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My thesis covers the design and fabrication of novel humanoid robotic eyes and 

the process of interfacing them with the industry robot, Baxter. The mechanism can reach 

a maximum saccade velocity comparable to that of human eyes. Unlike current robotic 

eye designs, these eyes have independent left-right and up-down gaze movements 

achieved using a servo and DC motor, respectively. A potentiometer and rotary encoder 

enable closed-loop control. An Arduino board and motor driver control the assembly. The 

motor requires a 12V power source, and all other components are powered through the 

Arduino from a PC. 

Hand-eye coordination research influenced how the eyes were programmed to 

move relative to Baxter’s grippers. Different modes were coded to adjust eye movement 

based on the durability of what Baxter is handling. Tests were performed on a component 

level as well as on the full assembly to prove functionality.
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1 INTRODUCTION 

1.1 Goals and Applications 

 The overall goal was to design and fabricate novel humanoid robotic eyes and 

program them to move logically with a Baxter robot based on hand-eye coordination 

research. Two control goals were position and temporal control. Position control in which 

gaze accurately followed a Baxter end effector was sought first followed by temporal 

control that resulted in human-like eye movement with respect to time. 

 The design and its capabilities have the potential to benefit any industry that 

employs human-robot interaction. Assembly line robots in manufacturing (like Baxter), 

assistive robots in the service industry, and audio-animatronics for entertainment in 

theme parks are just a few examples. 

1.2 Literature Review 

 The research done falls under five categories: the Baxter robot, the human eye, 

current robotic eye designs, realism and robots, and hand-eye coordination. 

1.2.1. Baxter Robot 

The Baxter Robot from Rethink Robotics is depicted in Fig. 1. Baxter has two 

arms each with seven degrees of freedom and a maximum reach of 1210mm. Two types 

of grippers are available to act as Baxter’s hands: vacuum cup grippers and electric 

parallel grippers. There is a camera in each arm and force sensors in each joint. The 

mobile pedestal consists of four caster wheels to move him and four anchors to secure 
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him in place. Baxter is mainly used in manufacturing settings, packaging, loading and 

unloading items from assembly lines among other tasks. 

 

Fig. 1. Baxter robot 

Unlike many robots, Baxter is not programmed but trained. Once Baxter is 

enabled, the user can freely move either of Baxter’s arms while holding onto his 

respective wrist. An arm holds its orientation when the wrist is released. For a user who 

wants to do as little coding as possible, they can run the available joint recorder Python 

file. While the user moves the arms, the code samples Baxter’s position at a specified 

sampling rate and writes the data to a file. For Baxter to mimic his training movements, a 

second Python file called joint trajectory file playback sends commands back to Baxter 

by accessing the data file written by the recorder. A slightly more hands-on approach to 

training Baxter is also applied in this paper. 
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Baxter’s “face” is a monitor, and the eyes on his display are limited to two 

vertical positions, forward and down, and three horizontal positions, left, right, and 

center.  

1.2.2. The Human Eye 

The average diameter of a human eye is 24mm  [1], [2]. Contrary to how they are 

often modeled, eyeballs are not perfect spheres; the cornea’s radius of curvature is about 

4mm smaller than that of the overall eyeball [1]. Pupil diameter can range from 3mm to 

7mm [1].  

An eye’s mechanical range of motion is referred to as the oculomotor range, or 

OMR [3]. The OMR of a human can be defined by how far left, right, up and down the 

average person can rotate their eyes. Different sources define the human OMR using 

slightly different numbers, ranging from 53° ± 2° to 60° for both left and right eye 

rotation [2]–[4]. However, it is agreed that quick eye movements, which are known as 

saccades, are neurally limited to the effective oculomotor range (EOMR) of ±45° 

horizontally [3], [4]. Ninety-percent of the time, human eyes move within the range of 

±20° [5]. There is also a discrepancy between sources as to the vertical limits of the 

EOMR; one source claimed it is 20° up and 29° down while another claimed it is closer 

to 35° up and 47° down [2], [4].  

 The larger a saccade, the larger the saccade’s duration, peak velocity and average 

velocity [6]. The maximum velocity of a saccade is around 600°/s [3], [6]–[8]. Saccade 

durations range between approximately 25 and 100ms for saccades larger than one-

degree [6], [7], [9], and they take about 200ms to initiate [2]. 
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1.2.3. Current Robotic Eyes 

Various existing robotic eye designs were analyzed. Every design researched 

simplified the eyeball as a perfect sphere. The Agile Eye was used as a base model in 

multiple journal papers [2], [5], [10]. The original design consists of three DC servo 

motors mounted to the vertices of a triangular plate [11]. The motors are mounted at an 

angle with their shafts pointing up towards the center of the plate. Two spherical links 

connect each DC motor to the eye, giving a total of six spherical links. 

The speed and range of the Agile Eye are greater than that of a human’s; however, 

the mechanism does not fit well behind an artificial human face. To remedy this, one 

group modified the design just over ten years ago utilizing bent links that allowed the 

servos to be reoriented farther behind the eye [5]. Although the capabilities of both 

designs are impressive, their complexity makes them bulky.  

 More recently, a paper on a bipedal robot named Romeo was released [2]. The 

robot contained simplified Agile Eyes that had two activated degrees of freedom while 

roll was passive. Although simpler, the eyes’ range of motion was greatly reduced. 

In a different mechanical approach, a cable/tendon system was used for robotic 

eyes in a face meant to simulate a human having eye surgery [12]. The system was 

achieved using servos and wires. The group’s initial design consisted of two servo motors 

controlling both eyes simultaneously and relied on wires that would stretch and regain 

shape with actuation. A lack of tension in certain wires lead to replacing the connections 

with aluminum wire, but the rigidity of the new wire made the old design obsolete. To 

accommodate, the final design consisted of two servos for each eye. An issue with servo-

wire mechanisms that was not discussed is the interdependence of the servo motors; the 
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movement of one motor could rotate an eyeball in a way that causes the second motor to 

stall. 

A group called Inmoov designed robotic eyes made of 3D printed components 

and two servos as shown in Fig. 2 [13]. The top servo rotates the eyes left and right by 

moving a long piece connecting both eyes. The bottom servo moves both the eyes and top 

servo for vertical eye rotation. The low profile, few actuators, and independence of 

horizontal and vertical eye movement all make this design appealing. One potential 

drawback is lack of speed; the videos of the assembly in motion all have the eyes rotating 

relatively slowly [14]. One foreseeable reason is that running the eyes faster could cause 

the bottom servo’s elbow connection to jam. 

 

Fig. 2. InMoov eye mechanism back (left) and bottom (right) [14] 

Some recent robotic eyes do not utilize any motors for actuation. In one design, an 

artificial eye is suspended in fluid within a translucent outer shell [15]. An eight-coil 

electromagnetic drive structure attached to the outer shell is used to rotate the eyeball. 

The structure consists of pairs of adjacent coils on the top, bottom, left, and right of the 

outer shell with one coil from each pair mounted closer to the pupil and one closer to the 

back of the eyeball. Small currents are sent to specified coils that cause the 
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electromagnets to either push or pull corresponding fixed magnets, altering the 

orientation of the eyeball within its shell.   

The design’s small footprint and ease of installation make it practical for 

animatronics; the original eyeball mechanisms in older animatronics can be removed and 

replaced with the new design with little effect on the rest of the robot. The eyes can move 

at a maximum velocity of 500°/s, which is comparable to that of a human eye. One 

design limitation is accuracy. Because the eyes move through open-loop control, the eyes 

can overshoot the desired position.  

Another actuator-free robotic eye design is display eyes. For instance, Disney 

Enterprises, Inc. has a patent out for robotic eyes that are simply curved OLED screens 

mounted to the inside of animatronics [16]. The concept of display features on 

animatronics has already been implemented in some of the rides at Walt Disney World to 

bring classic animated characters to life. Disney Research Pittsburgh also came up with 

their own display eyes made from printed optics instead of screens [17]. Because display 

eyes glow by their nature, they are limited to only appearing “real” for animated 

characters. 

1.2.4. Realism and Robots 

 In the previous section, a lack of realism was said to be a negative design aspect 

of robotic eyes. To justify that claim, the following needed to be answered: how does 

realism affect how a robot is perceived, and how does that perception affect the robot’s 

performance? 

 A study done by the MIT Media Lab sought to answer both [18]. First, a test was 

conducted using three “characters”: one robotic, one animated, and one human. Only the 
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eyes of each character were visible to test subjects through rectangular openings. The 

subjects were given instructions by each character and then rated their perceptions of 

each on a questionnaire. The results showed that the robot was perceived as more 

credible, informative, and engaging than the animated character. The enjoyability of the 

interaction was also greater for the robot than the animated character. In all categories, 

the robot’s ratings were comparable to those of the human. As it applies to this report, a 

Baxter robot’s interaction with humans would improve in the same categories if it used 

robotic eyes in place of display screen eyes.  

 A person trusting in something that looks and moves like they do is an instinct 

that can be observed in other animals. One study analyzed the behavior of actual guppies 

around a robotic guppy [19]. RoboFish, as it was called, was placed in a tank of guppies, 

once without its glass eyes and once with. The amount of time guppies spent with the 

eyeless RoboFish was significantly less than that spent with the RoboFish with eyes. 

Also, the guppies spent the same amount of time with other live guppies as they did with 

the RoboFish with eyes. Like in the MIT study, the robot’s results were comparable those 

of the real thing.  

 The group performed a second test that involved the RoboFish’s movement. It 

moved in a natural zig-zag pattern at varied speeds for one trial and at a constant speed in 

a straight line for another. The results: the live guppies spent significantly more time with 

the naturally moving RoboFish. The journal paper emphasized the importance of realism 

in both appearance and movement of robotics in interaction-related applications. 

 Going back to human analyses, one study focused on how the movement of 

robotic eyes affected the persuasive power of a robot as a storyteller [20].  The results 
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proved that the use of gaze increased a robot’s persuasiveness. Oddly, when the robot 

used gestures and NOT gaze, the robot’s persuasiveness diminished. Although gaze and 

gesture had clear impacts on persuasion, neither had a statistically significant impact on 

the user’s perception of the robot (i.e. likeability, perceived intelligence). The question 

arises whether the use of gaze would affect human perception if the robot performed a 

task other than storytelling.  

 The benefit of gaze in human-robot interactions was found in another study in 

which a robot handed an object to test subjects [21]. The results showed that the handoff 

time was shorter when the robot used human-like gaze than when it did not use gaze. In 

short, the efficiency of the task increased with the use of gaze.  

 A recent study went in depth to analyze the effects of three different types of 

gaze: averted, situational, and constant [22]. The study had three sample groups, one to 

test each gaze type. Subjects would view a game on a monitor in which an object was 

placed under one of three cups. The cups would be shuffled, and subjects would have to 

guess which cup contained the object. The game had three difficulty levels based on 

shuffling speed. An Aldebaran Nao humanoid robot would play along with the subject 

employing one of the three types of gaze. It would agree or disagree with the subject’s 

answers, sometimes doing the latter even when the subject was correct. Subjects had the 

option to change their answer if the robot disagreed with them.  

 Gender played an unexpected role in the results. While females were least likely 

to change their answers when the robot employed constant gaze and most likely to do so 

when the robot employed situational gaze, the opposite was true for males. Due to the 

studies small sample size of male subjects, further testing would be required to make 
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definitive conclusions. Regardless of gaze, subjects tended to trust the robot more when 

their initial guess was incorrect, suggesting uncertainty in answers increased trust. 

1.2.5. Hand-Eye Coordination 

 In a study done by Umeå University in Sweden and Queen’s University in 

Canada, eye gaze was tracked while test subjects performed a task. The task was to grab a 

bar, picked it up, and moved it so the tip of the bar touched a target above the grasp site 

[7]. There were three setups: one free of obstacles, one with a square obstacle and one 

with a triangular obstacle. Areas or objects of interest in the workspace were referred to 

as landmarks, such as the grasp site, obstacle, and target.  

 Multiple conclusions were gleaned from the experiment. First, gaze always led 

hand movement, typically leading by one-second or less. Additionally, gaze exited a 

landmark around the time of a kinematic event at that landmark. An example of a 

kinematic event would be when the bar contacted the target. The landmarks were divided 

into two categories. The grasp site, target, and support surface were labeled as obligatory 

gaze landmarks. The tip of the bar and parts of the obstacles that stuck out were deemed 

optional gaze landmarks since fewer and shorter gaze fixations were associated with 

them. Interestingly, the eyes never fixated on the hand or the object being moved.  

 Another task-based hand-eye coordination study analyzed gaze while test subjects 

made tea [23]. Body movement, gaze, and object manipulation were charted on a single 

timeline. Gaze was typically directed to an object one-second or less before contacting 

the object; however, lead times as large as two-seconds did occur. A separate study was 

performed for a sandwich-making task that yielded similar results  [24].  
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  The head authors of both studies cowrote a paper comparing the two experiments 

[25]. For consistency, they defined an object-related action (ORA) as uninterrupted 

single-object manipulation. The example given of one ORA was picking up an object, 

moving it, and setting it down. They went on to compare saccade sizes within and 

between actions from both studies. The distributions of within-action saccades for both 

tests were very similar; both had averages of about eight degrees and maximums less than 

40°.  There was a large difference in the maximum between-action saccade sizes: 90° for 

tea-making versus 30° for sandwich-making. The difference was credited to the fact that 

the tea-making task required moving around a room while the sandwich-making task was 

done sitting down.  

 It was found that task difficulty effected the frequency of gaze fixations on 

landmarks. One study conducted an object manipulation test in which subjects had to 

drag and drop emails into folders [26]. The test was divided into two trials: easy and 

difficult. In the easy task, explicit directions were given to organize the emails. The 

difficult task required reading the email and judging which folder it belonged in; i.e. if 

the email had to do with travel, the subject would decide to put it in the “travel” folder. 

On average, subjects spent 45% of the time looking at landmarks (referred to as areas of 

interest) during the easy task versus 62% during the difficult task. After additional testing 

beyond object manipulation, the study concluded that the amount of time a subject fixates 

on an area of interest is directly related to area’s complexity.  

 A similar study was done that found a relation between gaze fixations and the 

difficulty of a driving task [27]. The more difficult the driving task, the more time 

subjects spent looking at the road and the more concentrated their gaze fixations were at 
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the center of the road. The results are consistent with those of the object manipulation 

test.  

 By applying the research, the question, “Where will Baxter look?” was answered. 

Baxter’s preplanned trajectory had him reach for an object, pick it up, move it, and set it 

down. Regardless of what Baxter was handling, the eyes would look at the grasp site until 

the object was grabbed. While moving the object, future points along the known 

trajectory would be fixated while periodically moving gaze to the target location. The 

target would be defined as the object’s final desired location. The proximity of those 

future points to the gripper’s current position and the frequency of target fixations would 

depend on the difficulty associated with handling a given object. The difficulty would be 

an input argument in the code.  

 The maximum saccade speed of the robotic eyes was decided based on a data set 

of 1316 measured saccades that included saccade amplitude and velocity. The set is from 

the previously referenced study by Umeå University and Queen’s University [7]. 

Although the data agreed with the other studies referenced that a human eye’s maximum 

saccade speed was about 600°/s, the data showed that few saccades occur at velocities 

over 500°/s. Therefore, a maximum saccade speed of 500°/s was chosen as a design 

requirement for the robotic eyes.  

 The chosen horizontal range of motion for the robotic eyes was ±35°, which is 

10° shy in either direction of the average human EOMR but well beyond the ±20° range 

where human eyes operate ninety-percent of the time. Because Baxter usually performs 

tasks in which his lower and especially upper peripherals are rarely used, the vertical 

range of motion was chosen to be ±20°. 
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2 DESIGN 

 The robotic eye design is divided into three subassemblies: the eye mechanism, 

wiring, and the hardware to mount the assembly to Baxter’s display screen.  

2.1 Robotic Eyes 

 The two robotic eyes were designed to move in tandem. In other words, the eyes 

look in the same direction and cannot cross. The benefit of the design not seen in current 

robotic eyes is independent vertical and horizontal movements that do not sacrifice speed 

or accuracy of gaze fixations. 

2.1.1 Version 1 

 Fig. 3 is the basis of the design: the eyes. The spherical eyes are 15/32 inches 

(about 24mm) in diameter, comparable to the size of human eyes. A two-piece shell 

secures each eye, acting as a socket for the sphere. L-brackets connect the shells to a 

four-by-six-inch plate, and standoff blocks are used to adjust the distance between the 

eyes and plate. Each eyeball has a cylindrical extrusion with an eyebolt screwed into the 

circular face. Eyebolts screwed into either end of a cylindrical bar are lined up with the 

those connected to the eyes. Shoulder screws were placed through the eyebolts and 

secured with nuts to form pin connections between the bar and eyes.
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Fig. 3. Basis of eye mechanism assembled (left); partially exploded view (right) 

 The part of the assembly in Fig. 4A enables the eyes to look up and down. The 

bar connecting the eyes goes through a slot that is part of the DC motor housing. Two set 

screw shaft collars keep the motor housing at the center of the bar. The bar is free to 

move along the length of the slot as the eyes rotate to “look” up and down, as shown in 

Fig. 4B. The DC motor and rotary encoder shaft are fixed to either end of a threaded rod 

(which is simply a screw with its head removed) by set screw shaft couplers, as shown in 

Fig. 4C. The encoder outputs the direction and number of DC motor rotations and is used 

for closed-loop motor control. The track along which the encoder slides up and down is 

attached to extrusions from a hollow disk that sits on top of the plate. The rod is threaded 

through a press-in nut fixed into the encoder track. When the motor shaft rotates, it 

threads the rod through the press-in nut, causing the motor housing and encoder to move 

up or down depending on whether the shaft is rotating counterclockwise or clockwise, 

respectively. 
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Fig. 4. Motor-encoder assembly for vertical eye movement 

 When the bar slides back and forth within the DC motor housing slot, the lever 

arm of the vertical force acting on the bar changes. The bar’s displacement within the slot 

and, consequently the lever arm, does not change linearly. Because the eye is rotating, the 

bar’s centroid moves along an arced path in the XZ plane. Therefore, the part of the 

mechanism that allows the eyes to look up and down is a nonlinear dynamic system. 

 The servo in Fig. 5A enables the eyes to look left and right. The servo arm is 

connected to the hollow disk extrusions above the encoder track. The servo acts like a 

windshield wiper, sliding the motor-encoder assembly along the plate within the arced 

cutout shown in Fig. 5B. As mentioned previously, the eyes were designed to move 35° 

left and right. They are kept within this range by the connection points used to assemble 

the shells; however, the range could easily be expanded by making shells that had 

connection points on the sides instead of in the back. The depicted design was kept for 
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the convenience of having two reference points at which the approximate servo angle was 

known. 

 

Fig. 5. Servo assembly for horizontal eye movement (left); top view of servo range of motion (right) 

 To measure the servo’s position and enable closed-loop servo control, a 

potentiometer is mounted below the plate as shown in Fig. 6. The boxed piece in the 

figure acts as an interface between the potentiometer shaft and the servo arm. 

 

Fig. 6. Servo-potentiometer interface 

2.1.2 Final Design 

  A few design changes were made to Version 1. Although the initial servo motor 

was sized based on the expected load of the assembly, it proved incapable of overcoming 

the friction between the hollow disk and the plate. Therefore, a servo capable of 

A B 
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producing a greater torque was chosen. The stronger servo was larger, which meant its 

orientation on the plate needed to rotate ninety degrees as shown in Fig. 7. The change 

led to the second modification: elongating the potentiometer mount. 

   

Fig. 7. Version 1 (left) versus final (right) servo-potentiometer orientation  

Due to the constant contact between the eyebolts, shoulder screws and nuts during 

left and right eye movement, the nuts would loosen and eventually fall off the assembly. 

The shoulder screws and nuts were replaced with clevis pins shown in Fig. 8 that used 

small screws instead of the usual wire for a more reliable connection. 

 

Fig. 8. Final pin connections 

 The final modification was the additional support piece in Fig. 9. The addition 

ensured that the hollow disk remained parallel to the plate without raising on the left or 
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right during movement.  To prevent the addition from being so close to the plate that it 

hindered servo movement, it was attached to the hollow disk extrusions via slots (red), 

allowing the distance between it and the plate to be adjusted. Slots also replaced holes in 

the servo arm and encoder track (blue) to ensure the servo arm was parallel to the plate. 

