

]

(2
0

,3
0

]

(3
0

,4
0

]

(4
0

,5
0

]

(5
0

,6
0

]

(6
0

,7
0

]

(7
0

,8
0

]

(8
0

,9
0

]

(9
0

,1
0

0
]

(1
0

0
,1

1
0

]

(1
1

0
,1

2
0

]

(1
2

0
,1

3
0

]

(1
3

0
,1

4
0

]

(1
4

0
,1

5
0

]

(1
5

0
,1

6
0

]N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

122

Fig. 131. Test 7: magnitude of error distribution

1849

365423

82 74 39 13 7 7 5 4 7 7 3 6 11 16 9 15
0

200
400
600
800

1000
1200
1400
1600
1800
2000

[0
,1

0
]

(1
0

,2
0

]

(2
0

,3
0

]

(3
0

,4
0

]

(4
0

,5
0

]

(5
0

,6
0

]

(6
0

,7
0

]

(7
0

,8
0

]

(8
0

,9
0

]

(9
0

,1
0

0
]

(1
0

0
,1

1
0

]

(1
1

0
,1

2
0

]

(1
2

0
,1

3
0

]

(1
3

0
,1

4
0

]

(1
4

0
,1

5
0

]

(1
5

0
,1

6
0

]

(1
6

0
,1

7
0

]

(1
7

0
,1

8
0

]

(1
8

0
,1

9
0

]

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Error (mm)

123

9 DISCUSSION

 Replacing the 3D printed components with parts machined out of lightweight

metal would create a more robust mechanism. The eyes’ range of motion could also be

increased through three adjustments. As stated in design section, the connection points

that secure the two halves of each shell could be altered to increase horizontal range of

motion. To increase vertical range of motion, one could use a longer threaded shaft or

reduce the eyes’ radius of rotation from 37mm to something smaller. Additionally, a new

servo might fix the issue of the eyes tracking slightly worse right to left than vice versa.

A fix to allow all eight Arduino publishers to run at once would reduce the work required

to make a comprehensive analysis.

 Further tests could be performed to verify the eyes’ accuracy without relying on

sensor output. The laser diode module eyes could be instructed to look at known

coordinates marked on a solid surface parallel to the YZ plane. The midpoint between the

two laser projections on the surface would be the actual gaze fixation point, and its

distance from the instructed gaze fixation point would be the error. Sensor readings

would be validated if the actual gaze fixation point calculated in the Arduino code

matched that observed. Discrepancies would indicate all other sources of error not

reflected in sensor output. One potential source would be mechanical imperfections such

as those in linkages or from backlash in gears. Human error in measurement and the

tolerance of the measuring tool would still influence the accuracy of external validation.

124

 For applications in which the user would want to see what the robotic eyes see,

eye design for the laser diode modules could be altered to house cameras instead. The

two-piece eye design could also be modified to not reduce the assembly’s range of

motion as it does now.

 Cosmetic changes that could be made to future design iterations include using

paint to make the eyes and mask to look more lifelike. The addition of eyebrows,

eyelashes, and eyelids would make the mask more realistic. Another option for an

artificial face would be to mold one out of a silicone-based material like dragon skin. A

flexible mask would be required regardless if additional points of actuation were added to

the face, such as points at which to make the eyebrows or mouth move.

 A task-based experiment using the robotic eyes, Baxter robot, and test subjects

could be made to test if the eyes’ programmed movement improves human-robot

interaction. Improvement would be measured by the accuracy and efficiency of task

completion.

125

10 CONCLUSIONS

 The overall goal to design and fabricate novel humanoid robotic eyes

programmed to move logically with a Baxter robot based on hand-eye coordination

research was achieved. Both position control for tracking and temporal control for

human-like eye movement were achieved. Although the error in the lateral motor was

greater than that of the vertical motor, both achieved average errors within 50mm

throughout all tests with Baxter. The maximum error rarely exceeded the desired 100mm

outside of abrupt changes in instructed gaze fixation points. Even the larger lateral motor

errors only equated to less than four degrees while the average error was less than two

degrees. Improvements could still be made to reduce the delay in obtaining instructed

gaze fixation points. Lastly, temporal offsets should be made large enough in future

application to ensure the eyes look ahead of the gripper when instructed to do so but

small enough to remain human-like.

126

11 APPENDICES

127

Appendix A: Servo Calculations

The volumes of plastic components were found in SolidWorks. The component

masses were found using SolidWorks Mass Properties unless otherwise stated.

VOLUME OF PLASTIC

COMPONENTS

COMPONENT VOLUME (mm3)

1 1653.19

2 5523.67

3 2412.90

4 1446.7

5 18517.03

TOTAL 29553.49

Density of PLA: 0.00125 grams/mm3

The Cura printing infill was set at 20% for all plastic components.

∴ 𝑚𝑃𝐿𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 0.2 ∗ 𝜌𝑃𝐿𝐴 ∗ 𝑉𝑃𝐿𝐴

𝑚𝑃𝐿𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 7.388 𝑔𝑟𝑎𝑚𝑠 = 0.07388𝑘𝑔

𝑙𝑎𝑟𝑚 =
93

64
𝑖𝑛𝑐ℎ𝑒𝑠 ∗

2.54𝑐𝑚

1𝑖𝑛𝑐ℎ
= 3.69𝑐𝑚

1

2

3

4

5

128

MASS OF LOAD COMPONENTS

COMPONENT MASS (GRAMS)

Coupler 1 11.56

Coupler 2 9.69

Threaded Rod 7

DC Motor (from datasheet) 17.69

Encoder (from datasheet) 11

Shaft Collars (combined mass) 3.96

Plastic Components 7.39

TOTAL 68.29

𝑚𝑡𝑜𝑡𝑎𝑙 = 68.29𝑔 = 6.829 ∗ 10−2𝑘𝑔

𝜏 = 𝑔 ∗ 𝑚𝑡𝑜𝑡𝑎𝑙 ∗ 𝑙𝑎𝑟𝑚

𝜏 = 2.47𝑁 ∙ 𝑐𝑚

129

Appendix B: Thread Pitch & DC Motor Calculations

 In the following equations, x is the number of threads-per-inch, P is thread pitch,

𝜔 = 500°/𝑠 is the angular velocity of the eyeball, 𝑟 = 93/64" is the length of the

moment arm, 𝑉𝑡,𝑚𝑎𝑥 is the maximum tangential velocity, 𝑉𝑦,𝑚𝑎𝑥 is the maximum velocity

in the y-direction that was defined in Fig. 32 of the report, and 𝜔𝐷𝐶,𝑚𝑎𝑥 is the maximum

angular velocity produced by the DC motor shaft in RPMs.

