
CAMPUS DRIVER ASSISTANT ON AN ANDROID PLATFORM

by

Iana Zankina

A Thesis Submitted to the Faculty of

The College of Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

December 2012

ACKNOWLEDGEMENTS

I would like to thank my family for giving me the opportunity to continue my

education and achieve my goals, without them this would not have been possible. They

not only gave me the reason, drive, and encouragement to strive for my dreams, but they

also gave me all the support and love I could have possibly needed. I hope I make them

proud.

I would also like to sincerely thank my advisor, Dr. Mihaela Cardei, as well as all

of my committee members, for their encouragement and advice. Their input has been

priceless over the course of the writing of this manuscript. Their belief in my abilities

helped built confidence and enthusiasm in my work. I appreciate the chance they gave me

to be involved in a very cutting edge project and giving me valuable exposure to

techniques I can utilize in my future endeavors.

iii

ABSTRACT

Author: Iana Zankina

Title: Campus Driver Assistant on an Android Platform

Institution: Florida Atlantic University

Thesis Advisor: Dr. Mihaela Cardei

Degree: Master of Science

Year: 2012

College campuses can be large, confusing, and intimidating for new students and

visitors. Finding the campus may be easy using a GPS unit or Google Maps directions,

but this is not the case when you are actually on the campus. There is no service that

provides directional assistance for the campus itself. This thesis proposes a driver

assistant application running on an Android platform that can direct drivers to different

buildings and parking lots in the campus.

 The application’s user interface lets the user select a user type, a campus, and a

destination through use of drop down menus and buttons. Once the user submits the

needed information, then next portion of the application runs in the background. The app

retrieves the Campus Map XML created by the mapping tool that was constructed for this

project. The XML data containing all the map elements is then parsed and stored in a

hierarchal data structure. The resulting objects are then used to construct a campus graph,

on which an altered version of Dijkstra’s Shortest Path algorithm is executed. When the

iv

path to the destination has been discovered, the campus map with the computed path

overlaid is displayed on the user’s device, showing the route to the desired destination.

v

CAMPUS DRIVER ASSISTANT ON AN ANDROID PLATFORM

FIGURES ... viii

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation and Problem Statement ... 3