 

Fig. 9. Final design replaced certain holes with slots and added support piece 

 The rectangular plate from Version 1 was susceptible to warping when removed 

from the 3D printer build plate, as shown in Fig. 10A. Therefore, the thickness was 

increased for the final plate shown in Fig. 10B. In addition, the front corners of the plate 

were chamfered so the assembly could fit behind an artificial face. The length was 

increased to make room for four holes to connect the plate to the Baxter mount.  

 

Fig. 10. Original plate warped (left); final plate design (right) 
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2.1.3 Customizing 

 In future applications, the distance, D, between the eyes may need to be altered, 

especially if the eyes ever need to fit behind a preexisting artificial face. To modify the 

assembly given the value of D as a design requirement, only the distance between the sets 

of holes used to anchor the eyes to the plate and the distance between bar eyebolts shown 

in Fig. 11 need to be adjusted. 

 

Fig. 11. Components dependent on the distance between eyeball centroids  

 The distance the eyes are from the front of the plate can limit how close the eyes 

can be installed behind a face. Fortunately, the eyes can be placed closer to or farther 

from the front edge of the plate by moving the same holes previously mentioned. Fig. 12 

shows that this change only affects where the bar sits inside the DC motor housing slot. 

The only time the assembly would need to be changed further is if the eyes were placed 

so far forward or back that the length of the housing slot would need to be increased.  
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Fig. 12. Moving the eyes forward or back only effects the bar’s location in the slot 

 In place of the single-piece eyeballs, two-piece eyeballs shown in Fig. 13 were 

designed to house laser diode modules. The modules act as miniature laser pointers, and 

each consists of a small cylindrical laser housing with an APC driver circuit attached to 

the back with two lead wires. The laser housing sits in the eyeball, and the lead wires 

thread out of the elliptical hole in the stem. The eyeball pieces are press-fit together and 

cannot twist once secured. The assembly’s range of motion is slightly reduced using the 

two-piece eyes because the circular ridge where the pieces meet cannot slide under the 

shell. 

  

Fig. 13. Two-piece eyeball to house laser diode module 
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2.1.4 Sizing Parts 

As previously mentioned, the servo was sized based on the length of the servo arm 

and weight of the attached load. The torque was calculated using Equation 1 where g is 

acceleration due to gravity (9.81m/s2), m is mass in kilograms and l is length in 

centimeters. The masses of screws and nuts were neglected. 

𝜏 = 𝑔(𝑚𝑐𝑜𝑢𝑝𝑙𝑒𝑟𝑠 + 𝑚𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑟𝑜𝑑 + 𝑚𝐷𝐶 + 𝑚𝑒𝑛𝑐𝑜𝑑𝑒𝑟 + 𝑚𝑐𝑜𝑙𝑙𝑎𝑟𝑠 + 𝑚𝑝𝑙𝑎𝑠𝑡𝑖𝑐)𝑙𝑎𝑟𝑚 ( 1 ) 

The full calculation in Appendix A resulted in a required torque of 2.47N⸱cm. A plastic-

gear servo with a maximum torque of 7.85N⸱cm was chosen, giving a factor of safety of 

3.18. Unfortunately, the servo was not reliable and often stalled. A slightly larger motor 

with metal gears and a stall torque of 17.7N⸱cm was chosen to ensure functionality and 

durability. The old and new servo are shown in Fig. 14. 

 

Fig. 14: (from left to right) a quarter, the original servo, and the final servo 

 The parts required for vertical bar displacement were sized next. In the 

calculations, the bar was approximated to be level with the eyeball eyebolts even though 

the former sits on top of the latter. First, the maximum tangential velocity, 𝑉𝑡,𝑚𝑎𝑥, shown 

in Fig. 15 was calculated from the maximum saccade speed chosen for the design, 500°/s, 

and the eyes’ radius of rotation. The maximum vertical velocity of the bar, 𝑉⃑ 𝑦,𝑚𝑎𝑥, was 

found to be equivalent to 𝑉𝑡,𝑚𝑎𝑥 in the y-direction. 
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Fig. 15. Maximum angular velocity of eyeball, moment arm, and vertical velocity of bar 

 Next, two parameters needed to be determined simultaneously: the DC motor’s 

maximum angular speed, 𝜔𝐷𝐶,𝑚𝑎𝑥, and the threaded rod’s threads-per-inch. The finer the 

thread, the faster the motor would need to rotate to achieve 𝑉𝑦,𝑚𝑎𝑥. Table 1 shows the 

values of 𝜔𝐷𝐶,𝑚𝑎𝑥 calculated for three of the UNC screw sizes analyzed.  

 

Table 1. Calculated RPM required for each screw size to achieve specified maximum saccade velocity  

 All three calculated RPMs could be reached with a small DC motor; however, a 

10-24 screw would only require seventy-five percent of the motor speed needed for an 8-

32 screw, ruling out the latter. The 10-24 was chosen over the ¼” because the decrease in 

required RPM was not large enough to justify the increase in screw diameter. The 

detailed velocity, threads-per-inch and RPM calculations are in Appendix B. 
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 After choosing the 10-24 screw, a DC motor capable of rotating at 2907RPM was 

needed. To get a high RPM from a motor small enough to fit in the assembly, a DC motor 

with a 5:1 gear ratio was selected as shown in Fig. 16. The motor cost less than $15 and 

can rotate at 2500RPM when supplied 6V and 4900RPM when supplied 12V, well over 

the 2907RPM required.  

 

Fig. 16. Geared DC motor selected next to quarter 

2.2 Wiring 

An Arduino Uno R3 controls the servo, potentiometer, and rotary encoder as shown 

in Fig. 17. The board is powered by the PC running Arduino through a USB connection. 

The encoder requires a 220Ω resistor, and the servo and potentiometer are each connected 

to a100uF capacitor. The capacitors, while not required to run the assembly, smooth out 

voltage dips in the board such as when the servo motor begins to rotate [28]. The laser 

diode modules mentioned in the customization section of the design could also be 

powered through the Arduino board. Each module would require a 100Ω resistor in 

series. 



23 

 

Fig. 17. Wiring diagram for servo and both sensors 

 A Pololu Dual MC33926 motor driver shield for Arduino in Fig. 18 controls the 

DC motor. The shield can be inserted directly onto the Arduino board, which saves 

space. 

 

Fig. 18. Pololu motor driver: diagram (left), parts (top-right), on an Arduino board (bottom-right) [29] 

  Because the DC motor requires a 12V power supply to reach the calculated 

2907RPM, it cannot be powered by the Arduino board. For testing, the motor was 
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powered by the BK Precision 1672 variable power supply shown in Fig. 19. The power 

supply ensured a constant 12V was delivered to the motor, which a draining battery could 

not guarantee. A maximum current draw lower than the motor’s specified stall current 

was also set to protect the motor. Both aspects made the variable power supply ideal for 

testing; however, the supply’s capabilities far exceed what is necessary to run the motor. 

The extra capabilities also make it far more expensive than a battery. In short, a 12V 

battery would be a better choice to power the DC motor outside of a testing environment. 

 

Fig. 19. BK Precision 1672 variable power supply utilizing one power and one ground connection 

2.3 Baxter Mount 

 The mounting hardware attached to the assembly is shown in Fig. 20. Two L-

brackets connect the plate to the two mounting supports shown in red. The mounting 

supports mirror one another and fit over the top corners of Baxter’s display monitor. A 

slim bracket and two sets of screws and nuts can be used to align the mounting supports; 

however, because the supports are designed to fit tightly on Baxter’s monitor, this bracket 

is optional.  On the plate, one L-bracket is secured using two short screws and nuts. 

Longer screws are used on the left side of the plate along with spacers to elevate a small 

plate shown in purple above the main plate. The small plate is for mounting the 

breadboard. Because Baxter’s monitor is tilted down towards the ground, the angle of 
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each L-bracket needed to be less than ninety degrees for the assembly to be level when 

mounted. 

 

Fig. 20. Isometric front views of attached Baxter mount and breadboard mounting plate 

 To prevent the left mounting support from contacting the breadboard plate, the 

latter was designed with a notch as shown in Fig. 21. 

 

Fig. 21. Breadboard plate 
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 The view of the assembly in Fig. 22 shows the six screws attached to the 

mounting pieces with the screwheads in the back to reduce contact with Baxter’s display 

screen. Countersinks were later made for the six holes to further mitigate screen contact.  

 

Fig. 22. Isometric back view of attached Baxter mount and breadboard mounting plate 

 A mask was created in CAD using a 3D scan of a human face. Grooves in the 

back of the mask shown in Fig. 23 guide where the robotic assembly sits behind it. A 

band made from Velcro (not shown) wraps around Baxter’s display screen and connects 

to the mask at the ears. The tension in the band can be adjusted by separating one of the 

Velcro connections at an ear, sliding more Velcro through and reestablishing the 

connection. 

 

Fig. 23. Back of mask (left); mounted assembly with mask (right)  
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3 SOFTWARE 

 Fig. 24 shows the communication between all components. Baxter’s desired poses 

are input into the PC through ROS. The gripper location and the percent open the gripper 

is are obtained by the Arduino. The Arduino outputs to the servo and motor driver and 

receives the output of both sensors. The motor driver sends the Arduino’s speed 

commands to the DC motor. Arduino publishes coordinates such as gripper position and 

actual gaze fixation point to ROS topics that are written to text files on the laptop. 

 

Fig. 24. Communication between components 
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3.1 System Requirements 

 A laptop was used to communicate with Baxter and execute all necessary code. 

Baxter’s system requirements as well as his workstation setup instructions were found on 

the Rethink Robotics website [30]. The required Linux distribution to run Baxter, Ubuntu 

14.04, was installed on the laptop. His recommended programming language, ROS 

Indigo, was also installed. An ethernet cable was used to establish communication 

between the laptop and Baxter.  

 Additional requirements to run the eye assembly were Arduino software and 

Python 2.7. For communication from the laptop to the Arduino Uno, the Uno was 

connected to one the laptop’s USB ports. 

3.2 What to Run 

 The following needs to be open on the laptop before running the eyes with Baxter: 

the Arduino robotic eye code, the Arduino “Blink” sketch, and between three and ten 

Linux terminals depending on how Baxter is asked to move and if data is acquired for 

analysis. The setup is shown in Fig. 25. Each terminal needs to source the baxter.sh file to 

establish a ROS environment. In the first terminal, Baxter’s motors are enabled. To then 

run the eyes with Baxter, the Arduino sketch is uploaded to the Arduino Uno. Once the 

upload is complete, serial communication between ROS and Arduino is established in the 

same terminal in which the motors were enabled. The second and third terminals are used 

to command Baxter’s movements, which is detailed in the next section. The fourth 

terminal runs Python code used to publish the left gripper’s x, y, and z location as well as 

the degree to which the left gripper is open to ROS topics. Terminals five through ten are 

optional for data acquisition, echoing ROS topics published to by the Arduino code and 
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exporting the data to text files. To use those terminals, all six echo commands need to be 

executed before the Arduino code is uploaded. To stop the Arduino code when finished, 

the serial communication in the first terminal is terminated and the “Blink” sketch is 

uploaded to the Uno. 

 

Fig. 25. Program windows and terminals 

3.4 Obtaining and Communicating Gripper Coordinates   

 As mentioned in the literature review, the joint angles of Baxter’s arms could be 

obtained through the joint recorder or other means; however, forward kinematics were 

required to solve for the gripper’s location relative to Baxter’s base frame. Therefore, the 

Python code in Fig. 26 was written utilizing the forward position kinematics function in 

the Baxter PYKL package [31]. The function returns an array of seven numbers, the first 

three being the left gripper’s x, y, and z coordinates in meters. For the electric parallel 

gripper, the point returned is the fingertip location. The three coordinates were published 

separately to three different ROS topics. The degree to which Baxter’s gripper was open, 

with 0 being fully closed and 1 being fully open was published to a fourth topic.  
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Fig. 26. Python code to publish gripper information 
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3.3 Programming Baxter’s Movements 

 For testing, three trajectories were programmed for Baxter’s left gripper. For the 

first test, a circular trajectory was created parallel to the YZ plane just over one meter 

from Baxter’s base frame. After selecting the path’s center point and radius, eight points 

along the path were planned in Excel as shown in Fig. 27.  

 

Fig. 27. Baxter Test 1: planned path and final coded path 

  Although Baxter’s PyKDL package has an inverse kinematics function to 

convert Cartesian points to joint angles for programming, attempts to use the function for 

gripper positions known to be within Baxter’s workspace returned no results. The process 

to program the trajectory, therefore, went as follows: Baxter’s left arm was first moved 

into the first desired pose by approximation and altered until the forward kinematics 

returned a Cartesian coordinate near the desired point. Current joint angles were obtained 
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by echoing the ROS topic /robot/joint_states in a terminal window and copying them 

temporarily to a file.  The process was repeated to take down the joint angles of all eight 

poses. After taking down all sets of joint angles, a simple Python file was written to move 

Baxter’s gripper from one coded point to another. The code is in Appendix C. The path 

was simple: the gripper started at Point 1 and traversed the circular path twice clockwise 

and then twice counterclockwise. Pauses were coded to hold Baxter at each point for one 

second. For the gripper to move along the path, the Python file is run in the third 

terminal. The fourth terminal is not used. 

 The second trajectory was the object manipulation task shown in Fig. 28.  In the 

task, Baxter reached for an object on a platform, picked it up, moved it to his right along 

an inverted parabolic path, set it down, released it, and raised his arm. The target position 

is where the object is set at the end of the task. To control the velocity of the task and 

prevent awkward pauses at instructed points, the trajectory needed to be programmed 

differently than the previous. Specifically, the joint recorder, joint trajectory action 

server, and joint trajectory file playback included in Baxter’s software were utilized [32]. 

With the joint recorder running in a terminal, Baxter’s left gripper was moved by hand at 

the desired speed while opening and closing the gripper when needed. The Python file 

wrote timestamped joint positions for both arms to a .csv file. For Baxter to repeat the 

trained movement, the joint trajectory action server is run in the third terminal followed 

by the joint trajectory file playback in the fourth terminal. 
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Fig. 28. Baxter inverted parabolic trajectory 

 Using the same programming method, Baxter was taught a third task shown in 

Fig. 29. Baxter reached for an elevated object, picked it up, moved down and to his left 

along a linear trajectory, set it down, released it, and raised his arm. 

 

Fig. 29. Baxter linear trajectory 
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 The grasp site, target, average velocity of the gripper in the y-direction, and the 

equation for z along a trajectory given y needed to be calculated for each trajectory and 

added to the Arduino sketch. Grasp site coordinates were found by taking the gripper’s 

location when it closes above the grasp site and subtracting the measured vertical 

distance between the gripper and grasp site at the same moment. The targets were found 

in a similar fashion. Average velocities in y were calculated in Excel from the time-

stamped data obtained through the joint recorder. Finally, the y- and z-values of each 

trajectory were plotted and curve fit, resulting in equations for z as a function of y. The 

coefficients of determination, R2, associated with the parabolic and linear curve-fits were 

0.96 and 0.98, respectfully. 

3.4 Arduino 

 The Arduino code was organized into nine tabs. One header file and one CPP file 

were written for each of the following sections: DH parameters, servo and potentiometer, 

motor and encoder, and verification. The header files initialize variables and functions 

and place them into classes, and the CPP files contain the rest of the relevant code and 

reference the appropriate header files. The ninth tab is the Arduino sketch that calls the 

functions from the CPP files in void setup() and void loop() and defines what “mode” the 

eyes are operating under.  

 Apart from executing the functions in the CPP files, the sketch file also contains 

four subscribers. The subscribers listen to the ROS topics published to in the Python code 

and assign the x, y, and z coordinates of the left gripper and the degree to which the 

gripper is open to Arduino variables. The final Arduino code and pseudocode flowcharts 

are in Appendix D. 
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3.4.1 DH Parameters 

 The DH parameter code determines where the centroid of the bar in Fig. 30 needs 

to be for the eyes to look at a given point in space. The code then calculates the required 

displacement in x, y, and z from the centroid’s current position to reach the desired 

position. 

 

Fig. 30. Bar centroid (red) in relation to gaze fixation point (blue) 

 Four reference frames were used as shown in Fig. 31: Baxter’s base reference 

frame, the midpoint between eyeball centroids, the gripper position, and the bar centroid. 

The Rethink Robotics website states that z is zero relative to his base frame “where the 

grey lower front panel meets the black metal that connects to the robot’s pedestal” [33]. 

The default orientation of the base frame’s x-, y-, and z-axes were applied to the other 

three frames. The notation 𝑃𝑏
𝑎 used in the coming calculations means the position of {b} 

relative to {a}. 
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Fig. 31. Reference frames 

 First, the constant 𝑃1
0 was chosen by measuring how high above Baxter’s base 

frame the eyes would be mounted. The gaze fixation point 𝑃2
0  was initialized as a point 

straight ahead of and level with the eyes. The position of the bar centroid relative the 

eyeball midpoint, 𝑃3
1, was then initialized as the servo’s moment arm length, 37mm, all in 

the negative x-direction. Note the magnitude of the vector between {1} and {3} is always 

37mm. Calculations begin with finding 𝑃2
1 using Equation 2. 

𝑃2
1 = 𝑃2

0 − 𝑃1
0 = (𝑥2 − 𝑥1)𝑖̂ + (𝑦2 − 𝑦1)𝑗̂ + (𝑧2 − 𝑧1)𝑘̂ 

( 2 ) 

The magnitude of the vector between the bar centroid and gripper position, ‖𝐴 ‖, is found 

using Equation 3. 

‖𝐴 ‖ = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 ( 3 ) 

Equations 4 and 5 are equivalent definitions of the unit vector in the direction of 𝐴 , where 

𝛼, 𝛽, and 𝛾 are the angles from the x-, y-, and z-axes, respectfully, to 𝐴 .  

Z Y 

X 

{0} 
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𝑢⃑ = cos(𝛼) 𝑖̂ + cos(𝛽) 𝑗̂ + cos(𝛾) 𝑘̂ ( 4 ) 

𝑢⃑ =
𝑥2

1

‖𝐴 ‖
𝑖̂ +

𝑦2
1

‖𝐴 ‖
𝑗̂ +

𝑧2
1

‖𝐴 ‖
𝑘̂ ( 5 ) 

The components of Equations 4 and 5 were equated and rewritten to solve for 𝛼, 𝛽, and 𝛾 

as shown in Equation 6.  

𝛼 = 𝑐𝑜𝑠−1 (
𝑥2 − 𝑥1

‖𝐴 ‖
)  

𝛽 = 𝑐𝑜𝑠−1 (
𝑦2 − 𝑦1

‖𝐴 ‖
)  

𝛾 = 𝑐𝑜𝑠−1 (
𝑧2 − 𝑧1

‖𝐴 ‖
) ( 6 ) 

The three angles give the orientation of the vector that passes through {1}, {2}, and {3}. 

Knowing Equation 6 can be written for any pair of {1}, {2} and {3} coordinates resulted 

in Equation 7. x3, y3, and z3 are the components of 𝑃3
0, and r = 37mm. 

𝑥3 = 𝑥1 − 𝑟𝑐𝑜𝑠(𝛼)  

𝑦3 = 𝑦1 − 𝑟𝑐𝑜𝑠(𝛽)  

𝑧3 = 𝑧1 − 𝑟𝑐𝑜𝑠(𝛾) ( 7 ) 

To condense the code, the equations for 𝛼, 𝛽, and 𝛾 were plugged into Equation 7 to form 

Equation 8 used in the final code. 

𝑥3 = 𝑥1 − 𝑟 (
𝑥2 − 𝑥1

‖𝐴 ‖
)  

𝑦3 = 𝑦1 − 𝑟 (
𝑦2 − 𝑦1

‖𝐴 ‖
)  
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𝑧3 = 𝑧1 − 𝑟 (
𝑧2 − 𝑧1

‖𝐴 ‖
) ( 8 ) 

The new value of 𝑃3
1 is found using Equation 9.  

𝑃3
1 = 𝑃3

0 − 𝑃1
0 = (𝑥3 − 𝑥1)𝑖̂ + (𝑦3 − 𝑦1)𝑗̂ + (𝑧3 − 𝑧1)𝑘̂ ( 9 ) 

Equation 10 gives Δx, Δy, and Δz for the bar centroid. 

Δ𝑥 = 𝑥3
1 − 𝑥3

1
𝑜𝑙𝑑

  

Δ𝑦 = 𝑦3
1 − 𝑦3

1
𝑜𝑙𝑑

  

Δ𝑧 = 𝑧3
1 − 𝑧3

1
𝑜𝑙𝑑

 ( 10 ) 

 It is important to guarantee that all gaze fixation points are within the eyes’ range 

of motion. The eyes vertical range of motion is shown in Fig. 32 in which the upper and 

lower limit occurs when a shaft coupler encounters either the press-in nut or the 

horizontal surface of the encoder track.  