𝑃 = 𝑥−1

𝜔 = 500
°

𝑠
∗
1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

360°
= 1.389 𝑟𝑒𝑣/𝑠

𝑉𝑡,𝑚𝑎𝑥 = 𝜔𝑟 =
1.389𝑟𝑒𝑣

𝑠
∗
93

64
𝑖𝑛𝑐ℎ𝑒𝑠 = 2.018 𝑖𝑛𝑐ℎ𝑒𝑠/𝑠

𝑉𝑦 = 𝜔𝑟𝑐𝑜𝑠(𝜃)

𝑉𝑦,𝑚𝑎𝑥 = 𝑉𝑡,𝑚𝑎𝑥

𝜔𝐷𝐶,𝑚𝑎𝑥 =
𝑉𝑦,𝑚𝑎𝑥

𝑃
∗

60𝑠

1𝑚𝑖𝑛

𝜔𝐷𝐶,𝑚𝑎𝑥 =
121.08

𝑃

Note that the results in Table 1 of the report were produced in Excel. The above equation

for ωDC,max is not as accurate as the Excel calculations because the values of Vt,max and ω

above were rounded.

130

Appendix C: Circular Baxter Trajectory Code

1. #!/usr/bin/env python
2.
3.
4. import rospkg
5. # rospy - ROS Python API
6. import rospy
7.
8. # from std_msgs.msg import String, Float32, UInt8, Int32
9.
10. # baxter_interface - Baxter Python API
11. import baxter_interface
12.
13. import time
14.
15. # initialize our ROS node, registering it with the Master (Master computer is on

 Baxter)
16. rospy.init_node('Hello_Baxter', anonymous=True)
17.
18. # create an instance of baxter_interface's Limb class
19. limb = baxter_interface.Limb('left')
20.
21. left_gripper = baxter_interface.Gripper('left')
22.
23.
24. pL1 = {'left_w0':-

0.39231558650169457, 'left_w1':0.5821457090025145 , 'left_w2':0.0502378708032473
, 'left_e0':0.3911651009107805, 'left_e1':0.09088836168221076 , 'left_s0':-
1.0852914074289302, 'left_s1':-0.8536603084582327}

25.
26. pL2 = {'left_w0':-

0.9717768291254096, 'left_w1': 0.9038981792614801, 'left_w2':0.06864564025787226
, 'left_e0':1.1401312205958338, 'left_e1': 0.14457768925820025, 'left_s0':-
1.071869075534933, 'left_s1':-0.8816554578371415}

27.
28. pL3 = {'left_w0':-0.24927187803137973, 'left_w1': 1.15892248524743, 'left_w2':-

0.29529130166794215, 'left_e0':0.5437961893053792, 'left_e1': 0.2481213924404656
6, 'left_s0':-1.0032234352770606, 'left_s1':-0.9127185687918212}

29.
30. pL6 = {'left_w0':-1.076471017898589, 'left_w1': 0.9779127522769513, 'left_w2':-

0.07861651537912745, 'left_e0':1.194587538565766, 'left_e1': 0.23930100291012454
, 'left_s0':-1.424684656748578, 'left_s1':-0.5483981316690354}

31.
32. pL5 = {'left_w0':-0.22281070944035636, 'left_w1': 1.148951610126175, 'left_w2':-

0.30104372962251247, 'left_e0':0.3896311201228951, 'left_e1': 0.2891553785164005
, 'left_s0':-1.1746457883232555, 'left_s1':-0.7033301912454623}

33.
34. pL4 = {'left_w0':-

0.9805972186557508, 'left_w1': 1.19573802415668, 'left_w2':0.04065049087896346,
'left_e0':1.272820558747922, 'left_e1': 0.46096122675956686, 'left_s0':-
1.2609322076418101, 'left_s1':-0.7152185423515741}

35.
36. pL7 = {'left_w0':-0.565271920335775, 'left_w1': 0.6626797003664987, 'left_w2':-

0.2891553785164005, 'left_e0':0.5832961945934286, 'left_e1': 0.09702428483375242
, 'left_s0':-1.3472186269603645, 'left_s1':-0.6254806662602774}

37.
38. pL8 = {'left_w0':-

0.7136845615636888, 'left_w1': 0.5951845456995405, 'left_w2':0.10929613113683573

131

, 'left_e0':0.7002622296696914, 'left_e1': 0.029529130166794215, 'left_s0':-
1.2570972556720965, 'left_s1':-0.7190534943212877}

39.
40.
41. left_gripper.calibrate() # calibrate before opening or closing
42.
43. left_gripper.open() # open gripper before movement
44.
45. #CW once (relative to observer)
46. limb.move_to_joint_positions(pL1)
47. time.sleep(1) # in seconds
48. limb.move_to_joint_positions(pL2)
49. time.sleep(1) # in seconds
50. limb.move_to_joint_positions(pL3)
51. time.sleep(1) # in seconds
52. limb.move_to_joint_positions(pL4)
53. time.sleep(1) # in seconds
54. limb.move_to_joint_positions(pL5)
55. time.sleep(1) # in seconds
56. limb.move_to_joint_positions(pL6)
57. time.sleep(1) # in seconds
58. limb.move_to_joint_positions(pL7)
59. time.sleep(1) # in seconds
60. limb.move_to_joint_positions(pL8)
61. time.sleep(1) # in seconds
62. limb.move_to_joint_positions(pL1)
63. time.sleep(1) # in seconds
64.
65. #CW again
66. limb.move_to_joint_positions(pL2)
67. time.sleep(1) # in seconds
68. limb.move_to_joint_positions(pL3)
69. time.sleep(1) # in seconds
70. limb.move_to_joint_positions(pL4)
71. time.sleep(1) # in seconds
72. limb.move_to_joint_positions(pL5)
73. time.sleep(1) # in seconds
74. limb.move_to_joint_positions(pL6)
75. time.sleep(1) # in seconds
76. limb.move_to_joint_positions(pL7)
77. time.sleep(1) # in seconds
78. limb.move_to_joint_positions(pL8)
79. time.sleep(1) # in seconds
80. limb.move_to_joint_positions(pL1)
81. time.sleep(1) # in seconds
82.
83. #CCW once
84. limb.move_to_joint_positions(pL8)
85. time.sleep(1) # in seconds
86. limb.move_to_joint_positions(pL7)
87. time.sleep(1) # in seconds
88. limb.move_to_joint_positions(pL6)
89. time.sleep(1) # in seconds
90. limb.move_to_joint_positions(pL5)
91. time.sleep(1) # in seconds
92. limb.move_to_joint_positions(pL4)
93. time.sleep(1) # in seconds
94. limb.move_to_joint_positions(pL3)
95. time.sleep(1) # in seconds
96. limb.move_to_joint_positions(pL2)
97. time.sleep(1) # in seconds

132

98. limb.move_to_joint_positions(pL1)
99. time.sleep(1) # in seconds
100.
101. #CCW again
102. limb.move_to_joint_positions(pL8)
103. time.sleep(1) # in seconds
104. limb.move_to_joint_positions(pL7)
105. time.sleep(1) # in seconds
106. limb.move_to_joint_positions(pL6)
107. time.sleep(1) # in seconds
108. limb.move_to_joint_positions(pL5)
109. time.sleep(1) # in seconds
110. limb.move_to_joint_positions(pL4)
111. time.sleep(1) # in seconds
112. limb.move_to_joint_positions(pL3)
113. time.sleep(1) # in seconds
114. limb.move_to_joint_positions(pL2)
115. time.sleep(1) # in seconds
116. limb.move_to_joint_positions(pL1)
117.
118. quit()