1.2 Related Works ... 3

1.3 Contribution .. 5

1.4 Project Tasks and Thesis Organization ... 7

CHAPTER 2: UML CLASS DIAGRAM ... 10

2.1 UML .. 10

2.2 UML Design Software .. 11

2.3 Campus Map Class Diagram ... 12

CHAPTER 3: THE ANDROID PLATFORM .. 16

3.1 Android Platform Background .. 16

3.2 Android Platform Architecture.. 18

3.3 Open Source Community .. 21

3.4 Java Android and the Campus Driver Assistant on an Android Platform 22

CHAPTER 4: THE XML PARSER ... 25

4.1 Background on XML Parsing ... 25

4.2 Parsers and Libraries Description ... 26

4.3 XML Parsing and the Campus Driver Assistant on an Android Platform 28

CHAPTER 5: THE CAMPUS MAP .. 31

5.1 Google Map of Campus .. 32

5.2 Map Editor Tool .. 33

CHAPTER 6: FINDING THE SOURCE-DESTINATION PATH 36

6.1 Designing the Graph Data Structure ... 37

6.2 An Algorithm for Finding the Shortest Path ... 39

6.3 Dijkstra’s Shortest Path Algorithm ... 41
vi

CHAPTER 7: COMPONENT INTEGRATION .. 45

7.1 Component Creation and Integration .. 45

7.2 Difficulties with Integration .. 50

CHAPTER 8: CONCLUSIONS ... 51

8.1 Conclusions on the Project .. 51

8.2 Future Works ... 52

REFERENCES ... 53

vii

FIGURES

Figure 1: Project Task Diagram .. 7
Figure 2: UML Class Diagram ... 13
Figure 3: Android Version over Time .. 17
Figure 4: The Software Layers of the Android Platform [Spe12]. 20
Figure 5: Our User Interface ... 24
Figure 6: Comparison of DOM and SAX Parsers [Dom12]. .. 27
Figure 7: Parser code snippet. ... 30
Figure 8: Google Campus Map (Unaltered). .. 33
Figure 9: Altered Campus Map... 35
Figure 10: Anatomy of a diagraph and XML code. .. 38
Figure 11: Pseudocode of original Dijkstra's Algorithm [Col01]. 41
Figure 12: Dijkstra's Shortest Path Algorithm example running on a graph [Dij12]. 42
Figure 13: Dijkstra's Alg. example running up to predefined destination node[Dij12]. . 43
Figure 14: Our pseudocode version of Dijkstra's. ... 44
Figure 15: User interface with resulting map and path. .. 49

viii

CHAPTER 1: INTRODUCTION

It was not long ago that having a cellular phone was a luxury few people could

afford, but in the last ten years there have been great technological advancements that

allowed cell phones to become ubiquitous. Mobile phones have become easier to afford,

smaller, faster, more powerful, and have managed to become interwoven in user’s daily

routines. Most importantly the king of cell phones, the smart phone, has much of the

functionality of a personal computer, and so has made paper planners, calendars, address

books, and even alarm clocks obsolete [Nel12]. Smart phones have been especially

helpful in boosting social networking websites like Facebook and Twitter. It is now

possible to access these sites and add text and pictures from any location, doing pretty

much any activity that can be done on a computer. This has made it easier for people,

who are geographically separated, to feel involved in each other’s lives, and be able to

keep in touch without much effort.

Smart phones have also made it easier for people who work on the move to stay in

tune with constant email alerts and web browsing access. If this is not enough, there are

endless applications to keep you entertained if you need it. From housewives needing to

keep their kids occupied in doctor’s offices, to businessmen waiting for another delayed

flight, smart phone applications have become irreplaceable. Many of these applications-

including games, book libraries, video streaming, GPS navigation and many more- are

free of charge. They are also simple to install and use.
1

There are probably not many people who have not come across the Angry Birds

game, where users with touch screen smart phones aim and shoot birds with a slingshot to

destroy different structures. The Netflix app allows users to instantly stream movies and

shows to their phones, entertaining them regardless of the absence of a television in the

vicinity. Another very popular app is Google earth, which allows users to find different

locations and landmarks via satellite imagery. There are also many apps created for

specific businesses, such as banks, retail stores, and many more.

One of the most popular smartphone technologies is Android [And12]. It is an

open source platform, meaning that its code is released to the public as soon as the new

version of the platform is completed. In addition, any user with the desire and knowledge

to modify or create Android applications is not only able to, but encouraged to do so.

This is a unique way Android developers are interacting with users and their input makes

the Android platform stay on the budding edge of the market. Users are able to customize

their devices as they see fit, and they can share any apps they create easily with other

Android users, spreading new ideas and software.

 Other technological advancements have recently gained popularity. There are

many devices and different applications that focus on directing the user to desired

locations. Today’s drivers are well equipped for travel thanks to the GPS units many have

in their cars, which help them not only find their way, but also avoid congested routes

and drive safely [Gps12]. These are not the drivers of yesteryear that have to stop for

directions or get lost. GPS applications allow users to enter a destination and using their

current coordinates, display the fastest way to get to their destination [Woo12].

Additional features have evolved over time, such as displaying congested routes, which

2

allow users to make the smart driving decisions and improve driving safety as well. This

saves time and stress when going to unfamiliar places or taking long trips. Since this

technology is readily available to scientists and engineers, it is therefore important for us

to make use of it and improve it as much as possible for the sake of the users.

1.1 Motivation and Problem Statement

Google Maps and GPS have become very popular in recent years, with vast

amounts of users relying on them for directions [Kin11], but their capabilities have not

yet been applied to university campuses. Directions within campuses are not available

using the Google maps application. The campuses can be quite large and confusing. New

students and staff, as well as visitors can have a very difficult time getting around. Even

when they are asking for directions, they often time cannot find the destination because

the directions involve knowing the surrounding buildings and landmarks of the campus.