 

Fig. 32. Limitations to vertical eye movement 
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 To avoid collisions, all gaze fixation points were chosen for L shown in Fig. 33 to 

remain within 11mm. The conservative limitation reduces the eyes’ vertical range of 

motion from 40° to 35°. 

 

Fig. 33. Eyeball rotation about its centroid in the xz-plane 

The eye’s vertical range of motion, θ, is related to L through Equation 11.  

𝜃 = 2𝑠𝑖𝑛−1 (
𝐿

37𝑚𝑚
) ( 11 ) 

3.4.2 Servo – Potentiometer  

 Fig. 34 shows the parameters used to calculate the angle, Δθ, between the initial 

and final position of the bar centroid. Because the servo used was not programmable, the 

servo arm was attached so its angle would be as close to 90° as possible when the eyes 

were aimed straight ahead. Once in the assembly, angle commands were sent to the servo 

by trial and error to close in on the actual angle needed to aim the eyes forward. The 

result was 97°.  
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Fig. 34. Parameters used to calculate Δθ 

 Equations 12 through 15 were used to find θ2 in degrees. The values of 𝑦3
1 and 𝑧3

1 

were calculated in the DH parameter section of code. The eyes’ radius of rotation, or the 

distance from {1} to {3} is r = 37mm, and rxy is the length of the radius projected onto 

the XY-plane. Note that in the final code, Equations 12 through 14 were combined into 

one equation to calculate Δθ. 

𝛼 = (187° − 𝜃1) ( 12 ) 

𝑟𝑥𝑦 = √𝑟2 − 𝑧3
1 ( 13 ) 

∆𝜃 = 𝑐𝑜𝑠−1 (
𝑦3

1

𝑟𝑥𝑦
) − 𝛼 ( 14 ) 

𝜃2 = 𝜃1 + ∆𝜃 ( 15 ) 

 The limits to the servo’s range of motion are shown in Fig. 35.  The analog read 

code in Appendix E was used to obtain the potentiometer’s output for each limit.  
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Fig. 35. Parameters to map potentiometer analog output to degrees 

 Using the angles and corresponding potentiometer outputs of the limits, Equation 

16 can interpolate any value of 𝜃1 in degrees given the potentiometer output. The 

equation was used in place of an Arduino map() function since the latter uses integer 

math that would have led to roundoff errors [34].  

𝜃1 = 132° −
(962 − 𝑎𝑛𝑎𝑙𝑜𝑔 𝑜𝑢𝑡𝑝𝑢𝑡)(132° − 62°)

962 − 725
 ( 16 ) 

 The Servo library built into Arduino prevents pins 9 and 10 from acting as PWM 

pins [35]. Because the motor shield uses those pins as PWM pins, and because those 

motor shield pins cannot be remapped, the open source ServoTimer2 Arduino library was 

used in place of the Servo library. Unlike the built-in library, the ServoTimer2 library 

controls a servo by writing an input in milliseconds instead of degrees to the servo. 

Although the range 1000-2000ms can roughly be mapped to 0-180°, the true mapping 

varies between servos. Therefore, the two numbers 1300 and 1800 milliseconds were 

chosen, and the analog read code was used to get the equivalent servo degrees for each. 

The results were 80° and 128°, respectfully. The four numbers were used in Equation 17 

to make a second interpolation equation. 
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𝜃1[𝑚𝑠] = 1800 −
(128° − 𝜃1)(1800 − 1300)

128° − 80°
 ( 17 ) 

 When an angle is written to a servo, no other code can run until the command has 

finished executing. For this reason, the servo instructions were sent in increments of one 

degree. Because the Arduino delay() function also hinders any other code from running 

until its completion, the millis() function was used to track time. The amount of time 

allotted between servo increments, ti, was found using Equation 18 where the constant T 

is the total time allotted for the servo to move from its initial to final position. An if 

statement based on ti was used to control when a servo angle was incremented. 

𝑡𝑖 =
∆𝜃

𝑇
 ( 18 ) 

 The logic for the servo is follows: first, 𝜃1, ∆𝜃  and the length of time between 

each servo command is calculated. The time between commands is set to a minimum of 

two milliseconds so the servo is not instructed to move at a speed faster than its specified 

maximum. If the calculated time for a servo command is reached, the calculation for 𝜃2 is 

run. 𝜃2 is then constrained within the servo’s range of motion.  The servo’s current 

position is calculated by taking the potentiometer output and converting it to an angle in 

degrees. If the servo’s current position is over one degree from the desired 𝜃2, the servo 

is told to move one degree closer to 𝜃2. Otherwise, 𝜃2 is written to the servo. 𝜃2 is also 

written to the servo if the timer goes 50ms past the allotted 100ms for servo movement. 

The process repeats with every new gaze fixation point instruction.  

3.4.3 DC Motor – Encoder   

 The encoder code was open-source from Arduino [36]. It attaches interrupts to the 

pins associated with the encoder’s Channel A and B, respectively. The encoder returns 
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quadrature output; instead of having a continuous reading, a number is returned based on 

the number of encoder “ticks” that occur when the shaft rotates. The encoder’s 

specifications state it has a resolution of 100ticks/rev; however, because the rise and fall 

of both channels is being tracked in the code, the resolution increased to 400ticks/rev 

[36]. The output can be positive or negative depending on whether the encoder’s net 

rotation is clockwise or counterclockwise from its position when the Arduino sketch was 

first uploaded. In the assembly, a positive Δz decreases the number returned while a 

negative Δz increases it. 

 An Arduino library and example sketch were downloaded from GitHub for the 

Pololu motor driver shield [37]. One of the library’s built-in functions used stops the 

motor if a fault is found. An example of a fault would be if the voltage reaching the 

motor was less than the operating voltage. 

 Another function from the same library sets the DC motor’s speed and direction 

of rotation. Instead of inputting a speed in RPMs, the motor speed is set using a speed 

index between -400 and 400 where the sign differentiated clockwise from 

counterclockwise. Therefore, a function relating the speed index to RPMs had to be 

determined empirically as explained in Section 5.3.2. 

 The motor’s loop function first calculates the number of motor rotations, N, 

required to cover the instructed ∆𝑧 using Equation 19.  

𝑁 = ∆𝑧 ∗ 24
𝑟𝑜𝑡

𝑖𝑛𝑐ℎ
∗

1𝑖𝑛𝑐ℎ

25.4𝑚𝑚
 ( 19 ) 

Δz is in millimeters and comes from the DH parameter calculations, 24 rotations-per-inch 

comes from the threads-per-inch of the screw, and the final term is a unit conversion. The 

loop goes on to calculate the time allotted for acceleration as a set portion of the 
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predefined time given for the motor to move, the motor’s maximum RPM constrained 

within the motor’s specifications, and the RPM increment. A new variable equivalent to 

the encoder output is defined for the verification code to reference. 

 The motor’s speed at a given time is calculated to fit an asymmetrical trapezoidal 

velocity profile. The profile was chosen through testing explained in Section 5.3.3. 

Besides conditions for acceleration and deceleration, a condition that gave feed forward 

control was included. The condition recalculates the desired maximum RPMs at the end 

of the acceleration phase if the motor is moving slower than anticipated. When none of 

the three conditions are accessed, the motor velocity remains constant, making up the 

plateau of the velocity profile. A correction function is accessed after the allotted time of 

115ms for the motor reach its destination has passed. The function runs the motor at a 

speed index of ±125, or 67RPM, in the appropriate direction to make up for any error in 

position. A separate function stops the motor if the vertical motor’s position is within the 

allowed error of 0.1mm. The correction function is ended when the timer reaches 300ms. 

 Like the servo angle, the DC motor speed was changed in increments of time. The 

servo’s time increment, however, was calculated based on the total Δθ while the servo 

angle increment was constant at one degree regardless of the time allotted for motor 

movement. In contrast, the DC motor’s time increment was a constant while the motor 

speed’s increment was calculated to fit the velocity profile.   

3.4.4 Verification 

 The verification section of code does what its name suggests; it verifies the 

orientation of the assembly at a given time. It uses the servo and encoder outputs to 

calculate two points: the location of the bar centroid and where the eyes are looking.  
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 When the code starts, the eyes are looking straight ahead, meaning the bar 

centroid’s z relative to the eye midpoint is zero, or 𝑧3
1 = 0. The actual value, 𝑧3,𝑎

1 , can be 

calculated anytime during a run by converting encoder ticks to millimeters using 

Equation 20. A negative sign is required because a positive 𝑧3
1 corresponds to a negative 

encoder output.  

𝑧3,𝑎
1 = −𝑒𝑇𝑖𝑐𝑘𝑠 ∗

1 𝑟𝑒𝑣

400 𝑡𝑖𝑐𝑘𝑠
∗
25.4𝑚𝑚

24 𝑟𝑒𝑣
 ( 20 ) 

After converting the potentiometers analog output to degrees to get 𝜃2, 𝑦3
1 is calculated in 

Equation 21 where r = 37mm. 

𝑦3,𝑎
1 = √𝑟2 − (𝑧3,𝑎

1 )
2
∗ cos (187° − 𝜃2) ( 21 ) 

Having r, 𝑦3,𝑎
1  and 𝑧3,𝑎

1 , 𝑥3,𝑎
1  was found using Equation 22. 𝑥3,𝑎

1  is negative because the 

bar centroid is always behind the eye midpoint. 

𝑥3,𝑎
1 = −√𝑟2 − (𝑦3,𝑎

1 )
2
− (𝑧3,𝑎

1 )
2
 ( 22 ) 

 It’s odd to say the exact point that the eyes are “looking” at can be found; a single 

eye orientation has a vector normal to the pupil along which are infinite possible fixation 

points. To reduce the vector to one point, the actual x-value of the fixation point was 

equated to that of the instructed point. Therefore, the two points lie in a plane normal to 

the x-direction as shown in Fig. 36, making it easy to compare them. 
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Fig. 36. Instructed versus actual gaze fixation point in yz-plane 

For the full calculation of 𝑥2,𝑎
0 , 𝑦2,𝑎

0 , and 𝑧2,𝑎
0 , the actual fixation point’s x-values relative 

to {0} and {1} were equated to their respective input points in Equations 23 and 24.   

𝑥2,𝑎
0 = 𝑥2

0 ( 23 ) 

𝑥2,𝑎
1 = 𝑥2

1 ( 24 ) 

Next, the actual location of the bar centroid was calculated relative to the base frame in 

Equation 25.  

𝑥3,𝑎
0 = 𝑥3,𝑎

1 + 𝑥1
0  

𝑦3,𝑎
0 = 𝑦3,𝑎

1 + 𝑦1
0  

𝑧3,𝑎
0 = 𝑧3,𝑎

1 + 𝑧1
0 ( 25 ) 



47 

The cosines of the angles that define the vector 𝐴 𝑎 from the fixed eye midpoint to the 

actual bar centroid were calculated in Equation 26, and the magnitude of the vector was 

calculated in Equation 27. 

cos(𝛼) =
𝑥1

0 − 𝑥3,𝑎
0

𝑟
  

cos(𝛽) =
𝑦1

0 − 𝑦3,𝑎
0

𝑟
  

cos(𝛾) =
𝑧1

0 − 𝑧3,𝑎
0

𝑟
 ( 26 ) 

‖𝐴 𝑎‖ =
𝑥2,𝑎

1

cos (𝛼)
 ( 27 ) 

Finally, after calculating 𝑦2,𝑎
1  and 𝑧2,𝑎

1  in Equation 28, 𝑦2,𝑎
0  and 𝑧2,𝑎

0 were found using 

Equations 29. 

𝑦2,𝑎
1 = ‖𝐴 𝑎‖ ∗ cos(𝛽)  

𝑧2,𝑎
1 = ‖𝐴 𝑎‖ ∗ cos(𝛾) ( 28 ) 

𝑦2,𝑎
0 = 𝑦2,𝑎

1 + 𝑦1
0  

𝑧2,𝑎
0 = 𝑧2,𝑎

1 + 𝑧1
0 ( 29 ) 

3.4.5 Modes 

 The Arduino code was written for three modes of eye movement. Mode 1 equates 

the left gripper position to the instructed gaze fixation point; i.e. the eyes always look at 

the gripper. Mode 1 can be used for any gripper position within the eyes range of motion. 

The remaining two modes give the eyes more human-like eye movement but are 

only programmed to work for the object manipulation tasks discussed in Section 3.3. The 

modes are called block mode and full glass mode. As the mode names suggest, Baxter’s 
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eye movements in full glass mode make him appear to be handling the object more 

cautiously than in block mode.  

In both modes, the eyes are programmed to look forward until the Python code 

begins publishing left gripper information to ROS topics. Then, the eyes look at the grasp 

site as the gripper moves towards the object. After the gripper is thirty-percent closed just 

before grabbing the object, the eyes switch between fixating on the object’s desired final 

position, referred to as the target, T, and a temporally offset point ahead of the gripper. 

The first target fixation always occurs right after the gripper is thirty-percent closed, and 

subsequent fixations occur at fixed time intervals. Both aspects keep eye movement 

consistent between trials. A special time condition was added to the Arduino code when 

the linear trajectory was run to ensure the eyes were fixating the target and not an offset 

point before the gripper opened. The condition was not necessary in the parabolic 

trajectory due to the timing of the saccades. In the middle of the gripper releasing the 

object, the eyes looked straight ahead to indicate the completion of the task. 

 The two differences between the modes are as follows: the target is fixated more 

frequently and thus for a greater portion of the total time in full glass mode, and the 

temporal offset in full glass mode is less than that of block mode. The temporal offsets 

chosen for block mode and full glass mode were 1.5s and one second, respectively. The 

equivalent distance offsets are calculated by multiplying the temporal offsets by the 

known average gripper velocity in the y-direction. Note the parabolic trajectory was 

stretched far enough in the y-direction that the velocity in z was negligible. When the 

conditions are met to look at a point offset from the gripper, the offset y-value is 

calculated and plugged into the equation to find the offset value of z. 
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3.4.6 Output 

 Eight publishers were coded in the Arduino sketch file, one for each of the 

following: the time in milliseconds, the instructed gaze fixation point coordinates X, Y, 

and Z, the actual gaze fixation point coordinates YEYES and ZEYES, and the left gripper’s 

coordinates YHAND and ZHAND. Note that XHAND = XEYES = X, which is why there is only 

a publisher for X. All coordinates are returned relative to the base frame; however, the 

code has the calculations done if the user wanted to return the instructed and actual gaze 

fixation points relative to the point between the eyeballs. To store the data, six of the 

eight topics can be echoed in their own terminals and written to texts files by executing a 

single command in each terminal. For reasons yet to be determined, running all eight 

publishers in the Arduino code created communication issues over the serial port. The 

way in which data was recorded and analyzed to work around the issue is discussed later. 

3.4.7 Summary 

 Fig. 37 summarizes the Arduino inputs and logic. The mode predefined by the 

user and the gripper’s location and percent open are used to determine the desired gaze 

fixation point. The algorithm goes on to calculate the horizontal and vertical bar 

displacements required to look at that point given the eyes’ current gaze fixation point. 

The displacements dictate the movements of the lateral and vertical motors. After the 

time given for the eyes to reach their desired orientation, forward kinematics are 

performed to return the updated current gaze fixation point for the next run of the 

algorithm. 
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Fig. 37. Arduino inputs and logic
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4 FABRICATION 

4.1 Preliminary 

 Excluding the mask and eyes for housing laser diode modules, Fig. 38 specifies 

all parts and quantities that were 3D printed for the assembly. The SolidWorks part files 

were converted to STL files, and the parts were printed on an Ultimaker 3 using Cura 

software. All pieces were printed using PLA and a twenty-percent infill.  

 

Fig. 38. 3D printed parts and quantities of each
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 After printing, many of the holes needed to be enlarged to meet the modeled 

dimensions. The holes were enlarged by hand using the drill bits shown in Fig. 39.  Some 

parts like the plate were sanded to reduce friction. A file was used to smooth out areas 

that were printed with PLA supports like the DC motor housing slot.   

 

Fig. 39. Drill bits for enlarging holes (left), filed slot of DC motor housing (right) 

 The 10-32 threaded rod was made by sawing the head off a 2-1/2” screw as 

shown in Fig. 40. The final length was two inches, and the cut end was smoothed out on a 

sander.  

 

Fig. 40. Original versus cut and sanded screw 

 Two parts needed soldering: the DC motor and the motor shield shown in Fig. 41. 

The DC motor had soldering tabs for its two terminals. The wires were initially sized 

based on the motor’s stall current; however, the 21AWG wire was too rigid to move 

within the assembly, which caused the soldering tabs on a test motor to snap. 26AWG 

wire was chosen knowing that if the motor ever stalled, the user would quickly stop the 
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code, causing no damage to the thin wires. Next, three power blocks and four of the five 

included female headers were soldered to the motor shield.  

 

Fig. 41. Motor driver with soldered headers and power blocks (left); wires soldered to DC motor (right) 

4.2 Assembly: Robotic Eyes 

 The beginning of the assembly in Fig. 42 focuses on the eyes. An eyebolt with an 

inner diameter of 1/8” was screwed into the cylindrical extrusion of an eye. The two-

piece shell was then placed around the eyeball and secured with two M1.6 screws and 

nuts. The process was repeated for the other eye. 

 

Fig. 42. Eyeball and housing disassembled (left) and assembled (right) 

 The L-brackets and standoffs shown in Fig. 43 were mounted to the plate with M2 

x 20mm screws and nuts. Note that a thinner, rectangular version of the plate is depicted; 

however, the assembly is the same using the final plate. The eyeball assemblies from the 

previous step were then mounted to the L-brackets using M2 x 8mm screws and nuts. 
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Fig. 43. L-brackets and standoffs used to mount the eyeball subassemblies 

 After positioning the servo horn on the servo as discussed in Section 3.4.2, the 

servo was mounted to the plate using two M2 x 8mm screws as shown in Fig. 44. To 

align the servo arm on top of the horn, an M1.6 screw was placed through the arm and 

horn while the screw for the servo shaft was inserted and tightened. The M1.6 screw was 

then removed and set aside for later. 

 

Fig. 44. Servo mounted to the plate followed by the servo arm 

 The potentiometer was press-fit into the square cutout of its mount as shown in 

Fig. 45. The potentiometer and servo interface in the bottom left of the figure were placed 

on the servo arm with the round cutout going over the servo shaft screw head. The M1.6 

screw from the last step and a nut were used to connect the interface, servo arm and horn. 

The potentiometer assembly was then mounted to the bottom of the plate with four M2 x 

8mm screws once the potentiometer shaft was fit through the semicircular hole in the 

interface piece. 
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Fig. 45. Attaching the potentiometer and its mount and the servo-pot interface 

 Fig. 46 shows the hollow disk, support piece, and encoder track that were added 

next. Each of the three pieces were secured using two M2 x 8mm screws; the hollow disk 

was screwed to the servo arm, and the support piece and encoder track were screwed 

between the hollow disk extrusions.  

 

Fig. 46. Attaching the hollow disk (1), support piece (2), and encoder track (3) 

 Next, the shaft coupler for the DC motor and threaded rod was secured to one end 

of the rod using an Allen wrench as shown in Fig. 47. The free end of the rod was placed 

through the arced cutout in the plate and threaded through the press-in nut. The remaining 

coupler was then secured to the encoder shaft and then attached to the free end of the rod. 
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Fig. 47. Attaching the threaded rod, shaft couplers, and encoder 

 An eyebolt was screwed into one end of the bar shown in Fig. 48, and one shaft 

collar was slid onto the bar. The free end of the bar was slid into the slot on top of the DC 

motor housing. The second shaft collar was then slid onto the bar, and the second eyebolt 

was screwed into the free end of the bar. The motor housing was then centered along the 

bar, and the shaft collars were secured to the bar using an Allen wrench. Enough 

clearance was left between the housing and shaft collars for the bar to slide smoothly 

within the slot but not so much that the bar could twist about its centroid’s z-axis. The 

spacing was controlled by putting paper between the housing and final shaft collar during 

assembly. The DC motor wires were then threaded into the bottom of the housing and out 

through one of the side openings. The motor was press-fit into the housing while ensuring 

the motor’s soldering tabs did not hit the end of the cavity.  
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Fig. 48. Subassembly of the bar, eyebolts, shaft collars, DC motor and housing 

 The DC motor shaft was placed inside of the coupler and secured as shown in Fig. 