133

Appendix D: Arduino Code and Pseudocode

Robotic_Eye_Code.ino

#include "dh_param.h"

#include "dc_motor_encoder_code.h"

#include "servo_pot_code.h"

#include "verification.h"

//This version has incorporated all hand-eye coordination code. The

target saccades are

// Pins being used (includes ones for motor driver not being utilized):

// 0,1,2,3,4,6,7,8,9,10.12,A0,A1,A2

// PWM disabled on 3 and 11

#include <ros.h> //located in ros_lib

#include <std_msgs/Float32.h>

unsigned long pTime1;

unsigned long pTime2;

unsigned long cTime2; //current time within sampling period

unsigned long o2Time; //assign once object = 2

int object = 1; //added

float mode = 3; // 1 = Track Gripper

 // 2 = "Block" Mode

 // 3 = "Full Glass" Mode

float pos2R0Grip[3] = {500, 0, 650}; // gripper position initialized

same as pos2R0

float gap; // gap between gripper fingers,

from 0 to 100 as %

float graspSite[3] = {1128,-227,597}; // grasp site, {1188,557,382}

for parabolic path

 // {1128,-227,597} for linear

path

float target[3] = {1231,215,182}; // target, {1199,-75,350} for

parabolic path

 // {1231,215,182} for linear path

float tempY; //temporary y coordinate when using logic under object ==

2 condition

int targetInterval; // eyes look at target every _ milliseconds

after grabbing object

int tOff; // time offset dependent on mode

int targetCondition; // time remainder condition for looking at

target

float yVelAvg = 0.034; // average y-velocity of hand moving from one

side to another, in mm/ms

 // equals -0.051mm/ms for parabolic path

 // 0.034mm/ms for linear path

134

float yOff; // y offset, product of tOff and yVelAvg

ros::NodeHandle nh;

void messageCbx(const std_msgs::Float32& gripper_msg_x){ //name of

message is gripper_msg

 pos2R0Grip[0] = gripper_msg_x.data * 1000; //gripper x, convert from

meters to mm

 if (mode == 1)

 {

 parameterClass.pos2R0[0]= pos2R0Grip[0]; //follow gripper in mode 1

 }

 else if (object == 1) // haven't grabbed object

 {

 parameterClass.pos2R0[0]=graspSite[0]; //look at grasp site until

right before item is grabbed

 }

 else if (object == 2) // almost grabbed or have object

 {

 if ((millis()-o2Time) % targetInterval <= targetCondition ||

millis()-o2Time >= 10000)

 {

 parameterClass.pos2R0[0]= target[0]; //look at target

 }

 else

 {

 parameterClass.pos2R0[0]= pos2R0Grip[0]; // xEyes same as xHand

when holding object

 }

 }

 else if (object == 3) // letting go of or releasing object

 {

 parameterClass.pos2R0[0]= 500; //look straight ahead when object

released

 }

 else

 {

 //nothing, shouldn't reach this

 }

}

void messageCby(const std_msgs::Float32& gripper_msg_y){ //name of

message is gripper_msg

 pos2R0Grip[1] = gripper_msg_y.data * 1000; //gripper y, convert from

meters to mm

 if (mode == 1)

 {

 parameterClass.pos2R0[1]= pos2R0Grip[1];

 }

 else if (object == 1)

 {

135

 parameterClass.pos2R0[1]=graspSite[1]; //look at grasp site until

right before item is grabbed

 }

 else if (object == 2)

 {

 if ((millis()-o2Time) % targetInterval <= targetCondition ||

millis()-o2Time >= 10000) //2nd time condition for linear path only

 {

 tempY = target[1];

 }

 else //look at offset

 {

 tempY = pos2R0Grip[1] + yOff;

 }

 //Assing value to pos2R0[1]

 if (tempY > target[1]) //< sign for parabolic path (L -> R), > sign

for linear path (R -> L)

 {

 parameterClass.pos2R0[1] = target[1]; // prevent eyes from looking

at y past target

 }

 else

 {

 parameterClass.pos2R0[1] = tempY;

 }

 }

 else if (object == 3)

 {

 parameterClass.pos2R0[1]= 0; //look straight ahead when object

released

 }

 else

 {

 //nothing, shouldn't reach this

 }

}

void messageCbz(const std_msgs::Float32& gripper_msg_z){ //name of

message is gripper_msg

 pos2R0Grip[2] = gripper_msg_z.data * 1000; //gripper z, convert from

meters to mm

 if (mode == 1)

 {

 parameterClass.pos2R0[2]= pos2R0Grip[2];

 }

 else if (object == 1)

 {

 parameterClass.pos2R0[2]= graspSite[2]; //look at grasp site until

right before item is grabbed

 }

 else if (object == 2)

136

 {

 if ((millis()-o2Time) % targetInterval <= targetCondition ||

millis()-o2Time >= 10000) //2nd time condition for linear path only

 {

 parameterClass.pos2R0[2]= target[2];

 }

 else //look at offset

 {

// parameterClass.pos2R0[2]= -0.0015*sq(parameterClass.pos2R0[1]) +

0.6938*parameterClass.pos2R0[1] + 462.28; //calculate using instructed

gaze y-coor. and curve-fit parabolic path

 parameterClass.pos2R0[2]= -1.0226*parameterClass.pos2R0[1] +

506.94; //linear path

 }

 }

 else if (object == 3)

 {

 parameterClass.pos2R0[2]=650; //look straight ahead when object

released, more consistent than gripper coordinate condition

 }

 else

 {

 //nothing, shouldn't reach this

 }

}

void messageCbGp(const std_msgs::Float32& gripper_msg_gp){ //name of

message is gripper_msg

 gap = gripper_msg_gp.data; //percent gripper is open

 if (object == 1)

 {

 if (gap < 30)

 {

 object = 2; //doesn't keep assigning object = 2

 o2Time = millis(); //time when object first = 2, only assigned

once

 }

 }

 else if (object == 2)

 {

 if (gap >= 30)

 {

 object = 3; //doesn't confuse haven't gotten object and released

object since assigned after object = 2

 }

 }

 else

 {

 //nothing, shouldn't reach this

 }

}

std_msgs::Float32 timeStamp; //added

std_msgs::Float32 testx;

std_msgs::Float32 testy;

std_msgs::Float32 testz;

137

std_msgs::Float32 testya;

std_msgs::Float32 testza;

//std_msgs::Float32 testyg;

//std_msgs::Float32 testzg;

ros::Subscriber<std_msgs::Float32> suba("Baxter_x", &messageCbx);

//subscribes to topic

ros::Subscriber<std_msgs::Float32> subb("Baxter_y", &messageCby);

//subscribes to topic

ros::Subscriber<std_msgs::Float32> subc("Baxter_z", &messageCbz);

//subscribes to topic

ros::Subscriber<std_msgs::Float32> subd("Gripper_Pos", &messageCbGp);