This can get quite stressful, especially considering students are often on a schedule and

need to get to classes on time. Eliminating this stress and confusion would improve the

overall atmosphere of the campus. Since smart phones are a ubiquitous technology

nowadays, it makes sense to use them to resolve such issues.

The problem that we address in this thesis is how to use the current advances in

technology to provide a mechanism to facilitate drivers’ navigation in campuses. This

navigation system should provide driving directions to buildings and parking lots.

1.2 Related Works

 There has not been much related work in the specific area of our project.

Providing a route to a destination has been available for general directions for a while

3

using GPS and Google Maps, as was mentioned previously. However, there has not been

much made available for the specific task of directing users around a college campus,

using a map with an overlaid route. There are plenty of college websites that provide

directions and maps, including interactive maps, but not ones that allow the user to select

a destination and give them the shortest path to that destination. Performing some

research we came across a few applications which were aimed at a similar idea to our

application.

 Google has been involved with a few projects that have similarities to ours. The

one that most resembles our project is the 2007 Google Street View Project. This project

involves taking images using car, trike or bike mounted cameras and mapping unique

areas such as parks, university campuses and malls [Str12]. This allows users to

interactively view the areas, seeing the location in 360°. While this technology is

interesting, and it does allow very in debt mapping of the campuses, including pedestrian

walkways as well as streets, it does not allow the user to enter their desired destination

and have the shortest path to their destination be displayed on the map.

 The University of California, Santa Barbara students are working on an

Interactive Map Project [Wel12]. Their map allows users to select buildings to zoom into

and locate, as well as finding a room within a building. This project does not allow users

to find directions from one area of the campus to another.

 One campus map that allows similar functionality to our intended application is

the University of California, San Diego campus map. This map is accessed through a web

browser and allows the user to select a source location and a destination. When this

information is submitted, the shortest path is outlined on the map, and the distance and

4

expected walking time is shown [Kel12]. This page does not however, allow for driving

directions within campus.

 The campus map oriented projects discussed above, and our application, have one

major difference, our application is intended for an Android smartphone device, whereas

the other campus maps are web pages accessible from a browser but are not available as

applications. Through our research, we found one available Android application that was

focused on showing a user their current location, determined by the device GPS, overlaid

on top of a college campus [Cam12]. The Campus Maps application available through

the Google Store for Android devices, allows a user that downloads the app, to see their

current location and movements shown on a map of a college campus, so long as the map

is included in the list of available maps for the app. The reviews of this app are not very

flattering [Cam12]. Users state that their campuses are not available, or that the map

images are not good and so it is not helpful. Although the idea behind this application is

similar to our own, it does not show the best, shortest route to a desired destination, and it

currently does not support the FAU campuses.

 There are not many applications or projects that are aimed at the same goals as

our project, however there are some similar ideas being developed that may provide some

useful input to our concept.

1.3 Contribution

In this thesis, we design and develop a campus driver assistant application that

runs on an Android platform and is intended to assist campus drivers and users that want

to find driving directions to a certain building in the campus. The application provides

driving directions to the destination building or to a parking lot, and this parking selection

5

is based on the type of user (e.g. visitor, staff, and students). The computed path (e. g. the

shortest-path) is displayed on the smartphone to assist the driver in reaching the

destination.

The driving direction project falls under the umbrella of Campus 2020 initiative,

managed by Dr. Daniel Raviv, which seeks to provide avenues to enhance and

revolutionize campus life experience of students, staff, and visitors. A number of exciting

project are underway, including campus driving directions application.

6

Figure 1: Project Task Diagram

1.4 Project Tasks and Thesis Organization

The main tasks of our application are presented in Figure 1 above:

7

• UML class diagram: the UML class diagram is basically the blue print of

our application. It is a visual representation of how we will structure our

classes. This is an important design step, because it allows us to have a

starting point when coding. A UML diagram has a great organizational role

and it prevents a lot of confusion and backtracking.