49. With the eyeball eyebolts sitting on top of the bar eyebolts, the pins were inserted 

through the bolts, and an M1.6 screw was used to compete each pin connection. 

 

Fig. 49. Clevis pin connections 

 Without a lubricant on the threaded rod, the vertical motor would occasionally 

stall. To fix this, a few milliliters of WD-40 were sprayed through a nozzle into a small 

container shown in Fig. 50. Using a Q-tip, the lubricant was applied to the exposed 

portion of the rod between the two couplers. 
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Fig. 50. WD-40 application to threaded rod 

 To construct each laser diode eye, the two-piece eye was 3D printed using white 

PLA. A slit was cut into an adhesive hole reinforcement as shown in Fig. 51. The 

reinforcement was then colored with a marker to look like a human iris. The 

reinforcement was centered on the front of the eyeball. One cut end of the reinforcement 

slightly overlapped the other for the reinforcement to attach flushed to the eyeball’s 

curved surface. The area of the eye within the inner diameter of the reinforcement was 

colored to match the reinforcement. A pupil of an approximate diameter of 3.5mm was 

dotted on using a black permanent marker. 

 

Fig. 51. Creating a laser diode eye’s iris and pupil 

 As with the other eyes, an eyebolt was screwed into the cylindrical extrusion as 

shown in Fig. 52. The laser diode terminal wires were shortened, leads were soldered 
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onto them, and heat shrink was put on the newly soldered connections. The laser diode 

was then placed in the eyeball. The leads were thread through the elliptical hole in the 

side of the cylindrical extrusion, and the two pieces of the eye were snapped together. 

 

Fig. 52. Assembling laser diode eyes 

4.3 Assembly: Wiring and Mounting 

 Fig. 53 shows most of the parts required for mounting the breadboard and 

mounting the plate to Baxter’s display screen. Four #8-32 screws and nuts not pictured 

were also used.  

 

Fig. 53. Baxter mount parts 

 To increase the bend in each L-bracket, one end of the bracket was secured in a 

vice as shown in Fig. 54. The bend was then hit lightly with a mallet until the final angle 

was approximately 85°. 
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Fig. 54. Bending the L-brackets 

 One L-bracket was attached to the plate behind the right eye using the two short 

#8-32 screws and nuts. After sticking the breadboard onto the blue plate, two three-inch 

#8-32 screws were slid through the breadboard plate’s holes. Spacers that added up to 

two-inches in length were added onto each screw. Fig. 55 shows that three one-inch 

spacers and four quarter-inch spacers were used. The long screws were then placed 

through the main plate and second L-bracket and secured with nuts. 

 

Fig. 55. L-brackets and breadboard plate 

 Next, wires that connected to the variable power supply’s terminals and the wires 

connected to the DC motor were secured to the motor driver on the Arduino board as 

shown in Fig. 56.  
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Fig. 56. Connecting motor and power supply to the motor driver 

 The Arduino was placed on the main plate after covering the two shorter 

screwheads it was sitting on with electrical tape. All on board wiring was completed as 

shown in Fig. 57.  

 

Fig. 57. Wiring  

 The two mounting supports were secured to the L-brackets using two #8-32 

screws and nuts each. Recall that the bracket from the design that secured the two 

mounting supports to one another is optional. Next, the supports were slid over the top 

corners of Baxter’s monitor as shown in Fig. 58. The mask was then placed over the eyes 

and secured by Velcro that was wrapped around the back of Baxter’s monitor and looped 

through and fastened at both ears.  
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Fig. 58. Mounted assembly 

 It was discovered that the L-brackets had not been bent enough for the plate to be 

perfectly level. While bending the L-brackets further was a viable option, the plate was 

made level by adding a washer to the bottom screws of both brackets as shown in Fig. 59. 

 

Fig. 59. Washer added to L-bracket 

 The full assembly is shown in Fig. 60 with and without the laser diode modules 

powered on. 
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Fig. 60. Full mounted assembly 

4.4 Bill of Materials 

 Table 2 lists the cost and quantity of parts required in the assembly. The only 

difference between the table and the components used for testing is the power supply. As 

previously stated, a simple 12V battery can power the DC motor if the application does 

not warrant a variable power supply. The total is just over two-hundred dollars with the 

encoder and motor shield accounting for about half of the cost. Using the optional laser 

diode modules increases the total cost by thirty-three percent. 
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Item Cost / 

Item 

# of 

Items 

Total 

Cost 

Vendor 

ENS1J-B20-L00100L Optical 

Encoder 

 $   61.99  1  $   61.99  Arrow 

Pololu Dual MC33926 Motor 

Driver Shield for Arduino 

 $   29.95  1  $   29.95  Pololu 

Arduino Uno R3  $   22.00  1  $   22.00  Arduino 

12VDC Battery  $   14.99  1  $   14.99  Home Depot 

ROB-12408 Gearmotor               

4900 RPM 12VDC 

 $   12.95  1  $   12.95  Digi-Key 

10-24 Press-In Nut  $     6.88  1  $     6.88  McMaster-Carr 

SER0039 9G Metal Gear Micro 

Servo 1.8kg 

 $     5.90  1  $     5.90  Digi-Key 

Breadboard  $     5.00  1  $     5.00  Adafruit 

Shaft Couplers                             

3mm-5mm & 1/4in-5Mm 

 $     4.99  2  $     9.98  ServoCity 

Potentiometer  $     2.41  1  $     2.41  Digi-Key 

Shaft Collar 1/4" diameter  $     2.23  2  $     4.46  McMaster-Carr 

Male-Female Jumper Wires  $     0.18  7  $     1.28  Digi-Key 

Eyebolt  $     0.09  4  $     0.36  McMaster-Carr 

Screws, Nuts, Spacers 
  

 $   22.85 Multiple 

Misc. (PLA, capacitors, etc.) 
  

 $   14.00  Multiple   
Total $   215.00  

 

Laser diode modules (optional) $    35.48 2 $   70.96 Digi-Key 

  Total $   285.96   

 
Table 2. Bill of materials 
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5 TESTING: SYSTEM CHECKS 

 Before testing the final assembly, the locations of Baxter’s base and gripper 

frames were verified, DH parameter calculations were verified, the servo and DC motor 

were tested individually, and the full assembly was tested using single-point commands. 

Note that for all testing in this report, it was assumed the eyes were 750mm above 

Baxter’s base frame. When the assembly is mounted to Baxter, the true distance is closer 

to 650mm. The midpoint between eye centroids is also a few centimeters in front of 

Baxter’s base frame when mounted, not directly above. 

5.1 Baxter Gripper Frame Location 

 Although the location of Baxter’s base frame was known, Baxter’s PyKDL 

package did not specify what point on the gripper was being returned by its forward 

kinematics function. It was found that echoing the topic /robot/limb/left/endpoint_state 

returned the fingertip location of the electric parallel gripper [38], [39]. For this reason, it 

was hypothesized that the forward kinematics function also returned the fingertip 

location. 

 To test the hypothesis, the forward kinematics function was run for one left 

gripper position. Without moving the gripper, the endpoint state topic was then echoed. 

Results for x, y, and z within two-millimeters of one another would prove that the 

forward kinematics function returned the fingertip location. Otherwise, measurements by 

hand would be performed to determine the true point location using the fingertip location 

as a reference. 
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5.2 DH Parameters 

 The purpose of this test was to ensure that the equations written in the DH 

parameter section of code return the correct values for Δx, Δy, and Δz. First, the delta 

values needed for the eyes to look from straight ahead to a target point were calculated in 

both Excel and the code. The hypothesis was that the difference between the delta values 

output by the code and the true values would be less than one millimeter. The one-

millimeter limit allowed for negligible rounding errors. Any larger errors would have 

indicated significant rounding errors caused by breaking the calculation up into too many 

steps or a typo.  

 Two sets of target positions were chosen along arcs shown in Fig. 61.  In the firsts 

set, the points were on the arc that contained possible positions of Baxter’s right gripper 

when his fully extended arm moves up and down. The second set was on an arc that 

contained possible right gripper positions when Baxter’s fully extended arm moves left 

and right. The limitations of Baxter’s arm movement were not considered when choosing 

the twenty-two individual points. 

 

Fig. 61. Points used to verify DH parameters 
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 Matching Excel and Arduino results would rule out rounding errors and typos in 

the code, but it would not guarantee that the equations themselves were correct. 

Therefore, the next step was to test the calculations geometrically. Working backwards in 

Excel, Points A and B in Fig. 62 were derived from the chosen Δz values -13mm and 

+13mm, respectively. Recall that {1} is the center point between the eyes. 

 

Fig. 62. Points A and B chosen to produce Δz = ±13mm 

 Fig. 63 is a top-down view of Baxter. The value of M, or the distance between 

{1} and a point, was found for both A and B using the Pythagorean Theorem. 

 

Fig. 63. Top-down view of Baxter for calculations 
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 After finding MA and MB, the tilt angles θA and θB shown in Fig. 64 were 

calculated using tangent functions. In theory both angles should equal the angle of tilt of 

the eyeballs create by Δz = ±13mm, which is 20.6°. 

  

Fig. 64. Calculating θA and θB; both should equal 20.6° 

 The second geometric verification used two new points shown in Fig. 65 along 

the same arc as the second set of target positions. The value of Δy associated with Point 

C is 20mm and that of Point D is -20mm. Using simple trigonometry, θC and θD are 34.3° 

and 33.6°, respectfully. 

 

Fig. 65. Points C and D chosen to produce Δy = ±20mm 
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 In Excel, the values of Δz for Points C and D were found to be 10.35mm and 

8.07mm, respectfully. Note that the values of Δz were not equal even though both points 

were the same vertical distance from the base frame. Equations 30 and 31 were used to 

find θC and θD for both points. The results should match those found through the simple 

trigonometry from Fig. 65. 

𝑟𝑥𝑦 = √𝑟2 − 𝑧3
1 ( 30 ) 

𝜃 = sin−1 (
20𝑚𝑚

𝑟𝑥𝑦
) ( 31 ) 

5.3 Servo 

 The servo was put through two sets of tests: one without potentiometer feedback 

(open-loop control) and one with feedback (closed-loop control). Each set consisted of 

one test disconnected and one test connected to the entire assembly. The hypothesis was 

that regardless of whether the servo arm was connected to load or not, the servo would 

have greater accuracy under closed-loop control than under open-loop control.  

5.3.1 Open-Loop: Load Disconnected  

 Fig. 66 shows the setup for the first open-loop test. A piece of blue tape was stuck 

along the middle of a mousepad with its long edges parallel to two of the pad’s edges. 

The servo was screwed to the plate, and the plate was propped on its side and set flushed 

against a side of the pad perpendicular to the long piece of tape. A camera phone was set 

flushed against the opposite side, ensuring the plate and camera were parallel. The plate 

was moved so the servo’s shaft was centered above one of the tape’s long edges. Finally, 

the camera was moved until the edge of tape appeared vertical through the camera lens, 
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which meant the camera was centered in front of the servo’s shaft. Smaller pieces of tape 

were used to mark where to keep the plate and camera. 

 

Fig. 66. Disconnected test setup (left); centering the camera (right) 

 The servo “Sweep” example that came with Arduino was used. In the example, 

the servo is told to “sweep” back and forth from one angle to another. The same two 

angles were used for all trials that set a total sweep of 70°. Accuracy was determined by 

how close to this distance the servo swept across at various speeds. The speed of each 

trial was controlled by changing the servo’s delay, or the amount of time in milliseconds 

the servo was given to move one degree. The larger the delay, the slower the servo 

rotated. 

 Five trials were performed with the delay ranging from 5ms to 25ms. In each trial, 

the servo arm would begin in a position near the lower limit that was not recorded. It 

would then move back and forth twice, covering two sweeps. Because it would have been 

difficult to use a protractor, the videos were analyzed in a program called Kinovea. The 

servo arm’s positions at the extremes of each sweep were measured as shown in Fig. 67.  
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Fig. 67. Measuring angles in Kinovea to calculate the sweep 

 The measurements from each trial were recorded in Excel as shown in Table 3. 

The average sweep and its standard deviation were calculated.  

Trial 1      

Delay=25 Cycle Start (°) End (°) Sweep (°) SD (°) 

  1   140     

  2 79 141 61   

  3 79   62   

   Average: 79 140.5 61.5 0.71 
 

Table 3. Sample data table for single trial 

5.3.2 Open-Loop: Load Connected 

 With the load connected to the servo arm, the test setup was altered to the one 

shown in Fig. 68. The bottom and one side of a bucket were cut out, and the bucket was 

placed upside down on a table. The eye assembly was placed on top, and a camera phone 

was slid through the side and centered under the servo. The same data collection process 

from the previous section was used. 
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Fig. 68. Connected test setup (left); angle from Kinovea (right) 

5.3.3 Closed-Loop: Load Disconnected 

 The same physical test setup from Section 5.3.1 was used with the addition of the 

potentiometer, mount, and servo-pot interface piece as shown in Fig. 69.  

 

Fig. 69. Potentiometer attached to disconnected test setup 

 The code, however, did not use Arduino’s Sweep example. Instead, one target 

angle at a time was written to the servo and the delay remained constant at 10ms, which 

was the second-lowest delay tested in the no feedback trials. After the servo.write() 

command was executed, the code calculated the actual angle from the potentiometer’s 

analog output. If the actual angle differed from the target angle, the servo was instructed 

to move one degree in the proper direction until the target angle was achieved, creating 
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closed-loop control. The target angles and calculated final angles from the potentiometer 

were recorded. Note that the code used was not the same as the final code. 

 Although the angles obtained through Kinovea were also recorded, the data was 

not analyzed. The Kinovea data would have only been useful if Kinovea angles were also 

obtained in the connected feedback test described in the coming section. Unfortunately, 

centering the camera under the assembly with the potentiometer blocking the servo shaft 

could not be done accurately.  

5.3.4 Closed-Loop: Load Connected 

 The potentiometer, mount and servo-pot interface were added to the previous 

connected setup, and the code from the other feedback test was used. The target angles 

and the calculated final angles from the potentiometer were recorded. As previously 

stated, no analysis was done using Kinovea. 

5.4 DC Motor 

 Three preliminary tests were run with the DC motor. The first tested different 

encoder codes to ensured that the code chosen accurately tracked the motor’s rotation. 

The second empirically found the relation between the speed index used by the open 

source code and motor RPMs. The third tested motor accuracy using slightly different 

velocity profile. 

5.4.1 Encoder Accuracy 

 Three versions of open source encoder code were tested. The first was a the 

“Simple Example” from the Arduino rotary encoder playground, the second came from 

code for a ROS-Arduino Bridge, and the third used the “Interrupt Example” from the 

Arduino rotary encoder playground [40], [41].  
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 The purpose of this test was to determine what code could accurately track the 

motor’s rotation at low and high RPMs. Any version that fell short would be removed 

from the list of options for use in the robotic eye code. The hypothesis was that all three 

would perform equally, meaning the simplest one would be implemented in the final 

code. 

 The same motor code was added to each set of encoder code. Each version was 

run for two trials at two different speeds: i=400, which is the maximum, and i=100. The 

former had a run time of T=5000ms and ramp times of 1000ms up and down while the 

latter had a run time of T=4250ms and ramp times of 250ms up and down. 

5.4.2 Speed Index Mapping 

 The purpose of this test was to find the conversion between the motor’s speed 

index and RPMs. The hypothesis was that the relation between the two was linear.  

 After the encoder code was chosen, the same motor code from the previous 

section was run at ten different maximum speed indices ranging from 85 to 395. For each 

trial, the time in milliseconds, number of encoder ticks, and speed index were output into 

the Arduino serial monitor after every loop, and the values were copied into Excel at the 

end of the trial. The two data points at either end of the trapezoidal velocity profile’s 

horizontal line were taken and used to calculate the motor’s maximum speed in RPMs for 

that trial. The process was repeated for all ten trials, and a scatter plot of maximum RPMs 

versus maximum speed indices was created. The points were curve fit in Excel using 

various types of equations. The best fit indicated by an R2 value closest to one and no 

lower than 0.95 would be implemented in the final code. 
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5.4.3 Choosing Velocity Profile 

 A new DC motor velocity profile needed to be calculated in Arduino with every 

new gaze fixation point. Ideally, the bar centroid would reach its desired vertical position 

every time an accurate velocity profile was provided; however, there was a chance that 

factors such as friction would alter performance.  

The purpose of this test was to find out if the DC motor performed as expected 

given a velocity profile free of post-calculation adjustments. In other words, the velocity 

profile was calculated exactly for the desired Δz. Accurate performance was defined as 

consistently moving the bar centroid to within ±1mm of its desired vertical position. 

Proving the hypothesis wrong would lead to testing a slightly modified velocity profile 

under the same standards. 

 The initial profile tested was a trapezoidal velocity profile in which the value of 

Δz determined the maximum velocity of each trial. Three trials had a total run time of 

T=250 milliseconds and three had T=500 milliseconds. In both cases, twenty percent of 

the run time was allotted for the ramp up (acceleration) and the same for the ramp down 

(deceleration) as shown in Fig. 70. A condition was added to the code ensuring the motor 

reached the trial’s maximum velocity at 0.2T. 

 

Fig. 70. Velocity profile initially tested 
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5.5 Lateral and Vertical Motor Movement 

 Although the final Arduino code used with Baxter gave the motors fixed amounts 

of time to reach an orientation regardless of saccade size, a test was run to see how the 

eyes would operate if given a saccade duration based on saccade size. Fig. 71 shows lines 

A and R created from human eye performance data from two previously mentioned 

journal papers [6], [9]. The “Test” line was created using the average slope and y-

intercept of lines A and R.  

 

Fig. 71. Saccade size vs. saccade duration 

 Three sets of tests were performed: one for lateral eye movement, one for vertical 

eye movement, and one for a combination of the two. A set of points were chosen from 

the Test line for each test set, and each point was tested in multiple trials for both positive 

and negative Δθ’s. Each trial began with the eyes level and approximately aimed straight 

forward.  

 Three versions of Arduino code were used. The code used in the lateral motor test 

was a subset of the final code that took arguments for time allotted for lateral motor 
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movement and Δθ. That of the vertical motor test was also a subset of the final code. It 

took arguments for time allotted for vertical motor movement and Δz. Finally, the final 

code (excluding the code required for ROS) was used for the combined motor test. It took 

two time arguments: one for lateral motor movement and one for vertical motor 

movement. It also took the X, Y, and Z of a gaze fixation point. The position output 

returned by each test was in the same form as their inputs (e.g. the vertical test returned 

the actual Δz obtained, etc.). For the vertical and combined tests, the position inputs and 

outputs were converted to degrees for analysis. The hypothesis was that the averaged 

actual saccade sizes of each test set would produce a line that falls somewhere between 

lines A and R. 
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6 RESULTS: SYSTEM CHECKS 

6.1 Baxter Gripper Frame Location 

 The results from both methods are shown in Fig. 72. The forward kinematics 

function returned the point (0.4841, 0.3741, -0.5254), and the end state topic returned 

(0.4848, 0.3755, -0.5250), both in meters. The components of each point were all well 

within two millimeters of each other; therefore, it was confirmed that the forward 

kinematics function returns the gripper’s fingertip location. 

 

Fig. 72. Baxter gripper frame check results 

6.2 DH Parameters 

 Tables 4 and 5 show the delta values found in the Arduino code and Excel. All 

data is in millimeters. As hypothesized, the difference never exceeded one millimeter. On 

average, the values differed by about half of a millimeter. The test proved that the code 

does not contain any significant rounding errors or typos in the intended equations. 