//subscribes to topic

ros::Publisher chatterTime("chatterTime", &timeStamp); //added

ros::Publisher chatterx("chatterx", &testx);

ros::Publisher chattery("chattery", &testy);

ros::Publisher chatterz("chatterz", &testz);

ros::Publisher chatterya("chatterya", &testya);

ros::Publisher chatterza("chatterza", &testza);

//ros::Publisher chatteryg("chatteryg", &testyg);

//ros::Publisher chatterzg("chatterzg", &testzg);

void setup(){

 // Mode conditions

 if (mode == 2)

 {

 targetInterval = 5380;

 tOff = 1500;

 targetCondition = 1300;

 }

 else if (mode == 3)

 {

 targetInterval = 3510;

 tOff = 1000;

 targetCondition = 1755;

 }

 yOff = yVelAvg * tOff; //calculate once after assigning tOff

 servoClass.SETUP1(); //attach servo

 servoClass.SETUP2(); //defines servo initial position as an angle

 motorClass.SETUP(); //pinmode, attaches interrupts, defines shield as

md

 //publisher & subscriber code

 nh.initNode(); //initialize ros node handle

 nh.advertise(chatterTime); //added

 nh.advertise(chatterx); //advertise to topics for input versus actual

points

 nh.advertise(chattery);

 nh.advertise(chatterz);

 nh.advertise(chatterya);

 nh.advertise(chatterza);

// nh.advertise(chatteryg);

// nh.advertise(chatterzg);

138

 nh.subscribe(suba); //subscribe to topic

 nh.subscribe(subb);

 nh.subscribe(subc);

 nh.subscribe(subd); //added for gripper gap

 verificationClass.homeSetup(); //defines initial position of bar

centroid relative to eye midpoint

 parameterClass.SETUP(); //calculates initial deltas and other

coordinates (deltas all zero)

 pTime1 = millis();

}

void loop(){

 if (cTime2>=10) //sampling at 100Hz -> period of 10ms

 {

 //Publish input versus actual calculated in verification tab to

chatter topic

 timeStamp.data = (millis());

 testx.data = parameterClass.pos2R0[0];

 testy.data = parameterClass.pos2R0[1];

 testz.data = parameterClass.pos2R0[2];

 testya.data = verificationClass.aPos2R0[1];

 testza.data = verificationClass.aPos2R0[2];

// testyg.data = pos2R0Grip[1];

// testzg.data = pos2R0Grip[2];

 chatterTime.publish (&timeStamp);

 chatterx.publish(&testx);

 chattery.publish(&testy);

 chatterz.publish(&testz);

 chatterya.publish(&testya);

 chatterza.publish(&testza);

// chatteryg.publish(&testyg);

// chatterzg.publish(&testzg);

 nh.spinOnce();

 //don't need delay, already runs at servoTime interval

 verificationClass.SETUP(); //find actual point and end of run

 pTime2=millis();

 }

 if (servoClass.cTime1 >= servoClass.servoTime && servoClass.cTime1 %

servoClass.servoTime <= 5)

 {

 verificationClass.SETUP(); //find actual point and end of run

 parameterClass.SETUP(); //find deltas

 servoClass.SETUP2(); // reset initial servo position

 }

 servoClass.cTime1 = millis() - pTime1; //update servoClass.cTime1

 servoClass.servoLoop(); // move servo

 motorClass.motorLoop(); // move motor

139

 if (servoClass.cTime1 >= 300) //Timer 1 dual purpose, used to start

new instruction loop and then reset for feedback loop

 //time

condition is servoTime PLUS time allotted for correction (remember same

timer)

 {

 pTime1=millis(); // restarts Timer 1

 motorClass.previousStart = millis(); //redefines after each

motorTime cycle passes

 }

 cTime2 = millis() - pTime2; //update Timer2

}

140

dc_motor_encoder_code.cpp

#include "Arduino.h"

#include "dc_motor_encoder_code.h"

#include "dh_param.h"

#include "DualMC33926MotorShield.h"

DualMC33926MotorShield md;

#define encoder0PinA 2

#define encoder0PinB 3

static volatile int encoder0Pos; // was volatile unsigned int

mClass::mClass(){}

void mClass::SETUP(){

 pinMode (encoder0PinA, INPUT);

 pinMode (encoder0PinB, INPUT);

 // encoder pin on interrupt 0 (pin 2)

 attachInterrupt(0, doEncoderA, CHANGE);

 // encoder pin on interrupt 1 (pin 3)

 attachInterrupt(1, doEncoderB, CHANGE);

 md.init(); //forgot before

 motorClass.previousStart = millis();

}

void mClass::stopIfFault()

{

 if (md.getFault())

 {

 Serial.println("fault");

 while(1);

 }

}

void mClass::doEncoderA() {

 // look for a low-to-high on channel A

 if (digitalRead(encoder0PinA) == HIGH) {

 // check channel B to see which way encoder is turning

 if (digitalRead(encoder0PinB) == LOW) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 }

 else // must be a high-to-low edge on channel A

 {

141

 // check channel B to see which way encoder is turning

 if (digitalRead(encoder0PinB) == HIGH) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 }

}

void mClass::doEncoderB() {

 // look for a low-to-high on channel B

 if (digitalRead(encoder0PinB) == HIGH) {

 // check channel A to see which way encoder is turning

 if (digitalRead(encoder0PinA) == HIGH) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 }

 // Look for a high-to-low on channel B

 else {

 // check channel B to see which way encoder is turning

 if (digitalRead(encoder0PinA) == LOW) {

 encoder0Pos = encoder0Pos + 1; // CW

 }

 else {

 encoder0Pos = encoder0Pos - 1; // CCW

 }

 }

}

void mClass::motorControl(){

currentMillisM = millis(); //redundant for ramp conditions

 stopIfFault(); //stops motor if problem

 //RAMP UP

 if (currentMillisM - previousStart < rampTime) //make sure in

testing that i=400 is reached in this time

 {

 if (RPM <= maxRPM) //was maxSpeed

 {

 RPM = RPM + delayMotorMultiplier; //more positive

 i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364);

 if (parameterClass.deltaZ >= 0)

 {

 md.setM1Speed(i); // CW if positive parameterClass.deltaZ,

may need to switch cases

 }

 else

142

 {

 md.setM1Speed(-1*i); //CCW if negative parameterClass.deltaZ

 }

 }

 }

 //RAMP DOWN

 else if (currentMillisM - previousStart >= 0.8 * motorTime)

 {

 if (RPM >= 0) // could change to 5 to keep motor moving if needs

more time

 {

 RPM = RPM - delayMotorMultiplier; //was plus (less negative)

now minus

 i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364);

 if (parameterClass.deltaZ < 0)

 {

 md.setM1Speed(-1*i); //CCW if negative parameterClass.deltaZ

 }

 else

 {

 md.setM1Speed(i); // CW if positive parameterClass.deltaZ,

may need to switch cases

 }

 }

 }

 else

 {

 if ((currentMillisM - previousStart - rampTime) < 10) //reach max

rpm if not yet reached

 {

 rampPos = encoder0Pos *-1 * 25.4 / (400 * 24);

 totalPos = parameterClass.pos3R1[2]; //desired position for end

of motorTime

 bufferRPM = abs((60000 / 25.4) * (totalPos - rampPos) / (0.7 *

motorTime)); // convert mm/ms to RPM

 RPM = maxRPM + bufferRPM;

 i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364);

 if (parameterClass.deltaZ>0)