• User Interface: the user interface is the part of the app that interacts with the

user. It allows the user to enter the needed information into the app, such as

the destination and whether the user is a student, visitor, or staff. This

information is then used by the app in computing a path to the destination.

• Campus map tool: we designed a campus map tool which can be used to

create a map of the campus in XML format. This XML campus map is later

used by the app to identify the campus map objects, such as buildings, streets,

parking lots, walkways, etc.

• Server side: the server is used to store campus maps in XML format. The

Android application connects to the server using HTTP protocol to retrieve

the campus map as an XML file.

• Campus map parsing: the application parses the XML campus map in order

to retrieve useful information, such as intersections, buildings, parking lots,

road segments, traffic signs, etc. Based on this information, a data structure

needed in building the shortest path is formed.

• Finding a shortest path: design of the algorithm that computes the shortest-

path between the current user location (e.g. the source) and the intended

destination.

8

The rest of the thesis is organized as follows. In chapter 2 we present the UML

class diagram where we explain the classes used in our project and their attributes. We

continue in chapter 3 with an introduction to the Android platform and explain the way in

which it has been used in our project. Chapter 4 presents the XML parser, which is

critical in retrieving information about the campus structure. In chapter 5 we discuss the

mapping of the campus and the tools used. Chapter 6 focuses on the algorithm needed to

find the shortest path to the destination. We continue in Chapter 7 with a discussion on

the integration of all these components and difficulties we ran into during this process.

We conclude our thesis in Chapter 8.

9

CHAPTER 2: UML CLASS DIAGRAM

When starting a project, an important step is to make a clear plan or outline to

follow, such that each task is specified. This gives a clear jumping off point and keeps

track of the project’s progress. Creating such a model allows developers to lay out their

thoughts and ideas about how to approach the project before the work begins, and

prevents them from having to backtrack or start over due to confusion about what needs

to be done. A model diagram ensures everyone working on the project knows how it will

be done and allows for tasks to be divided clearly preventing overlapping of duties. The

most accepted way of creating such a structured model is by using UML [UmlR12].

UML is used not only for engineering application projects but it also can be applied to

many different fields, such as business and architecture.

2.1 UML

UML stands for Unified Modeling Language and refers to the idea of modeling or

creating a visual representation of a project being developed, using a set of defined and

accepted standards for such diagrams [Int12]. Before UML officially existed, there were

three methodologies for modeling software systems: The Booch methodology, Object

Modeling technique (OMT), and Objectory methodology [Int(2)12]. Each of these had

strengths in different areas of modeling, and each had its own notations [Int(2)12].

Later on, the brilliant minds behind each of these methodologies decided to

10

collaborate and make one common set of accepted rules for modeling. This way all the

aspects of modeling, such as analysis, design and use cases, would become compatible.

First Grady Booch, and Jim Rumbaugh who fathered OMT, decided to work together and

in 1995 came up with the Unified Method [UmlH12]. Later, Ivar Jacobson who came up

with the Objectory Methodology, joined forces with the others and after some years of

narrowing it down, in1997 the UML was finally submitted for standardization [Int(2)12].

The UML encompasses many different aspects. There are activity diagrams, use

case diagrams, sequence diagrams, collaboration diagrams, and class diagrams [Int(2)12].

Activity diagrams represent the control flow in the system. Use case diagrams look at the

external entities that interact with the system, those entities are actors and the interactions

with the system are events. Sequence diagrams show timed sequence of object

interaction. Collaboration diagrams show the links between objects. The diagram we are

most interested in for our project is the class diagram.

A class diagram is basically a collection of objects in an object oriented

application, which share common structure, behavior, relationships, and semantics

[Int(2)12]. A class diagram shows these aspects visually. A class is represented by a

rectangular icon which has a location for the name, the attributes, and the operations. The

relationships, dependency, inheritance, composition, and association/aggregation are

depicted by special symbols at the end of arrows connecting the classes [UmlT12].