 

 

 



79 

Gripper Movement in Right Shoulder XZ Plane 

Input Point Arduino Delta Excel Delta Difference 

X Y Z X Y Z X Y Z X Y Z 

500 -280 1552 18 10 -30 18.23 10.51 -30.10 0.23 0.51 -0.10 

600 -280 1501 14 10 -27 14.83 10.35 -27.75 0.83 0.35 -0.75 

700 -280 1437 11 10 -24 11.61 10.16 -24.92 0.61 0.16 -0.92 

800 -280 1358 8 9 -21 8.62 9.93 -21.57 0.62 0.93 -0.57 

900 -280 1259 5 9 -17 5.91 9.67 -17.58 0.91 0.67 -0.58 

1000 -280 1131 3 9 -12 3.55 9.37 -12.74 0.55 0.37 -0.74 

1100 -280 954 1 8 -6 1.71 8.98 -6.54 0.71 0.98 -0.54 

1200 -280 605 1 8 4 1.21 8.35 4.32 0.21 0.35 0.32 

1200 -280 295 3 7 12 3.20 7.89 12.82 0.20 0.89 0.82 

1100 -280 -54 7 7 21 7.74 7.45 21.39 0.74 0.45 0.39 

1000 -280 -231 11 7 25 11.10 7.25 25.41 0.10 0.25 0.41 

      Average Magnitude 0.52 0.54 0.56 

 
Table 4. Results from first set of target positions 

 

Gripper Movement in Right Shoulder XY Plane 

Input Point Arduino Delta Excel Delta Difference 

X Y Z X Y Z X Y Z X Y Z 

500 822 450 18 -30 11 18.64 -30.18 11.01 0.64 -0.18 0.01 

600 771 450 15 -27 10 15.28 -27.91 10.86 0.28 -0.91 0.86 

700 707 450 12 -25 10 12.08 -25.17 10.68 0.08 -0.17 0.68 

800 628 450 9 -21 10 9.09 -21.91 10.47 0.09 -0.91 0.47 

900 529 450 6 -18 10 6.34 -18.02 10.22 0.34 -0.02 0.22 

1000 401 450 3 -13 9 3.92 -13.27 9.92 0.92 -0.27 0.92 

1100 224 450 1 -7 9 1.97 -7.13 9.55 0.97 -0.13 0.55 

1200 -125 450 1 3 8 1.29 3.72 8.93 0.29 0.72 0.93 

1200 -435 450 3 12 8 3.14 12.28 8.47 0.14 0.28 0.47 

1100 -784 450 7 20 8 7.59 20.96 8.02 0.59 0.96 0.02 

1000 -961 450 10 25 7 10.93 25.06 7.82 0.93 0.06 0.82 

      Average Magnitude 0.48 0.41 0.54 

 
Table 5. Results from second set of target positions 

 

 The values of MA, MB, zA and zB calculated from the first geometric test are 

shown in Fig. 73. θA and θB were then found to both equal 20.6°, which was the exact 

angle calculated for Δz = ±13mm. The test proved that the equations for Δz were correct. 
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Fig. 73. Calculating θA and θB 

 The second geometric test resulted in θC and θD equal to their previously 

calculated values of 34.3° and 33.6°, respectfully. The results prove the equations used to 

find Δy and the servo angle were correct. Because the method used to find Δx was 

identical to that of Δy and Δz, it was concluded that the equations for Δx were correct as 

well. 

6.3 Servo 

6.3.1 Open-Loop: Load Disconnected 

 The results for the first open-loop test are shown in Fig. 74. The average sweep 

for every trial fell short of the instructed 70° by at least 9.5°. The data suggested that 

smaller delays resulted in narrower sweeps, which made sense because smaller delays 

meant the servo was given less time to move. 

 

Fig. 74. Results from servo test open-loop: disconnected 
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6.3.2 Open-Loop: Load Connected 

 Fig. 75 shows the results for the second open-loop test. The same five delays as 

before were analyzed as well as delays of 2ms and 50ms.  

 

Fig. 75. Results from servo test open-loop: connected 

 Again, smaller delays resulted in narrower sweeps, but the two new delays gave 

additional information. Decreasing the delay from 5ms to 2ms resulted in a drastically 

narrower sweep, but doubling the delay from 25ms to 50ms did not create a statistically 

significant difference in the sweep. The following conclusions were reached for the open-

loop control: first, servo performance drops with decreases in delay, and it drops more so 

when the delay is low. Additionally, the servo reaches a maximum sweep with a large 

enough delay but may never achieve the instructed sweep angle. 

6.3.3 Closed-Loop: Load Disconnected 

 The results of the closed-loop test with no load are shown in Table 6. The ranges 

calculated from the potentiometer output were always within three degrees of the input 

range, and the average difference was only 1.36°.  It was concluded that the servo was 

significantly more accurate in closed-loop control than open loop control when 

disconnected from a load. 
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Range 
Index 

Input 
Range  

(°) 

Calculated 
Range  

(°) 
Error 

(°) 
Range 
Index 

Input 
Range  

(°) 

Calculated 
Range  

(°) 
Error 

(°) 

1 70 68 2 8 2 1 1 

2 70 68 2 9 30 29 1 

3 70 69 1 10 30 32 2 

4 35 36 1 11 5 6 1 

5 20 19 1 12 5 5 0 

6 20 19 1 13 10 13 3 

7 2 2 0 14 10 13 3 

      Average 1.36 
 

Table 6. Results from servo test closed-loop: disconnected 

6.3.4 Closed-Loop: Load Connected 

 Table 7 shows the results of the second closed-loop test. The average error was 

2.5° even though the maximum error was six degrees. Although the average and 

maximum errors were larger than those of the disconnected closed-loop test, the results 

are significantly better than those from the open-loop connected test. As expected, the 

servo was more accurate in closed-loop control than open-loop control when connected to 

the load. 

Range 
Index 

Input 
Range 

(°) 

Calculated 
Range 

(°) 
Error 

(°) 
Range 
Index 

Input 
Range 

(°) 

Calculated 
Range 

(°) 
Error 

(°) 

1 70 70 0 8 2 0 2 

2 70 70 0 9 30 31 1 

3 70 71 1 10 30 24 6 

4 35 32 3 11 5 4 1 

5 20 21 1 12 5 1 4 

6 20 14 6 13 10 7 3 

7 2 0 2 14 10 5 5 

      Average 2.50 
 

Table 7. Results from servo test closed-loop: connected 
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6.4 DC Motor 

6.4.1 Encoder Accuracy 

 The results of all six trials are shown in Table 8. The simple encoder code had an 

output of 1 for imax=100 and -218 for imax=400. Knowing the encoder’s resolution was 

100ticks/rev, the code picked up almost no rotation at the lower speed and just over two 

rotations at the higher speed over the period of five seconds. It was clearly concluded that 

the simpler encoder code did not work at the required speeds. 

 
Trials: Set 1 Trials: Set 2 

Code i Run 
Time 
(ms) 

Ramp 
Time 
(ms) 

Encoder 
Ticks 

i Run 
Time 
(ms) 

Ramp 
Time 
(ms) 

Encoder 
Ticks 

Simple 400 5000 1000 -218 100 4250 250 1 

RAB 400 5000 1000 -124729 100 4250 250 -15493 

Interrupts 400 5000 1000 55818 100 4250 250 7068 
 

Table 8. Encoder Accuracy test results 

 After analyzing the results and conducting further research on encoder code, it 

was found that the interrupt example code quadrupled the encoder’s resolution to 

400ticks/rev and the ROS-Arduino Bridge code increased the resolution by a factor of 

eight. Specifically, each interrupt in interrupt example code doubled the encoder 

resolution; however, it was not clear how the ROS-Arduino Bridge code achieved a 

resolution of 800ticks/rev. For that reason, even though the last two sets of code produced 

comparable results, the interrupt example code was chosen.  

6.4.2 Speed Index Mapping 

 The graph of RPMs versus speed index of the ten trials fitted with a linear curve 

through the origin is shown in Fig. 76. The line has an R2 value of 0.8577, which is lower 

than the minimum 0.95 desired. 
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Fig. 76. Initial speed index mapping curve-fit 

 From analyzing the figure above, it was decided to curve-fit the data without 

forcing the curve to pass through the origin. After testing multiple types of functions, the 

polynomial graphed in Fig. 77 was chosen. The line’s R2 value was 0.9977 which was 

very close to 1, indicating a very good fit to the data. 

 

Fig. 77. Final speed index mapping curve-fit 
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6.4.3 Choosing Velocity Profile 

 The results of the velocity profile trials are shown in Table 9. The error was 

greater than one millimeter in all trials, proving the hypothesis false. 

Trial 
# 

Run Time 
(milliseconds) 

Δz 
(mm) 

Encoder 
Ticks 

Distance 
Traveled (mm) 

Error 
(%) 

Error 
(mm) 

1 250 -10 3077 -8.14 18.6 1.86 

2 250 5 -726 1.92 61.6 3.08 

3 250 5 -802 2.12 57.6 2.88 

4 500 -10 3241 -8.58 14.2 1.42 

5 500 -10 3085 -8.16 18.4 1.84 

6 500 -5 45 -0.12 97.6 4.88 

 

Table 9. Results from running ideal velocity profile code 

  It was clear adjustments needed to be made to improve performance; however, it 

was discovered after the test that a large part of the issue was mechanical. With a light 

application of WD-40 to the threaded rod, the vertical motor’s performance improved 

significantly. The following changes were still made to optimize performance.  First, a 

condition was added to the code to check how far the bar centroid had traveled ten 

milliseconds before the end of the acceleration stage based on encoder output. If it had 

not travelled as far as expected, a “buffer” speed was calculated and added on to the 

instructed maximum velocity to make up for lost displacement as shown in Fig. 78. The 

condition acts as a feed forward control. In addition, feedback control was implemented 

between the end of the vertical motor’s designated runtime and before three-hundred 

milliseconds had passed. During this time, the vertical motor would run at ±67RPM as it 

closed in on its desired position. 
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Fig. 78. Coded velocity profile 

 Eight trials shown in Table 10 were run using the final vertical motor code. All 

trials were given a run time of 115ms, less than half the time given in the previous trials. 

The correction condition of the code was accessed after the run time had passed. Δz was 

the independent variable. The results were a significant improvement from the previous 

set of trials. The vertical motor was able to obtain its instructed Δz within 350ms in all 

trials. The motor often overshot its instructed position after obtaining it, but never by 

more than half of a millimeter. The motor always levelled out within 0.1mm of its 

instructed Δz, well within the acceptable one-millimeter from the original hypothesis. 

Run 
Time 
(ms) 

Instructed 
ΔZ (mm) 

Time 
(ms) 

ΔZ at 
Time 
(mm) 

Steady 
State ΔZ 

(mm) 

Steady 
State 
Error 
(mm) 

Steady 
State Error 

(%) 

115 10 329 10.04 10.05 -0.05 0.5 

115 -10 286 -10.04 -9.90 -0.10 1.0 

115 7 187 7.02 6.97 0.03 0.4 

115 -7 171 -7.05 -6.93 -0.07 1.0 

115 4 171 4.02 4.03 -0.03 0.8 

115 -4 157 -4.05 -3.97 -0.03 0.7 

115 2 174 2.03 2.00 0.00 0.0 

115 -2 174 -2.00 -1.93 -0.07 3.5 
 

Table 10. Results from final coded velocity profile 
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6.5 Lateral and Vertical Motor Movement 

 The results of the lateral test are shown in Table 11. For a better understanding of 

what the eyes were doing, a second data point was recorded for each trial at a time after 

the duration had passed.  

Trial Duration 
(ms) 

Instructed 
Δθ (deg) 

Time 
1 

(ms) 

Δθ 
(deg) 

% 
Error 

Time 
2 

(ms) 

Δθ 
(deg) 

% 
Error 

T2 - T1 
(ms) 

1 53 14 55 3 78.6 117 14 0.0 62 

2 53 14 55 3 78.6 117 13 7.1 62 

3 53 14 55 1 92.9 117 13 7.1 62 

4 53 14 55 3 78.6 117 13 7.1 62 

5 53 -14 55 1 107.1 159 -11 21.4 104 

6 53 -14 55 0 100.0 159 -12 14.3 104 

7 53 -14 55 0 100.0 159 -12 14.3 104 

8 53 -14 55 1 107.1 159 -12 14.3 104 

9 70 24 72 6 75.0 155 24 0.0 83 

10 70 24 72 5 79.2 155 23 4.2 83 

11 70 24 72 5 79.2 155 24 0.0 83 

12 70 24 72 6 75.0 155 23 4.2 83 

13 70 -24 72 -5 79.2 155 -22 8.3 83 

14 70 -24 72 -6 75.0 155 -22 8.3 83 

15 70 -24 72 -6 75.0 155 -23 4.2 83 

16 70 -24 72 -6 75.0 155 -22 8.3 83 

 
Table 11. Lateral motor test  

It was clear that the eyes were not able to come near their desired position within 

the instructed durations, the lowest error for that dataset being seventy-five percent. Thus, 

the hypothesis was proven false. Giving the eyes between one-twentieth and one-tenth of 

an extra second reduced the error by at least eighty percent and in some cases one-

hundred percent.  

The reason the eyes could not operate within the tested durations is better 

understood by graphing the results of all sixteen trials as shown in Fig. 79 and 80. Notice 

the lateral motor does not even start moving until around thirty and in some cases fifty-
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five milliseconds have passed. Therefore, the hypothesis failed not because the lateral 

motor could not achieve the maximum acceleration to complete the task but rather 

because motor movement does not begin immediately after the code is uploaded.  

 

Fig. 79. Lateral motor test: Δθ = ±14° 

 

Fig. 80. Lateral motor test: Δθ = ±24° 

 The results from the vertical motor test are in Table 12. The error was at least 

seventy-four percent by the end of the given duration in all cases, reflecting the same 

delay in movement seen in the lateral motor. Again, the hypothesis was proven false. 

Unlike in the previous test, however, the vertical motor does not quickly reach its desired 

position one-tenth of a second later. The reason is that the vertical motor is coded to 
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rotate at a speed index of ±125 after the allotted duration has passed, which is only 

±67RPM. If the motor were allotted more time to move before correcting its position 

with a constant, low RPM, the error would decrease. The statement is proven by the 

vertical motor’s accuracy in the final tests with the Baxter robot.  

Trial Duration 
(ms) 

Inst. 
ΔZ 

(mm) 

Inst. 
Δθ 

(deg) 

T1 
(ms) 

ΔZ 
(mm) 

Δθ 
(deg) 

% 
Error 

T2 
(ms) 

ΔZ 
(mm) 

Δθ 
(deg) 

% 
Error 

T2 - 
T1 

(ms) 

1 37 -3 -4.7 38 -0.77 -1.2 74.4 104 -3.05 -4.7 1.7 66 

2 37 -3 -4.7 38 -0.67 -1.0 77.7 104 -2.97 -4.6 1.0 66 

3 37 -3 -4.7 38 -0.69 -1.1 77.0 104 -2.99 -4.6 0.3 66 

4 37 -3 -4.7 38 -0.70 -1.1 76.7 104 -3.00 -4.7 0.0 66 

5 37 3 4.7 38 0.74 1.1 75.4 109 3.08 4.8 2.7 71 

6 37 3 4.7 38 0.61 0.9 79.7 109 2.96 4.6 1.3 71 

7 37 3 4.7 38 0.71 1.1 76.4 109 3.05 4.7 1.7 71 

8 37 3 4.7 38 0.67 1.0 77.7 109 3.00 4.7 0.0 71 

9 47 -6 -9.3 48 -1.09 -1.7 81.9 221 -6.02 -9.4 0.3 173 

10 47 -6 -9.3 48 -1.08 -1.7 82.1 221 -5.97 -9.3 0.5 173 

11 47 -6 -9.3 48 -1.06 -1.6 82.4 221 -5.96 -9.3 0.7 173 

12 47 -6 -9.3 48 -1.07 -1.7 82.2 221 -5.97 -9.3 0.5 173 

13 47 6 9.3 48 0.94 1.5 84.4 250 5.93 9.2 1.2 202 

14 47 6 9.3 48 1.02 1.6 83.1 250 6.00 9.3 0.0 202 

15 47 6 9.3 48 0.97 1.5 83.9 250 5.94 9.2 1.0 202 

16 47 6 9.3 48 1.06 1.6 82.4 250 6.03 9.4 0.5 202 

17 55 -10 -15.7 56 -1.39 -2.2 86.3 416 -9.98 -15.6 0.2 360 

18 55 -10 -15.7 56 -1.40 -2.2 86.2 416 -9.98 -15.6 0.2 360 

19 55 -10 -15.7 56 -1.31 -2.0 87.1 416 -9.92 -15.6 0.8 360 

20 55 -10 -15.7 56 -1.38 -2.1 86.4 416 -9.96 -15.6 0.4 360 

21 55 10 15.7 56 1.29 2.0 87.3 485 9.97 15.6 0.3 429 

22 55 10 15.7 56 1.30 2.0 87.2 485 9.87 15.5 1.3 429 

23 55 10 15.7 56 1.98 3.1 80.4 485 10.19 16.0 2.0 429 

24 55 10 15.7 56 1.29 2.0 87.3 485 9.90 15.5 1.0 429 

 
Table 12. Vertical motor test 

 The first set of results from the combined motor test are shown in Table 13. As 

expected after the previous tests, the eyes never travelled as far as instructed within the 

time allotted. The error was at least seventy-seven percent in each trial.  
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Duration (ms) Time (ms) Instructed Δθ (deg) Δθ (deg) Difference (deg) % Error 

53 57 14.1 2.9 11.2 79.36 

53 56 14.1 2.7 11.4 81.12 

53 56 14.1 3.2 10.9 77.63 

53 55 14.1 2.6 11.5 81.23 

53 56 14.1 3.9 10.2 72.57 

70 72 24.4 4.6 19.8 81.21 

70 72 24.4 3.7 20.7 84.98 

70 73 24.4 4.1 20.3 83.38 

70 71 24.4 4.0 20.4 83.77 

70 72 24.4 4.0 20.4 83.48 

86 89 34.6 6.8 27.8 80.40 

86 89 34.6 6.6 28.0 81.03 

86 90 34.6 5.1 29.5 85.12 

86 88 34.6 6.7 27.9 80.59 

86 88 34.6 5.9 28.7 82.86 

 
Table 13. Combined motor test: data after duration 

 As was done in the lateral and vertical motor tests, an additional data point was 

recorded in each trial as shown in Table 14. Given between one-tenth and one-fifth of a 

second total to move, the eyes were able to obtain within 1.5° of their desired orientation. 

Duration (ms) Time (ms) Instructed Δθ (deg) Δθ (deg) Difference (deg) % Error 

53 113 14.1 13.15 1.0 6.76 

53 113 14.1 13.22 0.9 6.22 

53 113 14.1 12.59 1.5 10.69 

53 114 14.1 13.33 0.8 5.44 

53 113 14.1 13.28 0.8 5.81 

70 148 24.4 23.78 0.6 2.54 

70 148 24.4 22.87 1.5 6.27 

70 147 24.4 22.88 1.5 6.22 

70 147 24.4 23.78 0.6 2.55 

70 149 24.4 23.77 0.6 2.58 

86 179 34.6 34.87 -0.3 0.78 

86 180 34.6 33.91 0.7 1.99 

86 180 34.6 33.95 0.7 1.89 

86 180 34.6 33.90 0.7 2.01 

86 181 34.6 34.87 -0.3 0.77 

 
Table 14. Combined motor test: data after twice the duration 
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 Although the hypothesis was proven false, the analysis justified the decisions 

made for the final robotic eye code implemented with Baxter.  
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7 TESTING: BAXTER INTEGRATION 

7.1. Circular Path: Tracking 

 In this test, Baxter’s gripper moves in the circular path explained in Section 3.3 

while the eyes track the gripper. The hypothesis was the eyes would look on average at a 

point within a 50mm radius of the instructed point. In addition, the distance between the 

instructed and actual point, or the error, would never exceed 100mm. Data sets of time, 

X, Y, Z, YEYES, and ZEYES were output to text files. 

7.2. Parabolic Path: Tracking 

 Baxter performed the first object manipulation task explained in Section 3.3 for 

the next three tests. Recall that the task was to pick an object up off a platform, move it to 

the right along an inverted parabolic path, and set it down. The same hypothesis as that of 

the previous test was used here with the exception that errors larger than 10cm were 

expected within the first second of the eyes switching from looking forward to looking at 

the gripper. The same data sets as those in the previous test were collected. 

7.3. Parabolic Path: Block Mode 

 The second tracking test was mimicked after changing the mode in the Arduino 

code to block mode. The same hypothesis as previous was tested, expanding the 

exception to include large errors one second after the start and end of target saccade 

instructions. To work around the issue of publishing to eight ROS Topics from Arduino, 

the test was performed twice: once obtaining time, X, Y, Z, YEYES, ZEYES and once 
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obtaining time, X, Y, Z, YHAND, ZHAND. The values of YHAND and ZHAND after the eyes 

leave the grasp site and before the task is complete are simply added to the first set of 

results for a comprehensive data analysis. To do this, the data sets are aligned based on 

the first target fixation, not time. 

7.4. Parabolic Path: Full Glass Mode 

 The testing and data acquisition processes from the block test were repeated for 

full glass mode. The same hypothesis as previous was used. 

7.5. Linear Path 

 The same hypothesis tested using the parabolic path were tested using the linear 

path explained in Section 3.3.  
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8 RESULTS: BAXTER INTEGRATION 

 The following are the results from all tests performed with the Baxter robot. 