 {

 md.setM1Speed(i);

 }

 else

 {

 md.setM1Speed(-1*i); // stop motor if number of rotations

reached early

 }

 }

 else

 {

 }

 }

}

143

void mClass::motorCorrection(){

 if (abs(encoder0Pos * -1 * 25.4 / (400 * 24) -

parameterClass.pos3R1[2]) > 0.1) //if MOTOR is over 1mm from desired

position

 {

 if ((encoder0Pos * -1 * 25.4 / (400 * 24)) -

parameterClass.pos3R1[2] >= 0) //motor higher than desired position

 {

 md.setM1Speed(-125);

 }

 else //motor lower than desired position

 {

 md.setM1Speed(125);

 }

 }

 else //put stop motor in here instead if motor within acceptable

error

 {

 RPM=0;

 i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364);

 md.setM1Speed(i); // stop motor if number of rotations reached

 }

}

void mClass::motorLoop(){

 stopIfFault();

 doEncoderA();

 doEncoderB();

 eTicks = encoder0Pos;

 if (servoClass.cTime1 <= motorTime)

 {

 motorRotations = ceil(abs(parameterClass.deltaZ) * 24 *

(1/25.4)); // 24 rotations per inch displacement, in to mm

 rampTime = 0.2 * motorTime; //40% of time used for ramp up/down,

in milliseconds

 // avgMotorRPM = 60000 * motorRotations / motorTime; //convert

milliseconds to minutes, in RPM

 maxRPM = (60000 * abs(parameterClass.deltaZ) * 24 * (1/25.4) /

motorTime) / 0.8; //average value theorem dependent on ramp time

 maxRPM = constrain(maxRPM, 0, 4901); // ADDED, cannot exceed spec'd

maximum +1

 //int maxSpeed = map(maxRPM, 0, 4900, 0, 400); //CHANGEd TO

EQUATION FOUND IN EXCEL

 maxSpeed = round(-0.000004 * sq(maxRPM) + 0.0912 * maxRPM +

55.364);

 // delayMotor = rampTime/maxRPM; // ramp up time divided by number

of increments of RPM, was i

 delayMotorMultiplier = ceil(4 *maxRPM / rampTime); //dependent on

time increment chosen in loop

 currentMillisM = millis(); //redundant for if statement

 if (currentMillisM - previousMillisM >= 4) // was >= delayMotor

 {

144

 previousMillisM = currentMillisM;

 motorControl();

 }

 }

 else

 {

 motorCorrection();

 }

}

mClass motorClass = mClass();

145

dc_motor_encoder_code.h
#ifndef dc_motor_encoder_code_h
#define dc_motor_encoder_code_h

#include "servo_pot_code.h"
//Pins used by the motor shield: 4,7,8,9,10.12,A0,A1

class mClass
{
 public:
 mClass();
 static void SETUP();
 void stopIfFault();
 static void doEncoderA();
 static void doEncoderB();
 int eTicks; //added, couldn't have encoder0Pos here, need to use in
verification.cpp
 void motorControl();
 void motorLoop();

 void motorCorrection(); //ADDED to correct motor position

 int i; // increment for motor speed, was zero
 int RPM; //added, current RPM

 int motorTime = 115; // time allotted for motor to run in milliseconds,
linked to servoTime

 int motorRotations;
 int rampTime;
 int maxRPM;
 int maxSpeed;
 int delayMotorMultiplier; // likely should give better name

 float rampPos;
 float totalPos;
 int bufferRPM;

 unsigned long currentMillisM=millis();
 unsigned long previousMillisM; // will store last time speed was
updated
 unsigned long previousStart;

};

extern mClass motorClass;

#endif

146

dh_param.cpp

#include "dh_param.h"

#include "math.h"

#include "Arduino.h"

#include "verification.h"

dhClass::dhClass(){}

void dhClass::SETUP() {

 //Gripper wrt eye midpoint = gripper wrt base minus midpoint wrt base

 pos2R1[0] = pos2R0[0]-pos1R0[0];

 pos2R1[1] = pos2R0[1]-pos1R0[1];

 pos2R1[2] = pos2R0[2]-pos1R0[2];

 magA= sqrt(sq(pos2R1[0]) + sq(pos2R1[1]) + sq(pos2R1[2]));

//magnitude of midpoint to gripper vector, square root of sum each

pos2R1 element squared

 //Find bar centroid wrt base

 pos3R0[0] = pos1R0[0] - ((radius * pos2R1[0]) / magA);

 pos3R0[1] = pos1R0[1] - ((radius * pos2R1[1]) / magA);

 pos3R0[2] = pos1R0[2] - ((radius * pos2R1[2]) / magA);

// define previous centroid based on actual position from previous run

 // cant equate array to array, must go do so element-wise

 for (int entry=0; entry<=2; entry++)

 {

 oldPos3R1[entry] = verificationClass.aPos3R1[entry];

 }

 //Find desired bar centroid relative to fixed midpoint

 //Equals bar centroid wrt base minus midpoint wrt base

 pos3R1[0]=pos3R0[0]-pos1R0[0];

 pos3R1[1]=pos3R0[1]-pos1R0[1];

 pos3R1[2]=pos3R0[2]-pos1R0[2];

 //Find delta x, y, z

 deltaX=pos3R1[0]-oldPos3R1[0];

 deltaY=pos3R1[1]-oldPos3R1[1];

 deltaZ=pos3R1[2]-oldPos3R1[2];

}

dhClass parameterClass = dhClass();

147

dh_param.h

#ifndef dh_param_h
#define dh_param_h

#include <math.h>
class dhClass
{
 public:
 dhClass();
 void SETUP();
 //int pos2R0[]; //gripper relative to base from .csv file
 float pos2R1[3]; //midpoint to desired gripper trajectory point
 float magA; //magnitude of vector from midpoint to desired gripper point

 float pos3R0[3]; //bar centroid relative to base
 int radius = 37; //distance from eye midpoint to bar centroid in
millimeters

 float pos3R1[3] = {-37, 0, 0}; //give initial position of bar centroid
relative to fixed eye midpoint,

 float oldPos3R1[3]; ////previous bar centroid position

 float deltaX;
 float deltaY;
 float deltaZ;

 //Position Vectors
 //*Put from here down in loop*
 float pos1R0[3] = {0,0,650}; //fixed eye midpoint relative to Baxter base
measured, was set to approx 900

 float pos2R0[3] = {500, 0, 650}; //initialize to look straight ahead at
first before point obtained from Baxter
};

extern dhClass parameterClass;

#endif

148

servo_pot_code.cpp

#include "Arduino.h"

#include "servo_pot_code.h"

#include "dh_param.h"

