You are here

Parallel Distributed Deep Learning on Cluster Computers

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Deep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead speci c to a system with o the shelf networking components. In this thesis, we present a novel synchronous data parallel distributed Deep Learning implementation on HPCC Systems, a cluster computer system. We discuss research that has been conducted on the distribution and parallelization of Deep Learning, as well as the concerns relating to cluster environments. Additionally, we provide case studies that evaluate and validate our implementation.
Title: Parallel Distributed Deep Learning on Cluster Computers.
368 views
287 downloads
Name(s): Kennedy, Robert Kwan Lee, author
Khoshgoftaar, Taghi M., Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 83 p.
Language(s): English
Abstract/Description: Deep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead speci c to a system with o the shelf networking components. In this thesis, we present a novel synchronous data parallel distributed Deep Learning implementation on HPCC Systems, a cluster computer system. We discuss research that has been conducted on the distribution and parallelization of Deep Learning, as well as the concerns relating to cluster environments. Additionally, we provide case studies that evaluate and validate our implementation.
Identifier: FA00013080 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Deep learning.
Neural networks (Computer science).
Artificial intelligence.
Machine learning.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013080
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.