Butterworth filters were applied to the actual gaze fixation point data sets using 

MATLAB, and the filtered data was exported to Excel. Analysis was performed in Excel 

and MATLAB. Note that all error distributions only extend so far as to show at least 

ninety-five percent of the data. Brackets with labels were used to convey where the eyes 

were instructed to look throughout each trial. A key for the labels is given in Table 15. 

Label Instructed Gaze Fixation 

Forward Straight Ahead 

Hand At the left gripper 

Grasp At the grasp site 

T At the target 

O At a point temporally offset ahead of the left gripper 

 

Table 15. Results label key 

8.1. Circular Path: Tracking 

 The instructed and actual gaze fixation points during the first test are shown in 

Figures 81, 82, and 84. Recall that the x-coordinate of the gaze fixation point was equated 

to that of the gripper. When the Arduino code is run, the value of x is its initialized value 

of 500mm until the gripper’s location begins publishing to ROS. At that point, the value 

of x remains within 1029mm and 1067mm.
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Fig. 81. Test 1: X vs. Time

 Fig. 82 plots the y-values of the gripper location and actual gaze fixation point 

versus time. The average difference between Y and YEYES, or the error, was 27mm. The 

error distribution is in Fig. 83. The error fell within 53mm ninety percent of the time and 

within 70mm ninety-five percent of the time. Overall, tracking from right to left was 

worse than tracking left to right; however, even the larger errors such as that when Time 

= 133.4s was only three degrees. In terms of servo angle, the average error was 1.45°. 

 

Fig. 82. Test 1: Lateral Motor Analysis 
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Fig. 83. Test 1: lateral motor error distribution 

 Fig. 84 plots the z-values of the gripper location and actual gaze fixation point 

versus time. The eyes tracked better in the z-direction than in the y-direction; the average 

error was only 5.5mm compared to 27mm. The error distribution is in Fig. 85. The error 

fell within 15mm ninety percent of the time and within 26mm ninety-five percent of the 

time.  

 

Fig. 84. Test 1: Vertical Motor Analysis 
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Fig. 85. Test 1: vertical motor error distribution 

 The distance between the gripper location and gaze fixation point was defined as 

the magnitude of error shown in Fig. 86. The average magnitude of error was 29mm, 

which is less than the hypothesized average of 50mm. The first part of the hypothesis 

was, therefore, proven true. Excluding the spike in error when the eyes were first 

instructed to track the gripper, five spikes in error exceeded the hypothesized 100mm 

maximum but were all less than 130mm. Even though the second part of the hypothesis 

was proven false, the eyes’ performance was close to expected. The error distribution is 

in Fig. 87. The actual gaze fixation point was within 56mm of the instructed point ninety 

percent of the time and within 72mm ninety-five percent of the time. 

 

Fig. 86. Test 1: Magnitude of Error 
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Fig. 87. Test 1: magnitude of error distribution 

 Tracking in the YZ plane over time is plotted in Figures 88 and 89. In both 

figures, the data points prior to the gripper location being obtained in Arduino were 

excluded. For a clearer visual, the first half of the test in which the gripper moved in two 

clockwise circles and the second half of the test in which the gripper moved in two 

counterclockwise circles were plotted separately. 

 

Fig. 88. Test 1 YZ plane clockwise analysis 
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Fig. 89. Test 1 YZ plane counterclockwise analysis 

8.2. Parabolic Path: Tracking 

 The instructed and actual gaze fixation points during Test 2 are shown in Figures 

90, 91 and 93. The gripper position began publishing to ROS about 16.5 seconds after the 

Arduino code was started, at which point the eyes began tracking the gripper. 

 

Fig. 90. Test 2: X vs. Time 
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 Fig. 91 plots the y-values of the gripper location and actual gaze fixation point 

versus time. The steady-state error after the eyes began to follow the gripper but before 

the gripper began to move right was about 30mm. The average error for the entire track 

was 29mm. The error distribution is in Fig. 92. The error fell within 59mm ninety percent 

of the time and within 79mm ninety-five percent of the time. As the gripper moved left to 

right, the eyes lagged behind the gripper in the y-direction by between half and one 

second, accounting for most of the error.  

 

Fig. 91. Test 2: Lateral Motor Analysis 

 

Fig. 92. Test 2: lateral motor error distribution 
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 Fig. 93 plots the z-values of the gripper locations and actual gaze fixation points 

versus time. Again, the eyes tracked better in the z-direction than in the y-direction; the 

average error was 4.5mm compared to 29mm in y. The error distribution is in Fig. 94. 

The error fell within 9mm ninety percent of the time and within 13mm ninety-five 

percent of the time. 

 

Fig. 93. Test 2: Vertical Motor Analysis 

 

Fig. 94. vertical motor error distribution 
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 The magnitude of error is shown in Fig. 95. The average error was 30mm, which 

is less than the hypothesized 50mm. Excluding the spike in error when the eyes are first 

instructed to track the gripper, the largest magnitude of error was 106mm, just over the 

hypothesized 100mm maximum. The two statistics are very close to those from Test 1.  

 

Fig. 95. Test 2: Magnitude of Error 

The error distribution is in Fig. 96. The actual gaze fixation point was within 

59mm of the instructed point ninety percent of the time and within 79mm ninety-five 

percent of the time. 

 

Fig. 96. Test 2: magnitude of error distribution 
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8.3. Parabolic Path: Block Mode 

 The instructed and actual gaze fixation points during Test 2 are shown in Figures 

97, 98, and 100. The gripper position began publishing to ROS about 4.6 seconds after 

the Arduino code was started, at which point the eyes began looking at the grasp site. 

 

Fig. 97. Test 3: X vs. Time 

 Fig. 98 plots the y-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 

of the last. The steady-state error while the eyes fixated the grasp site was 22mm. The 

eyes always looked ahead of the gripper when instructed to during the offset phases; 

however, there was some delay in achieving those instructed points. The error 

distribution is in Fig. 99. The average error was 37mm, and the error fell within 36mm 

ninety percent of the time and within 63mm ninety-five percent of the time.  
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Fig. 98. Test 3: Lateral Motor Analysis 

 

Fig. 99. Test 3: lateral motor error distribution 

 Fig. 100 plots the z-values of the instructed and actual gaze fixation points versus 

time. The gripper’s z location is also plotted from the first target fixation through the end 

of the last. The average error was 12mm. Most larger errors occurred directly after abrupt 

changes in the instructed gaze fixation point. Additionally, for larger saccades such as 

those to and from the target, the vertical motor briefly overshot its instructed position.  
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Fig. 100. Test 3: Vertical Motor Analysis 

 The error distribution is in Fig. 101. The error fell within 13mm ninety percent of 

the time and within 52mm ninety-five percent of the time. 

 

Fig. 101. Test 3: vertical motor error distribution 

 The magnitude of error is shown in Fig. 102. The average error was 42mm, which 
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occurred at least one second after those spikes. Therefore, the second part of the 

hypothesis was also proven true.  

 

Fig. 102. Test 3: Magnitude of Error 

The error distribution is in Fig. 103. The actual gaze fixation point was within 

43mm of the instructed point ninety percent of the time and within 162mm ninety-five 

percent of the time. 

 

Fig. 103. Test 3: magnitude of error distribution 
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8.4. Parabolic Path: Full Glass Mode 

 The instructed and actual gaze fixation points during Test 2 are shown in Figures 

104, 105, and 107. The gripper position began publishing to ROS about 4.5 seconds after 

the Arduino code was started, at which point the eyes began looking at the grasp site. 

 

Fig. 104. Test 4: X vs. Time 

 Fig. 105 plots the y-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 

of the last. The average error was 40mm. The steady-state error when the eyes fixated the 

grasp site was 28mm, equivalent 1.1° in this case. Unlike in the test running block mode, 

the eyes were not always ahead of the gripper; the delay in movement caused the eyes to 

look at or slightly ahead of the gripper during parts of the offset phases. Those errors, 

however, were usually within three degrees and never exceeded four degrees.  
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Fig. 105. Test 4: Lateral Motor Analysis 

The error distribution is in Fig. 106.  The error fell within 35mm ninety percent of 

the time and within 97mm ninety-five percent of the time. 

 

Fig. 106. Test 4: lateral motor error distribution 

 Fig. 107 plots the z-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 

of the last. The average error was 11mm, 29mm less than that of the lateral motor. Again, 

the vertical motor briefly overshot its instructed position during the larger saccades. 

341

962
1035

96
21 36 38 13 2 6

0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f 
O

cc
u

re
n

ce
s

Error (mm)



109 

 

Fig. 107. Test 4: Vertical Motor Analysis 

The error distribution is in Fig. 108. The error fell within 11mm ninety percent of 

the time and within 45mm ninety-five percent of the time. 

 

Fig. 108. Test 4: vertical motor error distribution 

 The magnitude of error is shown in Fig. 109, and the error distribution is in Fig. 

110. The average error was 43mm, which is less than the hypothesized 50mm average 

error. The error never exceeded 100mm for points that occurred at least one second after 

abrupt gaze fixation changes. Therefore, as it was in Test 3, the second part of the 

hypothesis was also proven true.  
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Fig. 109. Test 4: Magnitude of Error 

 

Fig. 110.  Test 4: magnitude of error distribution 

8.5. Linear Path: Tracking 

 The instructed and actual gaze fixation points during Test 5 are shown in Figures 

111, 112 and 114. The gripper position began publishing to ROS about 16.6 seconds after 

the Arduino code was started, at which point the eyes began tracking the gripper. 
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Fig. 111. Test 5: X vs. Time 

 Fig. 112 plots the y-values of the gripper location and actual gaze fixation point 

versus time. The average error was 20mm. The error distribution is in Fig. 113. The error 

fell within 48mm ninety percent of the time and within 55mm ninety-five percent of the 

time. As the gripper moved right to left, the eyes lagged behind the gripper in the y-

direction by between half and one second, accounting for most of the error. 

 

Fig. 112. Test 5: Lateral Motor Analysis 
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Fig. 113. Test 5: lateral motor error distribution 

 Fig. 114 plots the z-values of the gripper locations and actual gaze fixation points 

versus time. Again, the eyes tracked better in the z-direction than in the y-direction; the 

average error was 4.9mm compared to 20mm in y. The error distribution is in Fig. 115. 

The error fell within 13mm ninety percent of the time and within 19mm ninety-five 

percent of the time. 

 

Fig. 114. Test 5: Vertical Motor Analysis 
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Fig. 115. Test 5: vertical motor error distribution 

 The magnitude of error is shown in Fig. 116. The average error was 22mm, which 

is less than the hypothesized 50mm. Excluding the spike in error when the eyes are first 

instructed to track the gripper, the largest magnitude of error was 77mm, below the 

hypothesized 100mm maximum. Both hypotheses were proven true. 

 

Fig. 116. Test 5: Magnitude of Error 

 The error distribution is in Fig. 117. The actual gaze fixation point was within 

49mm of the instructed point ninety percent of the time and within 55mm ninety-five 

percent of the time. 
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Fig. 117. Test 5: magnitude of error distribution 

8.6. Linear Path: Block Mode 

 The instructed and actual gaze fixation points during Test 6 are shown in Figures 

118, 119, and 121. The gripper position began publishing to ROS about 17.7 seconds 

after the Arduino code was started, at which point the eyes began looking at the grasp 

site. 

 

Fig. 118. Test 6: X vs. Time 

 Fig. 119 plots the y-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 
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of the last. The eyes always looked ahead of the gripper when instructed to during the 

offset phases. Again, there was some delay in achieving those instructed points.  

 

Fig. 119. Test 6: Lateral Motor Analysis 

 The error distribution is in Fig. 120. The average error was 18mm, and the error 

fell within 30mm ninety percent of the time and within 43mm ninety-five percent of the 

time. 

 

Fig. 120. Test 6: lateral motor error distribution 

 Fig. 121 plots the z-values of the instructed and actual gaze fixation points versus 

time. The gripper’s z location is also plotted from the first target fixation through the end 

of the last. The average error was 14mm. Most larger errors occurred directly after abrupt 
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changes in the instructed gaze fixation point. Additionally, for larger saccades such as 

those to and from the target, the vertical motor briefly overshot its instructed position. 

The behavior was the same as that observed with the parabolic path.  

 

Fig. 121. Test 6: Vertical Motor Analysis 

 For approximately one second after the first target fixation, the eyes are instructed 

to look above the hand instead of below as desired. Recall that the trajectory was curve-

fit; although the resulting equation fit the data extremely well (R2=0.98), it did not reflect 

the more lateral hand motion at the start of the trajectory. An if statement could be 

written specifically for this trajectory that would prevent Z from exceeding ZHAND. 

 The error distribution is in Fig. 122. The error fell within 9mm ninety percent of 

the time and within 45mm ninety-five percent of the time. 
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Fig. 122. Test 6: vertical motor error distribution 

 The magnitude of error is shown in Fig. 123. The average error was 25mm, which 

is within the hypothesized average error of 50mm. Apart from the spikes in error when 

gaze instructions changed abruptly, the error never exceeded 100mm for points that 

occurred at least one second after those spikes. Therefore, the second part of the 

hypothesis was also proven true.  

 

Fig. 123. Test 6: Magnitude of Error 
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 The error distribution is in Fig. 124. The actual gaze fixation point was within 

34mm of the instructed point ninety percent of the time and within 90mm ninety-five 

percent of the time. 

 

Fig. 124. Test 6: magnitude of error distribution 

8.7. Linear Path: Full Glass Mode 

 The instructed and actual gaze fixation points during Test 7 are shown in Figures 

125, 126, and 128. The gripper position began publishing to ROS 15.4 seconds after the 

Arduino code was started, at which point the eyes began looking at the grasp site. 

 

Fig. 125. Test 7: X vs. Time 
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 Fig. 126 plots the y-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 

of the last. The average error was 27mm. The steady-state error during target fixations 

was 20mm, equivalent 0.9° in this case. Unlike in the test running block mode, the eyes 

were not always ahead of the gripper; the delay in movement caused the eyes to look at 

or slightly ahead of the gripper during much of the offset phases. Those errors, however, 

were always under three degrees. The results are similar to those of the parabolic path. 

 

Fig. 126. Test 7: Lateral Motor Analysis 

 The error distribution is in Fig. 127.  The error fell within 43mm ninety percent of 

the time and within 91mm ninety-five percent of the time. 
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Fig. 127. Test 7: lateral motor error distribution 

 Fig. 128 plots the z-values of the instructed and actual gaze fixation points versus 

time. The gripper’s y location is also plotted from the first target fixation through the end 

of the last. The average error was 20mm, only 7mm less than that of the lateral motor. 

Again, the vertical motor briefly overshot its instructed position during the larger 

saccades. 

 

Fig. 128. Test 7: Vertical Motor Analysis 

 The error distribution is in Fig. 129. The error fell within 16mm ninety percent of 

the time and within 157mm ninety-five percent of the time. 
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Fig. 129. Test 7: vertical motor error distribution 

 The magnitude of error is shown in Fig. 130, and the error distribution is in Fig. 

131. The average error was 37mm, which is less than the hypothesized 50mm average 

error. The error never exceeded 100mm for points that occurred at least one second after 

abrupt gaze fixation changes. In all linear path tests, both hypotheses were proven true. 

 

Fig. 130. Test 7: Magnitude of Error 
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Fig. 131. Test 7: magnitude of error distribution 
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9 DISCUSSION 

 Replacing the 3D printed components with parts machined out of lightweight 

metal would create a more robust mechanism. The eyes’ range of motion could also be 

increased through three adjustments. As stated in design section, the connection points 

that secure the two halves of each shell could be altered to increase horizontal range of 

motion. To increase vertical range of motion, one could use a longer threaded shaft or 

reduce the eyes’ radius of rotation from 37mm to something smaller. Additionally, a new 

servo might fix the issue of the eyes tracking slightly worse right to left than vice versa. 

A fix to allow all eight Arduino publishers to run at once would reduce the work required 

to make a comprehensive analysis. 

 Further tests could be performed to verify the eyes’ accuracy without relying on 

sensor output. The laser diode module eyes could be instructed to look at known 

coordinates marked on a solid surface parallel to the YZ plane. The midpoint between the 

two laser projections on the surface would be the actual gaze fixation point, and its 

distance from the instructed gaze fixation point would be the error. Sensor readings 

would be validated if the actual gaze fixation point calculated in the Arduino code 

matched that observed. Discrepancies would indicate all other sources of error not 

reflected in sensor output. One potential source would be mechanical imperfections such 

as those in linkages or from backlash in gears. Human error in measurement and the 

tolerance of the measuring tool would still influence the accuracy of external validation.
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 For applications in which the user would want to see what the robotic eyes see, 

eye design for the laser diode modules could be altered to house cameras instead. The 

two-piece eye design could also be modified to not reduce the assembly’s range of 

motion as it does now. 

 Cosmetic changes that could be made to future design iterations include using 

paint to make the eyes and mask to look more lifelike. The addition of eyebrows, 

eyelashes, and eyelids would make the mask more realistic. Another option for an 

artificial face would be to mold one out of a silicone-based material like dragon skin. A 

flexible mask would be required regardless if additional points of actuation were added to 

the face, such as points at which to make the eyebrows or mouth move. 

 A task-based experiment using the robotic eyes, Baxter robot, and test subjects 

could be made to test if the eyes’ programmed movement improves human-robot 

interaction. Improvement would be measured by the accuracy and efficiency of task 

completion. 

  



125 

10 CONCLUSIONS 

 The overall goal to design and fabricate novel humanoid robotic eyes 

programmed to move logically with a Baxter robot based on hand-eye coordination 

research was achieved. Both position control for tracking and temporal control for 

human-like eye movement were achieved. Although the error in the lateral motor was 

greater than that of the vertical motor, both achieved average errors within 50mm 

throughout all tests with Baxter. The maximum error rarely exceeded the desired 100mm 

outside of abrupt changes in instructed gaze fixation points. Even the larger lateral motor 

errors only equated to less than four degrees while the average error was less than two 

degrees. Improvements could still be made to reduce the delay in obtaining instructed 

gaze fixation points. Lastly, temporal offsets should be made large enough in future 

application to ensure the eyes look ahead of the gripper when instructed to do so but 

small enough to remain human-like. 
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11 APPENDICES
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Appendix A: Servo Calculations 

The volumes of plastic components were found in SolidWorks. The component 

masses were found using SolidWorks Mass Properties unless otherwise stated. 

VOLUME OF PLASTIC 

COMPONENTS 

COMPONENT VOLUME (mm3) 

1 1653.19 

2 5523.67 

3 2412.90 

4 1446.7 

5 18517.03 

TOTAL 29553.49 

 

Density of PLA: 0.00125 grams/mm3 

The Cura printing infill was set at 20% for all plastic components. 

∴ 𝑚𝑃𝐿𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 0.2 ∗ 𝜌𝑃𝐿𝐴 ∗ 𝑉𝑃𝐿𝐴 

𝑚𝑃𝐿𝐴 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 7.388 𝑔𝑟𝑎𝑚𝑠 = 0.07388𝑘𝑔 

𝑙𝑎𝑟𝑚 = 
93

64
𝑖𝑛𝑐ℎ𝑒𝑠 ∗

2.54𝑐𝑚

1𝑖𝑛𝑐ℎ
= 3.69𝑐𝑚 

 

 

 

 

1 

2 

3 

4 

5 
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MASS OF LOAD COMPONENTS 

COMPONENT MASS (GRAMS) 

Coupler 1 11.56 

Coupler 2 9.69 

Threaded Rod 7 

DC Motor (from datasheet) 17.69 

Encoder (from datasheet) 11 

Shaft Collars (combined mass) 3.96 

Plastic Components  7.39 

TOTAL 68.29 

 

𝑚𝑡𝑜𝑡𝑎𝑙 = 68.29𝑔 = 6.829 ∗ 10−2𝑘𝑔 

𝜏 = 𝑔 ∗ 𝑚𝑡𝑜𝑡𝑎𝑙 ∗ 𝑙𝑎𝑟𝑚 

𝜏 = 2.47𝑁 ∙ 𝑐𝑚  
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Appendix B: Thread Pitch & DC Motor Calculations 

 In the following equations, x is the number of threads-per-inch, P is thread pitch, 

𝜔 = 500°/𝑠 is the angular velocity of the eyeball, 𝑟 = 93/64" is the length of the 

moment arm,  𝑉𝑡,𝑚𝑎𝑥 is the maximum tangential velocity, 𝑉𝑦,𝑚𝑎𝑥 is the maximum velocity 

in the y-direction that was defined in Fig. 32 of the report, and 𝜔𝐷𝐶,𝑚𝑎𝑥 is the maximum 

angular velocity produced by the DC motor shaft in RPMs. 