ServoTimer2 myservo;

sClass::sClass(){

}

// run in robotic setup ONLY

void sClass::SETUP1(){

 myservo.attach(servoPin);

}

// redefine initial position with every new gripper point

void sClass::SETUP2(){

 currentPosition=getPos(feedbackPin); // degrees

 initialPosition=currentPosition; //degrees

}

// Move servo to position

void sClass::Seek(ServoTimer2 servo, int analogPin, float pos)

{

 // Writes defined angle to motor in increments (start moving)

 if (abs(getPos(feedbackPin) - pos) >= 1) //if position read by pot

is not within _ degrees of instructed position

 {

 if (getPos(feedbackPin) < pos)

 {

 currentPosition++;

 currentPosition = constrain(currentPosition, 62, angle);

 }

 else

 {

 currentPosition--;

 currentPosition = constrain(currentPosition, angle, 132);

 }

 servo.write(1800 - (((128 - currentPosition) * (1800 - 1300)) /

(128 - 80)));

 }

 else // if off by less than a degree, go straight to desired angle

 {

 servo.write(1800 - (((128 - angle) * (1800 - 1300)) / (128 - 80)));

 }

}

void sClass::Seek2(ServoTimer2 servo)

{

149

 servo.write(1800 - (((128 - angle) * (1800 - 1300)) / (128 - 80)));

}

float sClass::getPos(int analogPin)

{

 return (maxDegrees - (((maxFeedback - analogRead(analogPin)) *

(maxDegrees - minDegrees)) / (maxFeedback - minFeedback)));

}

void sClass::servoLoop(){

 currentMillisS = millis();

 deltaAngle = (acos(parameterClass.pos3R1[1] / (sqrt(sq(radius) -

sq(parameterClass.pos3R1[2])))) - ((187 - initialPosition) * M_PI /

180)) * -1 * 180 / M_PI;

 delayServo = round(abs(servoTime/deltaAngle));

 if (delayServo < 2) //servo delay cannot feasibly be less than 2

milliseconds

 {

 delayServo = 2; // ignore calculation if less than 2 and assign 2

 }

 if (cTime1 >= servoTime + 50)

 {

 currentMillisS=millis();

 if (currentMillisS - previousMillisS >= delayServo)

 {

 Seek2(myservo); // moves to instructed angle

 previousMillisS = currentMillisS;

 }

 }

 else if (currentMillisS - previousMillisS >= delayServo)

 {

 angle = initialPosition + deltaAngle;

 angle = constrain(angle, 62, 132); //ADDED so servo doesn't try to

go beyond feasible range

 Seek(myservo, feedbackPin, angle); // moves to __ degree mark

 previousMillisS = currentMillisS;

 }

}

sClass servoClass = sClass();

150

servo_pot_code.h

#ifndef servo_pot_code_h
#define servo_pot_code_h

// ServoTimer2 library disables analogWrite PWM on pins 3 & 11 (vs 9 & 10 on
regular servo library)
// Can still use pins 3 and 11 for other purposes
#include <ServoTimer2.h>
#include <math.h>
#include "Arduino.h"

class sClass
{
 public:
 sClass();
 void SETUP1();
 void SETUP2();
 void Seek(ServoTimer2 servo, int analogPin, float pos);
 float getPos(int analogPin);
 void servoLoop();

 unsigned long cTime1; //current time within a motor run

 void sClass::Seek2(ServoTimer2 servo);

 // Control and feedback pins
 #define servoPin 5
 int feedbackPin = A5; //was A5

 int radius = 37; // radius in mm, already in DH parameter code

 // Calibration values
 int minDegrees=62;
 int maxDegrees=132;
 int minFeedback=725; // was 965, 713
 int maxFeedback=962; // was 735, 951

 int servoTime = 100; // in milliseconds, time allotted for servo movement

 float deltaAngle; //change in servo angle
 int delayServo; //delay allowed for servo
 float angle; //desired final angle of servo (pos argument of void Seek())

 float initialPosition; // angle in deg from pot at start
 float currentPosition; // angle in deg from pot

 unsigned long previousMillisS = 0; // will store last time speed
was updated, was zero
 unsigned long currentMillisS=millis();
};

151

extern sClass servoClass;

#endif

152

verification.cpp

#include "verification.h"

#include "math.h"

#include "Arduino.h"

#include "servo_pot_code.h"

#include "dc_motor_encoder_code.h"

#include "dh_param.h"

vClass::vClass(){}

void vClass::homeSetup(){

 aPos3R1[0] = -37;

 aPos3R1[1] = 0;

 aPos3R1[2] = 0;

}

void vClass::SETUP() {

 // (A) FIND ACTUAL BAR CENTROID RELATIVE TO EYE MIDPOINT

 finalPosition = servoClass.getPos(servoClass.feedbackPin); // get

position of servo at end of defined servoTime (=motorTime) from pot

 aPos3R1[2] = motorClass.eTicks * -1 * 25.4 / (400 * 24); // converts

encoder ticks to Z of bar centroid relative to eye midpoint in mm

 //alphaServo = 187 - finalPosition;

 //rXY = sqrt(sq(servoClass.radius)-sq(aPos3R1[2]));

 //aPos3R1[1] = rXY * cos(alphaServo);

 aPos3R1[1] = sqrt(sq(servoClass.radius)-sq(aPos3R1[2])) * cos((187 -

finalPosition)* M_PI / 180); // Y of bar centroid relative to eye

midpoint in mm

 aPos3R1[0] = -sqrt(sq(servoClass.radius)-sq(aPos3R1[1])-

sq(aPos3R1[2])); // X of bar centroid relative to eye midpoint in mm

 // (B) FIND ACTUAL POINT LOOKING AT RELATIVE TO BASE FRAME

 aPos2R0[0]=parameterClass.pos2R0[0]; //input X same as actual X of

gripper relative to base

 aPos2R1[0]=parameterClass.pos2R1[0]; //input X same as actual X of

gripper relative to eye midpoint

 aPos3R0[0]= aPos3R1[0]+ parameterClass.pos1R0[0]; //get X,Y,Z of bar

centroid relative to base for calculations

 aPos3R0[1]= aPos3R1[1]+ parameterClass.pos1R0[1];

 aPos3R0[2]= aPos3R1[2]+ parameterClass.pos1R0[2];

 aMagA = aPos2R1[0] / ((parameterClass.pos1R0[0]-

aPos3R0[0])/servoClass.radius);

 aPos2R1[1] = aMagA * ((parameterClass.pos1R0[1]-

aPos3R0[1])/servoClass.radius);

 aPos2R1[2] = aMagA * ((parameterClass.pos1R0[2]-

aPos3R0[2])/servoClass.radius);

153

 aPos2R0[1]= aPos2R1[1]+ parameterClass.pos1R0[1]; //actual gripper Y

relative to base

 aPos2R0[2]= aPos2R1[2]+ parameterClass.pos1R0[2]; //actual gripper Z

relative to base

}

vClass verificationClass = vClass();

154

verification.h

#ifndef verification_h
#define verification_h

#include <math.h>
class vClass
{
 public:
 vClass();
 void SETUP();
 void homeSetup();
 float finalPosition; //final servo position after servoTime
 float aPos3R1[3]; //actual bar centroid relative to eye midpoint
 float aPos2R1[3]; //actual gripper position relative to eye midpoint
 float aPos2R0[3]; //actual gripper position relative to base frame
 float aMagA; //actual magnitude of vector, A, from {1} to {2}
 float aPos3R0[3];
};

extern vClass verificationClass;

#endif

155

Arduino IDE Pseudocode

156

157

Arduino message function for gap between Baxter’s fingertips

1
5
8

Arduino message function for x of Baxter gripper

1
5
9

Arduino message function for y of Baxter gripper

1
6
0

Arduino message function for z of Baxter gripper

161

Lateral Motor Code (referenced in Arduino IDE Pseudocode)

162

Seek Function (referenced in Lateral Motor Code)

163

Vertical Motor Code (referenced in Arduino IDE Pseudocode)

164

Encoder Channel A Code (referenced in Vertical Motor Code)

165

Encoder Channel B Code (referenced in Vertical Motor Code)

1
6
6

Motor Control Function (referenced in Vertical Motor Code)

167

168

Motor Correction Function (referenced in Vertical Motor Code)

169

Appendix E: Analog Read Code

int minDegrees=62;
int maxDegrees=132;
int minFeedback=725;
int maxFeedback=962;
int feedbackPin = A5;

int angle;

int getPos(int analogPin)
{
 return map(analogRead(analogPin), minFeedback, maxFeedback, minDegrees,
maxDegrees);
}

void setup()
{
 angle = analogRead(A5);
 Serial.begin(57600);
}

void loop() {
 // put your main code here, to run repeatedly:
// Serial.println(angle); // prints analog reading on one line
 if (millis() % 10 < 5)
 {
 Serial.println(getPos(feedbackPin)); // prints calculated angle on next
line
 }

}

170

12 REFERENCES

[1] D. A. Atchison, “Optics of the Human Eye,” Ref. Modul. Mater. Sci. Mater. Eng.,

pp. 1–19, 2017.

[2] N. Pateromichelakis et al., “Head-eyes system and gaze analysis of the humanoid

robot Romeo,” IEEE Int. Conf. Intell. Robot. Syst., no. April 2015, pp. 1374–1379,

2014.

[3] D. Guitton and M. Volle, “Gaze control in humans: eye-head coordination during

orienting movements to targets within and beyond the oculomotor range.,” J.

Neurophysiol., vol. 58, no. 3, pp. 427–459, 1987.

[4] H. Misslisch, D. Tweed, and T. Vilis, “Neural constraints on eye motion in human

eye-head saccades.,” J. Neurophysiol., vol. 79, no. 2, pp. 859–869, 1998.

[5] Y. B. Bang, J. K. Paik, B. H. Shin, and C. Lee, “A three-degree-of-freedom

anthropomorphic oculomotor simulator,” Int. J. Control Autom. Syst., vol. 4, no. 2,

pp. 227–235, 2006.

[6] A. T. Bahill, M. R. Clark, and L. Stark, “The main sequence, a tool for studying

human eye movements,” Math. Biosci., vol. 24, no. 3–4, pp. 191–204, 1975.

[7] R. S. Johansson, G. Westling, A. Bäckström, and R. Flanagan, “Eye – Hand

Coordination in Object Manipulation,” J. Neurosci., vol. 21, no. 17, pp. 6917–

6932, 2001.

[8] A. M. Bronstein and C. Kennard, “Predictive eye saccades are different from

visually triggered saccades,” Vision Res., vol. 27, no. 4, pp. 517–520, 1987.

171

[9] D. A. Robinson, “The Mechanics of Human Saccadic Eye Movement,” J. Physiol.,

pp. 245–264, 1964.

[10] H. Liu, J. Luo, P. Wu, S. Xie, and H. Li, “Symmetric kullback-leibler metric based

tracking behaviors for bioinspired robotic eyes,” Appl. Bionics Biomech., vol.

2015, 2015.

[11] C. M. Gosselin and J.-F. Hamel, “The agile eye: a high-performance three-degree-

of-freedom camera-orienting device,” Proc. 1994 IEEE Int. Conf. Robot. Autom.,

pp. 781–786, 1994.

[12] L. Ramos, S. Valencia, S. Verma, K. Zornoza, M. Morris, and S. Tosunoglu,

“Robotic Face to Simulate Humans Undergoing Eye Surgery,” 2017.

[13] “Eye Mechanism | InMoov.” [Online]. Available: http://inmoov.fr/eye-

mechanism/. [Accessed: 15-Apr-2018].

[14] “Eye modification for InMoov by bhouston - Thingiverse,” 2015. [Online].

Available: https://www.thingiverse.com/thing:1047175. [Accessed: 15-Apr-2018].

[15] K. Bassett, M. Hammond, and L. Smoot, “A fluid-suspension, electromagnetically

driven eye with video capability for animatronic applications,” 9th IEEE-RAS Int.

Conf. Humanoid Robot. HUMANOIDS09, pp. 40–46, 2009.

[16] H. Irmler et al., “United States Patent: System and method for generating realistic

eyes,” US 8,651,916 B2, 2014.

[17] E. Brockmeyer, I. Poupyrev, and S. Hudson, “Papillon: Designing Curved Display

Surfaces With Printed Optics,” Proc. 26th Annu. ACM Symp. User interface Softw.

Technol. - UIST ’13, pp. 457–462, 2013.

172

[18] C. D. Kidd and C. Breazeal, “Effect of a robot on user perceptions,” 2004

IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IEEE Cat. No.04CH37566), vol. 4, no.

January 2004, pp. 3559–3564, 2004.

[19] T. Landgraf, D. Bierbach, H. Nguyen, N. Muggelberg, P. Romanczuk, and J.

Krause, “RoboFish: Increased acceptance of interactive robotic fish with realistic

eyes and natural motion patterns by live Trinidadian guppies,” Bioinspiration and

Biomimetics, vol. 11, no. 1, p. 15001, 2016.

[20] J. Ham, R. H. Cuijpers, and J. J. Cabibihan, “Combining Robotic Persuasive

Strategies: The Persuasive Power of a Storytelling Robot that Uses Gazing and

Gestures,” Int. J. Soc. Robot., vol. 7, no. 4, pp. 479–487, 2015.

[21] Aj. Moon et al., “Meet me where i’m gazing: How shared attention gaze affects

human-robot handover timing,” Proc. 2014 ACM/IEEE Int. Conf. Human-robot

Interact. - HRI ’14, no. March, pp. 334–341, 2014.

[22] C. J. Stanton and C. J. Stevens, “Don’t Stare at Me: The Impact of a Humanoid

Robot’s Gaze upon Trust During a Cooperative Human–Robot Visual Task,” Int.

J. Soc. Robot., vol. 9, no. 5, pp. 745–753, 2017.

[23] M. Land, N. Mennie, and J. Rusted, “The roles of vision and eye movements in the

control of activities of daily living,” Perception, vol. 28, no. 11, pp. 1311–1328,

1999.