𝑃 = 𝑥−1
 

𝜔 = 500
°

𝑠
∗
1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

360°
= 1.389 𝑟𝑒𝑣/𝑠 

𝑉𝑡,𝑚𝑎𝑥 = 𝜔𝑟 =
1.389𝑟𝑒𝑣

𝑠
∗
93

64
𝑖𝑛𝑐ℎ𝑒𝑠 = 2.018 𝑖𝑛𝑐ℎ𝑒𝑠/𝑠 

𝑉𝑦 = 𝜔𝑟𝑐𝑜𝑠(𝜃) 

𝑉𝑦,𝑚𝑎𝑥 = 𝑉𝑡,𝑚𝑎𝑥 

𝜔𝐷𝐶,𝑚𝑎𝑥 =
𝑉𝑦,𝑚𝑎𝑥

𝑃
∗

60𝑠

1𝑚𝑖𝑛
 

𝜔𝐷𝐶,𝑚𝑎𝑥 =
121.08

𝑃
 

Note that the results in Table 1 of the report were produced in Excel. The above equation 

for ωDC,max is not as accurate as the Excel calculations because the values of Vt,max and ω 

above were rounded. 
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Appendix C: Circular Baxter Trajectory Code 

1. #!/usr/bin/env python   
2.    
3.    
4. import rospkg   
5. # rospy - ROS Python API   
6. import rospy   
7.    
8. # from std_msgs.msg import String, Float32, UInt8, Int32   
9.    
10. # baxter_interface - Baxter Python API   
11. import baxter_interface   
12.    
13. import time   
14.    
15. # initialize our ROS node, registering it with the Master (Master computer is on

 Baxter)   
16. rospy.init_node('Hello_Baxter', anonymous=True)   
17.    
18. # create an instance of baxter_interface's Limb class   
19. limb = baxter_interface.Limb('left')   
20.    
21. left_gripper = baxter_interface.Gripper('left')   
22.    
23.    
24. pL1 = {'left_w0':-

0.39231558650169457, 'left_w1':0.5821457090025145 , 'left_w2':0.0502378708032473
, 'left_e0':0.3911651009107805, 'left_e1':0.09088836168221076 , 'left_s0':-
1.0852914074289302, 'left_s1':-0.8536603084582327}   

25.    
26. pL2 = {'left_w0':-

0.9717768291254096, 'left_w1': 0.9038981792614801, 'left_w2':0.06864564025787226
, 'left_e0':1.1401312205958338, 'left_e1': 0.14457768925820025, 'left_s0':-
1.071869075534933, 'left_s1':-0.8816554578371415}   

27.    
28. pL3 = {'left_w0':-0.24927187803137973, 'left_w1': 1.15892248524743, 'left_w2':-

0.29529130166794215, 'left_e0':0.5437961893053792, 'left_e1': 0.2481213924404656
6, 'left_s0':-1.0032234352770606, 'left_s1':-0.9127185687918212}   

29.    
30. pL6 = {'left_w0':-1.076471017898589, 'left_w1': 0.9779127522769513, 'left_w2':-

0.07861651537912745, 'left_e0':1.194587538565766, 'left_e1': 0.23930100291012454
, 'left_s0':-1.424684656748578, 'left_s1':-0.5483981316690354}   

31.    
32. pL5 = {'left_w0':-0.22281070944035636, 'left_w1': 1.148951610126175, 'left_w2':-

0.30104372962251247, 'left_e0':0.3896311201228951, 'left_e1': 0.2891553785164005
, 'left_s0':-1.1746457883232555, 'left_s1':-0.7033301912454623}   

33.    
34. pL4 = {'left_w0':-

0.9805972186557508, 'left_w1': 1.19573802415668, 'left_w2':0.04065049087896346, 
'left_e0':1.272820558747922, 'left_e1': 0.46096122675956686, 'left_s0':-
1.2609322076418101, 'left_s1':-0.7152185423515741}   

35.    
36. pL7 = {'left_w0':-0.565271920335775, 'left_w1': 0.6626797003664987, 'left_w2':-

0.2891553785164005, 'left_e0':0.5832961945934286, 'left_e1': 0.09702428483375242
, 'left_s0':-1.3472186269603645, 'left_s1':-0.6254806662602774}   

37.    
38. pL8 = {'left_w0':-

0.7136845615636888, 'left_w1': 0.5951845456995405, 'left_w2':0.10929613113683573
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, 'left_e0':0.7002622296696914, 'left_e1': 0.029529130166794215, 'left_s0':-
1.2570972556720965, 'left_s1':-0.7190534943212877}   

39.    
40.    
41. left_gripper.calibrate()  # calibrate before opening or closing   
42.    
43. left_gripper.open()  # open gripper before movement   
44.    
45. #CW once (relative to observer)   
46. limb.move_to_joint_positions(pL1)   
47. time.sleep(1)  # in seconds   
48. limb.move_to_joint_positions(pL2)   
49. time.sleep(1)  # in seconds   
50. limb.move_to_joint_positions(pL3)   
51. time.sleep(1)  # in seconds   
52. limb.move_to_joint_positions(pL4)   
53. time.sleep(1)  # in seconds   
54. limb.move_to_joint_positions(pL5)   
55. time.sleep(1)  # in seconds   
56. limb.move_to_joint_positions(pL6)   
57. time.sleep(1)  # in seconds   
58. limb.move_to_joint_positions(pL7)   
59. time.sleep(1)  # in seconds   
60. limb.move_to_joint_positions(pL8)   
61. time.sleep(1)  # in seconds   
62. limb.move_to_joint_positions(pL1)   
63. time.sleep(1)  # in seconds   
64.    
65. #CW again   
66. limb.move_to_joint_positions(pL2)   
67. time.sleep(1)  # in seconds   
68. limb.move_to_joint_positions(pL3)   
69. time.sleep(1)  # in seconds   
70. limb.move_to_joint_positions(pL4)   
71. time.sleep(1)  # in seconds   
72. limb.move_to_joint_positions(pL5)   
73. time.sleep(1)  # in seconds   
74. limb.move_to_joint_positions(pL6)   
75. time.sleep(1)  # in seconds   
76. limb.move_to_joint_positions(pL7)   
77. time.sleep(1)  # in seconds   
78. limb.move_to_joint_positions(pL8)   
79. time.sleep(1)  # in seconds   
80. limb.move_to_joint_positions(pL1)   
81. time.sleep(1)  # in seconds   
82.    
83. #CCW once   
84. limb.move_to_joint_positions(pL8)   
85. time.sleep(1)  # in seconds   
86. limb.move_to_joint_positions(pL7)   
87. time.sleep(1)  # in seconds   
88. limb.move_to_joint_positions(pL6)   
89. time.sleep(1)  # in seconds   
90. limb.move_to_joint_positions(pL5)   
91. time.sleep(1)  # in seconds   
92. limb.move_to_joint_positions(pL4)   
93. time.sleep(1)  # in seconds   
94. limb.move_to_joint_positions(pL3)   
95. time.sleep(1)  # in seconds   
96. limb.move_to_joint_positions(pL2)   
97. time.sleep(1)  # in seconds   
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98. limb.move_to_joint_positions(pL1)   
99. time.sleep(1)  # in seconds   
100.    
101. #CCW again   
102. limb.move_to_joint_positions(pL8)   
103. time.sleep(1)  # in seconds   
104. limb.move_to_joint_positions(pL7)   
105. time.sleep(1)  # in seconds   
106. limb.move_to_joint_positions(pL6)   
107. time.sleep(1)  # in seconds   
108. limb.move_to_joint_positions(pL5)   
109. time.sleep(1)  # in seconds   
110. limb.move_to_joint_positions(pL4)   
111. time.sleep(1)  # in seconds   
112. limb.move_to_joint_positions(pL3)   
113. time.sleep(1)  # in seconds   
114. limb.move_to_joint_positions(pL2)   
115. time.sleep(1)  # in seconds   
116. limb.move_to_joint_positions(pL1)   
117.    
118. quit()   
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Appendix D: Arduino Code and Pseudocode 

Robotic_Eye_Code.ino 

#include "dh_param.h" 

#include "dc_motor_encoder_code.h" 

#include "servo_pot_code.h" 

#include "verification.h" 

 

//This version has incorporated all hand-eye coordination code. The 

target saccades are  

 

// Pins being used (includes ones for motor driver not being utilized): 

// 0,1,2,3,4,6,7,8,9,10.12,A0,A1,A2 

// PWM disabled on 3 and 11 

 

#include <ros.h> //located in ros_lib 

#include <std_msgs/Float32.h> 

 

unsigned long pTime1;  

unsigned long pTime2; 

unsigned long cTime2; //current time within sampling period 

unsigned long o2Time; //assign once object = 2 

 

int object = 1; //added 

 

float mode = 3;  // 1 = Track Gripper 

                 // 2 = "Block" Mode 

                 // 3 = "Full Glass" Mode 

 

float pos2R0Grip[3] = {500, 0, 650};   // gripper position initialized 

same as pos2R0 

float gap;                             // gap between gripper fingers, 

from 0 to 100 as % 

float graspSite[3] = {1128,-227,597};   // grasp site, {1188,557,382} 

for parabolic path 

                                       // {1128,-227,597} for linear 

path 

                                        

float target[3] = {1231,215,182};     // target, {1199,-75,350} for 

parabolic path 

                                      // {1231,215,182} for linear path 

 

float tempY; //temporary y coordinate when using logic under object == 

2 condition 

 

int targetInterval;        // eyes look at target every _ milliseconds 

after grabbing object 

int tOff;                  // time offset dependent on mode 

int targetCondition;        // time remainder condition for looking at 

target 

 

float yVelAvg = 0.034;    // average y-velocity of hand moving from one 

side to another, in mm/ms 

                           // equals -0.051mm/ms for parabolic path 

                           // 0.034mm/ms for linear path 
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float yOff;                  // y offset, product of tOff and yVelAvg 

 

ros::NodeHandle nh; 

 

void messageCbx(const std_msgs::Float32& gripper_msg_x){ //name of 

message is gripper_msg 

  pos2R0Grip[0] = gripper_msg_x.data * 1000;  //gripper x, convert from 

meters to mm 

   

  if (mode == 1) 

  { 

    parameterClass.pos2R0[0]= pos2R0Grip[0]; //follow gripper in mode 1 

  } 

  else if (object == 1) // haven't grabbed object 

  { 

    parameterClass.pos2R0[0]=graspSite[0]; //look at grasp site until 

right before item is grabbed 

  } 

  else if (object == 2) // almost grabbed or have object 

  { 

    if ((millis()-o2Time) % targetInterval <= targetCondition || 

millis()-o2Time >= 10000) 

    { 

      parameterClass.pos2R0[0]= target[0];  //look at target 

    } 

    else 

    { 

      parameterClass.pos2R0[0]= pos2R0Grip[0]; // xEyes same as xHand 

when holding object 

    } 

  } 

  else if (object == 3) // letting go of or releasing object 

  { 

    parameterClass.pos2R0[0]= 500; //look straight ahead when object 

released 

  } 

  else 

  { 

    //nothing, shouldn't reach this 

  } 

   

} 

 

void messageCby(const std_msgs::Float32& gripper_msg_y){ //name of 

message is gripper_msg 

  pos2R0Grip[1] = gripper_msg_y.data * 1000;  //gripper y, convert from 

meters to mm 

   

  if (mode == 1) 

  { 

    parameterClass.pos2R0[1]= pos2R0Grip[1]; 

  } 

   

  else if (object == 1) 

  { 
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    parameterClass.pos2R0[1]=graspSite[1]; //look at grasp site until 

right before item is grabbed 

  } 

   

  else if (object == 2) 

  { 

    

   if ((millis()-o2Time) % targetInterval <= targetCondition || 

millis()-o2Time >= 10000) //2nd time condition for linear path only 

   { 

     tempY = target[1]; 

   } 

   else //look at offset 

   { 

     tempY = pos2R0Grip[1] + yOff; 

   } 

 

   //Assing value to pos2R0[1] 

   if (tempY > target[1]) //< sign for parabolic path (L -> R), > sign 

for linear path (R -> L) 

   { 

    parameterClass.pos2R0[1] = target[1]; // prevent eyes from looking 

at y past target 

   } 

   else 

   { 

    parameterClass.pos2R0[1] = tempY; 

   } 

  } 

   

  else if (object == 3) 

  { 

    parameterClass.pos2R0[1]= 0; //look straight ahead when object 

released 

  } 

   

  else 

  { 

    //nothing, shouldn't reach this 

  } 

} 

 

void messageCbz(const std_msgs::Float32& gripper_msg_z){ //name of 

message is gripper_msg 

  pos2R0Grip[2] = gripper_msg_z.data * 1000;  //gripper z, convert from 

meters to mm 

   

  if (mode == 1) 

  { 

    parameterClass.pos2R0[2]= pos2R0Grip[2]; 

  } 

  else if (object == 1) 

  { 

    parameterClass.pos2R0[2]= graspSite[2]; //look at grasp site until 

right before item is grabbed 

  } 

  else if (object == 2) 
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  { 

   if ((millis()-o2Time) % targetInterval <= targetCondition || 

millis()-o2Time >= 10000) //2nd time condition for linear path only 

   { 

     parameterClass.pos2R0[2]= target[2]; 

   } 

   else //look at offset 

   { 

//     parameterClass.pos2R0[2]= -0.0015*sq(parameterClass.pos2R0[1]) + 

0.6938*parameterClass.pos2R0[1] + 462.28; //calculate using instructed 

gaze y-coor. and curve-fit parabolic path 

     parameterClass.pos2R0[2]= -1.0226*parameterClass.pos2R0[1] + 

506.94; //linear path 

   } 

  } 

  else if (object == 3) 

  { 

    parameterClass.pos2R0[2]=650; //look straight ahead when object 

released, more consistent than gripper coordinate condition 

  } 

  else 

  { 

    //nothing, shouldn't reach this 

  } 

} 

 

void messageCbGp(const std_msgs::Float32& gripper_msg_gp){ //name of 

message is gripper_msg 

  gap = gripper_msg_gp.data;  //percent gripper is open 

   

  if (object == 1) 

  { 

    if (gap < 30) 

    { 

      object = 2; //doesn't keep assigning object = 2 

      o2Time = millis(); //time when object first = 2, only assigned 

once 

    } 

  } 

  else if (object == 2) 

  { 

    if (gap >= 30) 

    { 

      object = 3; //doesn't confuse haven't gotten object and released 

object since assigned after object = 2 

    } 

  } 

  else 

  { 

    //nothing, shouldn't reach this   

  } 

} 

 

std_msgs::Float32 timeStamp; //added 

std_msgs::Float32 testx; 

std_msgs::Float32 testy; 

std_msgs::Float32 testz; 
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std_msgs::Float32 testya; 

std_msgs::Float32 testza; 

//std_msgs::Float32 testyg; 

//std_msgs::Float32 testzg; 

 

ros::Subscriber<std_msgs::Float32> suba("Baxter_x", &messageCbx); 

//subscribes to topic 

ros::Subscriber<std_msgs::Float32> subb("Baxter_y", &messageCby); 

//subscribes to topic 

ros::Subscriber<std_msgs::Float32> subc("Baxter_z", &messageCbz); 

//subscribes to topic 

ros::Subscriber<std_msgs::Float32> subd("Gripper_Pos", &messageCbGp); 

//subscribes to topic 

 

ros::Publisher chatterTime("chatterTime", &timeStamp); //added 

ros::Publisher chatterx("chatterx", &testx); 

ros::Publisher chattery("chattery", &testy); 

ros::Publisher chatterz("chatterz", &testz); 

ros::Publisher chatterya("chatterya", &testya); 

ros::Publisher chatterza("chatterza", &testza); 

//ros::Publisher chatteryg("chatteryg", &testyg); 

//ros::Publisher chatterzg("chatterzg", &testzg); 

 

void setup(){ 

 

  // Mode conditions 

  if (mode == 2) 

  { 

    targetInterval = 5380; 

    tOff = 1500; 

    targetCondition = 1300; 

  } 

  else if (mode == 3) 

  { 

   targetInterval = 3510; 

   tOff = 1000; 

   targetCondition = 1755; 

  } 

  yOff = yVelAvg * tOff;  //calculate once after assigning tOff 

  servoClass.SETUP1();    //attach servo 

  servoClass.SETUP2();    //defines servo initial position as an angle 

  motorClass.SETUP(); //pinmode, attaches interrupts, defines shield as 

md 

   

 

  //publisher & subscriber code 

  nh.initNode(); //initialize ros node handle 

 

  nh.advertise(chatterTime); //added 

  nh.advertise(chatterx); //advertise to topics for input versus actual 

points 

  nh.advertise(chattery); 

  nh.advertise(chatterz); 

  nh.advertise(chatterya); 

  nh.advertise(chatterza); 

//  nh.advertise(chatteryg); 

//  nh.advertise(chatterzg); 
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  nh.subscribe(suba); //subscribe to topic 

  nh.subscribe(subb); 

  nh.subscribe(subc); 

  nh.subscribe(subd); //added for gripper gap 

 

 

  verificationClass.homeSetup(); //defines initial position of bar 

centroid relative to eye midpoint 

  parameterClass.SETUP(); //calculates initial deltas and other 

coordinates (deltas all zero)  

  pTime1 = millis(); 

 

} 

 

void loop(){ 

   

  if (cTime2>=10) //sampling at 100Hz -> period of 10ms 

  {     

    //Publish input versus actual calculated in verification tab to 

chatter topic 

    timeStamp.data = (millis()); 

    testx.data = parameterClass.pos2R0[0]; 

    testy.data = parameterClass.pos2R0[1]; 

    testz.data = parameterClass.pos2R0[2]; 

    testya.data = verificationClass.aPos2R0[1]; 

    testza.data = verificationClass.aPos2R0[2]; 

//    testyg.data = pos2R0Grip[1]; 

//    testzg.data = pos2R0Grip[2]; 

 

    chatterTime.publish ( &timeStamp ); 

    chatterx.publish( &testx ); 

    chattery.publish( &testy ); 

    chatterz.publish( &testz ); 

    chatterya.publish( &testya ); 

    chatterza.publish( &testza ); 

//    chatteryg.publish( &testyg ); 

//    chatterzg.publish( &testzg ); 

    nh.spinOnce(); 

    //don't need delay, already runs at servoTime interval 

 

    verificationClass.SETUP(); //find actual point and end of run 

 

    pTime2=millis(); 

  }  

   

  if (servoClass.cTime1 >= servoClass.servoTime && servoClass.cTime1 % 

servoClass.servoTime <= 5)  

  { 

    verificationClass.SETUP(); //find actual point and end of run 

    parameterClass.SETUP(); //find deltas 

    servoClass.SETUP2(); // reset initial servo position 

  } 

 

  servoClass.cTime1 = millis() - pTime1; //update servoClass.cTime1 

  servoClass.servoLoop(); // move servo 

  motorClass.motorLoop(); // move motor 
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  if (servoClass.cTime1 >= 300) //Timer 1 dual purpose, used to start 

new instruction loop and then reset for feedback loop 

                                                                 //time 

condition is servoTime PLUS time allotted for correction (remember same 

timer) 

  { 

    pTime1=millis(); // restarts Timer 1 

    motorClass.previousStart = millis(); //redefines after each 

motorTime cycle passes 

  } 

 

  cTime2 = millis() - pTime2; //update Timer2 

} 
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dc_motor_encoder_code.cpp 

 
#include "Arduino.h" 

#include "dc_motor_encoder_code.h" 

#include "dh_param.h" 

 

#include "DualMC33926MotorShield.h" 

 

DualMC33926MotorShield md; 

 

#define encoder0PinA  2 

#define encoder0PinB  3 

static volatile int encoder0Pos; // was volatile unsigned int 

   

mClass::mClass(){} 

 

void mClass::SETUP(){ 

   

  pinMode (encoder0PinA, INPUT); 

  pinMode (encoder0PinB, INPUT); 

 

  // encoder pin on interrupt 0 (pin 2) 

  attachInterrupt(0, doEncoderA, CHANGE); 

 

  // encoder pin on interrupt 1 (pin 3) 

  attachInterrupt(1, doEncoderB, CHANGE); 

   

  md.init(); //forgot before 

 

  motorClass.previousStart = millis(); 

} 

 

void mClass::stopIfFault() 

{ 

  if (md.getFault()) 

  { 

    Serial.println("fault"); 

    while(1); 