[24] M. Hayhoe, “Vision Using Routines: A Functional Account of Vision,” Vis. cogn.,

vol. 7, no. 1–3, pp. 43–64, 2000.

[25] M. F. Land and M. M. Hayhoe, “In what ways do eyemovements contribute to

everyday activities?,” Vision Res., vol. 41, no. 25–26, pp. 3559–3565, 2001.

173

[26] S. T. Iqbal and B. P. Bailey, “Using Eye Gaze Patterns to Identify User Tasks,”

Grace Hopper Celebr. Women Comput., p. 6, 2004.

[27] T. W. Victor, J. L. Harbluk, and J. A. Engström, “Sensitivity of eye-movement

measures to in-vehicle task difficulty,” Transp. Res. Part F Traffic Psychol.

Behav., vol. 8, no. 2 SPEC. ISS., pp. 167–190, 2005.

[28] S. Fitzgerald and M. Shiloh, The Arduino Projects Book, 3rd ed. Torino, 2015.

[29] “Pololu Dual MC33926 Motor Driver Shield for Arduino.” [Online]. Available:

https://www.pololu.com/product/2503. [Accessed: 15-Apr-2018].

[30] “Workstation Setup - sdk-wiki.” [Online]. Available:

http://sdk.rethinkrobotics.com/wiki/Workstation_Setup. [Accessed: 15-Apr-2018].

[31] “Baxter PyKDL - sdk-wiki.” [Online]. Available:

http://sdk.rethinkrobotics.com/wiki/Baxter_PyKDL. [Accessed: 15-Apr-2018].

[32] “Joint Trajectory Playback Example - sdk-wiki.” [Online]. Available:

http://sdk.rethinkrobotics.com/wiki/Joint_Trajectory_Playback_Example.

[Accessed: 22-Jun-2018].

[33] “Baxer User Guide for Intera 3.0 Software,” 2014. [Online]. Available:

http://mfg.rethinkrobotics.com/mfg-mediawiki-

1.22.2/images/1/12/Baxter_User_Guide_for_Intera_3.0.0.pdf.

[34] “Arduino Reference map().” [Online]. Available:

https://www.arduino.cc/reference/en/language/functions/math/map/. [Accessed:

22-Jun-2018].

[35] “Servo library.” [Online]. Available: https://www.arduino.cc/en/Reference/Servo.

[Accessed: 15-Apr-2018].

174

[36] D. J. Gonzalez, “YAMEB: Quadrature Encoders in Arduino, done right. Done

right.,” 2012. [Online]. Available: http://yameb.blogspot.com/2012/11/quadrature-

encoders-in-arduino-done.html. [Accessed: 15-Apr-2018].

[37] “Arduino library for the Pololu Dual MC33926 Motor Driver Shield.” [Online].

Available: https://github.com/pololu/dual-mc33926-motor-shield. [Accessed: 15-

Apr-2018].

[38] “API Reference - sdk-wiki.” [Online]. Available:

http://sdk.rethinkrobotics.com/wiki/API_Reference. [Accessed: 15-Apr-2018].

[39] “Gripper Customization - sdk-wiki.” [Online]. Available:

http://sdk.rethinkrobotics.com/wiki/Gripper_Customization. [Accessed: 15-Apr-

2018].

[40] “Arduino Playground - RotaryEncoders.” [Online]. Available:

https://playground.arduino.cc/Main/RotaryEncoders. [Accessed: 15-Apr-2018].

[41] “ROS + Arduino = Robot.” [Online]. Available:

https://github.com/hbrobotics/ros_arduino_bridge.

	Olson_Stephanie_v2.pdf
	Olson_Stephanie_signatures
	Olson_Stephanie_v2
	TABLES
	FIGURES
	EQUATIONS
	1 INTRODUCTION
	1.1 Goals and Applications
	1.2 Literature Review
	1.2.1. Baxter Robot
	1.2.2. The Human Eye
	1.2.3. Current Robotic Eyes
	1.2.4. Realism and Robots
	1.2.5. Hand-Eye Coordination

	2 DESIGN
	2.1 Robotic Eyes
	2.1.1 Version 1
	2.1.2 Final Design
	2.1.3 Customizing
	2.1.4 Sizing Parts

	2.2 Wiring
	2.3 Baxter Mount

	3 SOFTWARE
	3.1 System Requirements
	3.2 What to Run
	3.4 Obtaining and Communicating Gripper Coordinates
	3.3 Programming Baxter’s Movements
	3.4 Arduino
	3.4.1 DH Parameters
	3.4.2 Servo – Potentiometer
	3.4.3 DC Motor – Encoder
	3.4.4 Verification
	3.4.5 Modes
	3.4.6 Output
	3.4.7 Summary

	4 FABRICATION
	4.1 Preliminary
	4.2 Assembly: Robotic Eyes
	4.3 Assembly: Wiring and Mounting
	4.4 Bill of Materials

	5 TESTING: SYSTEM CHECKS
	5.1 Baxter Gripper Frame Location
	5.2 DH Parameters
	5.3 Servo
	5.3.1 Open-Loop: Load Disconnected
	5.3.2 Open-Loop: Load Connected
	5.3.3 Closed-Loop: Load Disconnected
	5.3.4 Closed-Loop: Load Connected

	5.4 DC Motor
	5.4.1 Encoder Accuracy
	5.4.2 Speed Index Mapping
	5.4.3 Choosing Velocity Profile

	5.5 Lateral and Vertical Motor Movement

	6 RESULTS: SYSTEM CHECKS
	6.1 Baxter Gripper Frame Location
	6.2 DH Parameters
	6.3 Servo
	6.3.1 Open-Loop: Load Disconnected
	6.3.2 Open-Loop: Load Connected
	6.3.3 Closed-Loop: Load Disconnected
	6.3.4 Closed-Loop: Load Connected

	6.4 DC Motor
	6.4.1 Encoder Accuracy
	6.4.2 Speed Index Mapping
	6.4.3 Choosing Velocity Profile

	6.5 Lateral and Vertical Motor Movement

	7 TESTING: BAXTER INTEGRATION
	7.1. Circular Path: Tracking
	7.2. Parabolic Path: Tracking
	7.3. Parabolic Path: Block Mode
	7.4. Parabolic Path: Full Glass Mode
	7.5. Linear Path

	8 RESULTS: BAXTER INTEGRATION
	8.1. Circular Path: Tracking
	8.2. Parabolic Path: Tracking
	8.3. Parabolic Path: Block Mode
	8.4. Parabolic Path: Full Glass Mode
	8.5. Linear Path: Tracking
	8.6. Linear Path: Block Mode
	8.7. Linear Path: Full Glass Mode

	9 DISCUSSION
	10 CONCLUSIONS
	11 APPENDICES
	Appendix A: Servo Calculations
	Appendix B: Thread Pitch & DC Motor Calculations
	Appendix C: Circular Baxter Trajectory Code
	Appendix D: Arduino Code and Pseudocode
	Appendix E: Analog Read Code

	12 REFERENCES