  } 

} 

 

void mClass::doEncoderA() { 

  // look for a low-to-high on channel A 

  if (digitalRead(encoder0PinA) == HIGH) { 

 

    // check channel B to see which way encoder is turning 

    if (digitalRead(encoder0PinB) == LOW) { 

      encoder0Pos = encoder0Pos + 1;         // CW 

    } 

    else { 

      encoder0Pos = encoder0Pos - 1;         // CCW 

    } 

  } 

 

  else   // must be a high-to-low edge on channel A 

  { 
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    // check channel B to see which way encoder is turning 

    if (digitalRead(encoder0PinB) == HIGH) { 

      encoder0Pos = encoder0Pos + 1;          // CW 

    } 

    else { 

      encoder0Pos = encoder0Pos - 1;          // CCW 

    } 

  } 

   

} 

 

void mClass::doEncoderB() { 

  // look for a low-to-high on channel B 

  if (digitalRead(encoder0PinB) == HIGH) { 

 

    // check channel A to see which way encoder is turning 

    if (digitalRead(encoder0PinA) == HIGH) { 

      encoder0Pos = encoder0Pos + 1;         // CW 

    } 

    else { 

      encoder0Pos = encoder0Pos - 1;         // CCW 

    } 

  } 

 

  // Look for a high-to-low on channel B 

 

  else { 

    // check channel B to see which way encoder is turning 

    if (digitalRead(encoder0PinA) == LOW) { 

      encoder0Pos = encoder0Pos + 1;          // CW 

    } 

    else { 

      encoder0Pos = encoder0Pos - 1;          // CCW 

    } 

  } 

} 

 

void mClass::motorControl(){ 

 

currentMillisM = millis();  //redundant for ramp conditions 

 

  stopIfFault(); //stops motor if problem 

 

   //RAMP UP 

    if (currentMillisM - previousStart < rampTime) //make sure in 

testing that i=400 is reached in this time 

    { 

      if (RPM <= maxRPM)  //was maxSpeed 

      { 

        RPM = RPM + delayMotorMultiplier; //more positive 

        i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364); 

        if (parameterClass.deltaZ >= 0) 

        { 

          md.setM1Speed(i);  // CW if positive parameterClass.deltaZ, 

may need to switch cases 

         } 

        else 
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        { 

          md.setM1Speed(-1*i);  //CCW if negative parameterClass.deltaZ 

        } 

      } 

    } 

 

    //RAMP DOWN 

    else if (currentMillisM - previousStart >= 0.8 * motorTime) 

    { 

      if (RPM >= 0) // could change to 5 to keep motor moving if needs 

more time 

      { 

        RPM = RPM - delayMotorMultiplier;  //was plus (less negative) 

now minus 

        i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364); 

        if (parameterClass.deltaZ < 0) 

        { 

          md.setM1Speed(-1*i);  //CCW if negative parameterClass.deltaZ 

        } 

        else 

        { 

          md.setM1Speed(i);  // CW if positive parameterClass.deltaZ, 

may need to switch cases 

        } 

      } 

    } 

 

    else 

    { 

      if ((currentMillisM - previousStart - rampTime) < 10) //reach max 

rpm if not yet reached 

      { 

        rampPos = encoder0Pos *-1 * 25.4 / (400 * 24); 

        totalPos = parameterClass.pos3R1[2]; //desired position for end 

of motorTime 

        bufferRPM = abs((60000 / 25.4) * (totalPos - rampPos) / (0.7 * 

motorTime)); // convert mm/ms to RPM 

        RPM = maxRPM + bufferRPM; 

        i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364); 

         

        if (parameterClass.deltaZ>0) 

        { 

          md.setM1Speed(i); 

        } 

        else 

        { 

          md.setM1Speed(-1*i);  // stop motor if number of rotations 

reached early 

        } 

         

      } 

      else 

      { 

      } 

    } 

} 
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void mClass::motorCorrection(){ 

 if (abs(encoder0Pos * -1 * 25.4 / (400 * 24) - 

parameterClass.pos3R1[2]) > 0.1) //if MOTOR is over 1mm from desired 

position 

  { 

    if ((encoder0Pos * -1 * 25.4 / (400 * 24)) - 

parameterClass.pos3R1[2] >= 0) //motor higher than desired position 

    { 

      md.setM1Speed(-125); 

    } 

    else //motor lower than desired position 

    { 

      md.setM1Speed(125); 

    } 

  } 

  else //put stop motor in here instead if motor within acceptable 

error 

  { 

    RPM=0;  

    i=round(-0.000004 * sq(RPM) + 0.0912 * RPM + 55.364); 

    md.setM1Speed(i);  // stop motor if number of rotations reached 

  } 

} 

 

void mClass::motorLoop(){ 

  stopIfFault(); 

  doEncoderA(); 

  doEncoderB(); 

  eTicks = encoder0Pos; 

 

  if (servoClass.cTime1 <= motorTime) 

  { 

    motorRotations = ceil(abs(parameterClass.deltaZ) * 24 * 

(1/25.4));  // 24 rotations per inch displacement, in to mm 

    rampTime = 0.2 * motorTime;  //40% of time used for ramp up/down, 

in milliseconds 

  //  avgMotorRPM = 60000 * motorRotations / motorTime;  //convert 

milliseconds to minutes, in RPM 

   

    maxRPM = (60000 * abs(parameterClass.deltaZ) * 24 * (1/25.4) / 

motorTime) / 0.8;   //average value theorem dependent on ramp time 

    maxRPM = constrain(maxRPM, 0, 4901); // ADDED, cannot exceed spec'd 

maximum +1 

   

    //int maxSpeed = map(maxRPM, 0, 4900, 0, 400);  //CHANGEd TO 

EQUATION FOUND IN EXCEL 

    maxSpeed = round(-0.000004 * sq(maxRPM) + 0.0912 * maxRPM + 

55.364); 

   

    // delayMotor = rampTime/maxRPM;  // ramp up time divided by number 

of increments of RPM, was i 

    delayMotorMultiplier = ceil(4 *maxRPM / rampTime); //dependent on 

time increment chosen in loop 

 

    currentMillisM = millis();  //redundant for if statement 

    if (currentMillisM - previousMillisM >= 4)  // was >= delayMotor 

    { 
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      previousMillisM = currentMillisM; 

      motorControl(); 

    } 

  } 

  else 

  { 

    motorCorrection(); 

  }  

} 

 

mClass motorClass = mClass(); 
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dc_motor_encoder_code.h 
#ifndef dc_motor_encoder_code_h 
#define dc_motor_encoder_code_h 
 
#include "servo_pot_code.h" 
//Pins used by the motor shield: 4,7,8,9,10.12,A0,A1 
 
class mClass 
{ 
  public: 
    mClass(); 
    static void SETUP(); 
    void stopIfFault(); 
    static void doEncoderA(); 
    static void doEncoderB(); 
    int eTicks; //added, couldn't have encoder0Pos here, need to use in 
verification.cpp 
    void motorControl(); 
    void motorLoop(); 
 
    void motorCorrection(); //ADDED to correct motor position 
 
    int i; // increment for motor speed, was zero 
    int RPM; //added, current RPM 
     
    int motorTime = 115; // time allotted for motor to run in milliseconds, 
linked to servoTime 
     
    int motorRotations; 
    int rampTime; 
    int maxRPM; 
    int maxSpeed; 
    int delayMotorMultiplier; // likely should give better name 
     
    float rampPos; 
    float totalPos; 
    int bufferRPM; 
 
    unsigned long currentMillisM=millis(); 
    unsigned long previousMillisM;        // will store last time speed was 
updated 
    unsigned long previousStart;     
   
     
}; 
 
extern mClass motorClass; 
 
#endif 
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dh_param.cpp 

#include "dh_param.h" 

#include "math.h" 

#include "Arduino.h" 

#include "verification.h" 

 

dhClass::dhClass(){} 

 

void dhClass::SETUP() { 

 //Gripper wrt eye midpoint = gripper wrt base minus midpoint wrt base 

  pos2R1[0] = pos2R0[0]-pos1R0[0]; 

  pos2R1[1] = pos2R0[1]-pos1R0[1]; 

  pos2R1[2] = pos2R0[2]-pos1R0[2]; 

   

  magA= sqrt(sq(pos2R1[0]) + sq(pos2R1[1]) + sq(pos2R1[2])); 

//magnitude of midpoint to gripper vector, square root of sum each 

pos2R1 element squared 

 

 

  //Find bar centroid wrt base 

  pos3R0[0] = pos1R0[0] - ((radius * pos2R1[0]) / magA); 

  pos3R0[1] = pos1R0[1] - ((radius * pos2R1[1]) / magA); 

  pos3R0[2] = pos1R0[2] - ((radius * pos2R1[2]) / magA); 

 

// define previous centroid based on actual position from previous run 

  // cant equate array to array, must go do so element-wise 

  for (int entry=0; entry<=2; entry++) 

  { 

    oldPos3R1[entry] = verificationClass.aPos3R1[entry]; 

  }   

 

  //Find desired bar centroid relative to fixed midpoint 

  //Equals bar centroid wrt base minus midpoint wrt base 

  pos3R1[0]=pos3R0[0]-pos1R0[0]; 

  pos3R1[1]=pos3R0[1]-pos1R0[1]; 

  pos3R1[2]=pos3R0[2]-pos1R0[2]; 

 

  //Find delta x, y, z 

  deltaX=pos3R1[0]-oldPos3R1[0]; 

  deltaY=pos3R1[1]-oldPos3R1[1]; 

  deltaZ=pos3R1[2]-oldPos3R1[2]; 

 

} 

 

dhClass parameterClass = dhClass(); 
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dh_param.h 

 
#ifndef dh_param_h 
#define dh_param_h 
 
#include <math.h> 
class dhClass 
{ 
  public: 
    dhClass(); 
    void SETUP(); 
    //int pos2R0[];   //gripper relative to base from .csv file 
    float pos2R1[3];  //midpoint to desired gripper trajectory point 
    float magA; //magnitude of vector from midpoint to desired gripper point 
     
    float pos3R0[3]; //bar centroid relative to base 
    int radius = 37; //distance from eye midpoint to bar centroid in 
millimeters 
     
    float pos3R1[3] = {-37, 0, 0};  //give initial position of bar centroid 
relative to fixed eye midpoint,  
                                       
    float oldPos3R1[3]; ////previous bar centroid position 
     
    float deltaX;  
    float deltaY; 
    float deltaZ; 
 
    //Position Vectors 
    //*Put from here down in loop* 
    float pos1R0[3] = {0,0,650}; //fixed eye midpoint relative to Baxter base 
measured, was set to approx 900 
             
    float pos2R0[3] = {500, 0, 650};  //initialize to look straight ahead at 
first before point obtained from Baxter 
}; 
 
extern dhClass parameterClass; 
 
#endif 

  



148 

servo_pot_code.cpp 

 
#include "Arduino.h" 

#include "servo_pot_code.h" 

#include "dh_param.h" 

 

ServoTimer2 myservo; 

 

sClass::sClass(){ 

   

} 

 

// run in robotic setup ONLY 

void sClass::SETUP1(){ 

  myservo.attach(servoPin); 

   

} 

 

// redefine initial position with every new gripper point 

void sClass::SETUP2(){ 

  currentPosition=getPos(feedbackPin); // degrees 

  initialPosition=currentPosition;  //degrees 

} 

 

// Move servo to position 

void sClass::Seek(ServoTimer2 servo, int analogPin, float pos) 

{ 

   

  // Writes defined angle to motor in increments (start moving) 

  if (abs(getPos(feedbackPin) - pos) >= 1)  //if position read by pot 

is not within _ degrees of instructed position 

  {     

    if (getPos(feedbackPin) < pos) 

    { 

      currentPosition++; 

      currentPosition = constrain(currentPosition, 62, angle); 

    } 

    else 

    { 

      currentPosition--; 

      currentPosition = constrain(currentPosition, angle, 132); 

    } 

 

    servo.write(1800 - (((128 - currentPosition) * (1800 - 1300)) / 

(128 - 80)));  

  } 

  else // if off by less than a degree, go straight to desired angle 

  { 

    servo.write(1800 - (((128 - angle) * (1800 - 1300)) / (128 - 80))); 

  } 

} 

 

 

void sClass::Seek2(ServoTimer2 servo) 

{ 
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  servo.write(1800 - (((128 - angle) * (1800 - 1300)) / (128 - 80))); 

} 

 

 

float sClass::getPos(int analogPin) 

{ 

 return (maxDegrees - (((maxFeedback - analogRead(analogPin)) * 

(maxDegrees - minDegrees)) / (maxFeedback - minFeedback))); 

} 

 

 

void sClass::servoLoop(){ 

  currentMillisS = millis(); 

  deltaAngle = (acos(parameterClass.pos3R1[1] / (sqrt(sq(radius) - 

sq(parameterClass.pos3R1[2])))) - ((187 - initialPosition) * M_PI / 

180)) * -1 * 180 / M_PI; 

  delayServo =  round(abs(servoTime/deltaAngle)); 

  if (delayServo < 2) //servo delay cannot feasibly be less than 2 

milliseconds 

  { 

    delayServo = 2; // ignore calculation if less than 2 and assign 2 

  } 

  if (cTime1 >= servoTime + 50) 

  { 

    currentMillisS=millis(); 

    if (currentMillisS - previousMillisS >= delayServo) 

    { 

      Seek2(myservo);  // moves to instructed angle 

      previousMillisS = currentMillisS; 

    } 

  } 

  else if (currentMillisS - previousMillisS >= delayServo) 

  { 

    angle = initialPosition + deltaAngle; 

    angle = constrain(angle, 62, 132); //ADDED so servo doesn't try to 

go beyond feasible range 

    Seek(myservo, feedbackPin, angle);  // moves to __ degree mark 

    previousMillisS = currentMillisS; 

  } 

} 

 

 

 

 

sClass servoClass = sClass(); 
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servo_pot_code.h 

 

 
#ifndef servo_pot_code_h 
#define servo_pot_code_h 
 
// ServoTimer2 library disables analogWrite PWM on pins 3 & 11 (vs 9 & 10 on 
regular servo library) 
// Can still use pins 3 and 11 for other purposes 
#include <ServoTimer2.h>  
#include <math.h> 
#include "Arduino.h" 
 
 
class sClass 
{ 
  public: 
    sClass(); 
    void SETUP1(); 
    void SETUP2(); 
    void Seek(ServoTimer2 servo, int analogPin, float pos); 
    float getPos(int analogPin); 
    void servoLoop(); 
 
    unsigned long cTime1; //current time within a motor run 
     
    void sClass::Seek2(ServoTimer2 servo);    
     
    // Control and feedback pins 
    #define servoPin 5 
    int feedbackPin = A5;  //was A5 
     
    int radius = 37; // radius in mm, already in DH parameter code 
     
    // Calibration values 
    int minDegrees=62; 
    int maxDegrees=132; 
    int minFeedback=725;  // was 965, 713 
    int maxFeedback=962;  // was 735, 951 
     
    int servoTime = 100;  // in milliseconds, time allotted for servo movement 
     
    float deltaAngle; //change in servo angle 
    int delayServo;  //delay allowed for servo  
    float angle;  //desired final angle of servo (pos argument of void Seek()) 
         
    float initialPosition; // angle in deg from pot at start 
    float currentPosition; // angle in deg from pot 
                
    unsigned long previousMillisS = 0;        // will store last time speed 
was updated, was zero 
    unsigned long currentMillisS=millis(); 
}; 
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extern sClass servoClass; 
 
#endif 
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verification.cpp 

 
#include "verification.h" 

#include "math.h" 

#include "Arduino.h" 

 

#include "servo_pot_code.h" 

#include "dc_motor_encoder_code.h" 

#include "dh_param.h" 

 

vClass::vClass(){} 

 

void vClass::homeSetup(){ 

  aPos3R1[0] = -37; 

  aPos3R1[1] = 0; 

  aPos3R1[2] = 0; 

} 

 

void vClass::SETUP() { 

 // (A) FIND ACTUAL BAR CENTROID RELATIVE TO EYE MIDPOINT 

  

 finalPosition = servoClass.getPos(servoClass.feedbackPin); // get 

position of servo at end of defined servoTime (=motorTime) from pot 

  

 aPos3R1[2] = motorClass.eTicks * -1 * 25.4 / (400 * 24); // converts 

encoder ticks to Z of bar centroid relative to eye midpoint in mm 

 //alphaServo = 187 - finalPosition; 

 //rXY = sqrt(sq(servoClass.radius)-sq(aPos3R1[2])); 

 //aPos3R1[1] = rXY * cos(alphaServo); 

 aPos3R1[1] = sqrt(sq(servoClass.radius)-sq(aPos3R1[2])) * cos((187 - 

finalPosition)* M_PI / 180); // Y of bar centroid relative to eye 

midpoint in mm 

 aPos3R1[0] = -sqrt(sq(servoClass.radius)-sq(aPos3R1[1])-

sq(aPos3R1[2])); // X of bar centroid relative to eye midpoint in mm 

 

 

 // (B) FIND ACTUAL POINT LOOKING AT RELATIVE TO BASE FRAME 

  

 aPos2R0[0]=parameterClass.pos2R0[0]; //input X same as actual X of 

gripper relative to base 

 aPos2R1[0]=parameterClass.pos2R1[0]; //input X same as actual X of 

gripper relative to eye midpoint 

  

 aPos3R0[0]= aPos3R1[0]+ parameterClass.pos1R0[0]; //get X,Y,Z of bar 

centroid relative to base for calculations 

 aPos3R0[1]= aPos3R1[1]+ parameterClass.pos1R0[1]; 

 aPos3R0[2]= aPos3R1[2]+ parameterClass.pos1R0[2]; 

  

 aMagA = aPos2R1[0] / ((parameterClass.pos1R0[0]- 

aPos3R0[0])/servoClass.radius); 

 

 aPos2R1[1] = aMagA * ((parameterClass.pos1R0[1]- 

aPos3R0[1])/servoClass.radius); 

 aPos2R1[2] = aMagA * ((parameterClass.pos1R0[2]- 

aPos3R0[2])/servoClass.radius); 
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 aPos2R0[1]= aPos2R1[1]+ parameterClass.pos1R0[1]; //actual gripper Y 

relative to base 

 aPos2R0[2]= aPos2R1[2]+ parameterClass.pos1R0[2]; //actual gripper Z 

relative to base 

 

} 

 

vClass verificationClass = vClass(); 
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verification.h 

 
#ifndef verification_h 
#define verification_h 
 
#include <math.h> 
class vClass 
{ 
  public: 
    vClass(); 
    void SETUP(); 
    void homeSetup(); 
    float finalPosition; //final servo position after servoTime 
    float aPos3R1[3]; //actual bar centroid relative to eye midpoint 
    float aPos2R1[3]; //actual gripper position relative to eye midpoint 
    float aPos2R0[3]; //actual gripper position relative to base frame 
    float aMagA; //actual magnitude of vector, A, from {1} to {2} 
    float aPos3R0[3]; 
}; 
 
extern vClass verificationClass; 
 
#endif 
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Arduino IDE Pseudocode 
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157 

Arduino message function for gap between Baxter’s fingertips 

 



 

 

1
5
8
 

Arduino message function for x of Baxter gripper 
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Arduino message function for y of Baxter gripper 
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Arduino message function for z of Baxter gripper 

  



 

161 

Lateral Motor Code (referenced in Arduino IDE Pseudocode) 
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Seek Function (referenced in Lateral Motor Code) 
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Vertical Motor Code (referenced in Arduino IDE Pseudocode) 
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Encoder Channel A Code (referenced in Vertical Motor Code) 
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Encoder Channel B Code (referenced in Vertical Motor Code) 
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Motor Control Function (referenced in Vertical Motor Code) 
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Motor Correction Function (referenced in Vertical Motor Code) 
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Appendix E: Analog Read Code 

int minDegrees=62; 
int maxDegrees=132; 
int minFeedback=725; 
int maxFeedback=962; 
int feedbackPin = A5; 
 
int angle; 
 
int getPos(int analogPin) 
{ 
  return map(analogRead(analogPin), minFeedback, maxFeedback, minDegrees, 
maxDegrees); 
} 
 
void setup()  
{ 
  angle = analogRead(A5); 
  Serial.begin(57600); 
}   
 
void loop() { 
  // put your main code here, to run repeatedly: 
//  Serial.println(angle); // prints analog reading on one line 
  if (millis() % 10 < 5) 
  { 
    Serial.println(getPos(feedbackPin)); // prints calculated angle on next 
line 
  } 
   
} 
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