2.2 UML Design Software

There are quite a few different software programs available for designing UML

diagrams. UMLet, Altova UModel, Visual Paradigm for UML, UML Designer, and

ArgoUML are just some of the software available for designing UML diagrams. Most of

11

these are free, some are open source, and they are often available as a plug in to an IDE

such as Eclipse, or as a stand-alone program. For our UML diagram we decided to work

with ArgoUML. It is a free open source, stand-alone, platform independent tool with a

user-friendly interface and is very easy to install and use [Tig12]. It is a user-friendly tool

that supports the nine UML diagrams, and allows for easy export of the diagram images

into MS Word and other programs. ArgoUML is a powerful software with many options

and different tabs and screens. Its user interface allows users to build easy to read, well-

organized diagrams. For our project, designing the class diagram is the main feature we

are interested in and the software we chose to use was ArgoUML.

2.3 Campus Map Class Diagram

For our project the UML diagram is comprised of many classes in an inheritance

hierarchy. Each class outlines objects, which are comprised in the map XML file.

12

Figure 2: UML Class Diagram

Figure 2 depicts the class structure of our Campus Driver Assistat used by our

Android Ploatform project. The class structure is basically built to hold and maniplate the

data provided by the campus map. The root of the structure is the Campus Map Object

class who is the parent class for all other objects in the project. This class provides every

13

subsequent decendent with an individual Id and is the basic, simplest unit of map data.

This Id is provided by the map of the campus later on in our code.

Inheriting directly from the Campus Map Object class are two different classes

which create two branches in the class structure. These are the Vertex class and the

Segment class. A vertex is basically an ending point on the map, such as a building, an

intersection, a parking lot and so on, and has two boolean attributes that store information

on whether that vertex is walkable and/or drivable.

 A segment is connecting two vertices. The relationship between the Vertex class

and the Segment class is such that every vertex can have many segments, but every

segment can have only two vertices (two endpoints). These classes in turn have their own

subclasses. The Vertex class is a direct superclass to the Segment End class, which in

turn has a subclass itself, the Walk Segment End class. The Walk Segment End class sets

the walkable variable to true, and also has a subclass, the Road Segment End class. The

Road Segment End class sets the drivable variable to true and contains a variable to

determine if the segment end alows for U-turns. It also has it has two subclasses the

Building subclass and the Parking subclass.

The Building class holds all the data for a campus building from the campus map,

such as building name and abbreviations. The Parking class holds the information for a

parking lot on campus, such as the name, the abbreviation, and permit type. The types of

permits are faculty and staff, students, and visitors. On the othe branch of the Campus

Map Object is the Segment class which contains the distance cost and direction attributes,

as well as the vertices that are at its end points. The child classes to the Segment class are

14

the Walk Segment and Road Segment classes, which are pretty self explanitory, and set

the walkable and driveable variables.

There is one class which stands on its own and is not a subclass of the Campus

Map Object, this is the LatLng class. This class, as its name states, holds the latitude and

longitude coordinates of all of the vertices in the campus map. There is an instance of the

LatLng class within each Vertex object.

Another class that inherits from Campus Map Object is the TrafficSign class,

which has an attribute dir for direction. A number of classes are inheriting from the

TrafficSign class, such as Crossing, Stop Sign, Semaphore, Speed Bump, and Yield.

These classes are used to augment the campus map with the traffic signs.

15

CHAPTER 3: THE ANDROID PLATFORM

The Android Platform is currently the most popular platform for mobile devices

[And12]. As described in the introduction, it is unique in the way it is rooted in the open

source ideology of sharing code and documentation with users and allowing them to

customize and contribute to the software and generate new ideas for developers to work

on. Here we shall examine the birth of the Android Platform and what led up to it.

3.1 Android Platform Background

 The evolution of the Android platform we have come to know may not be what

users expect. Everyone associates Android with Google Inc., but it is a little known fact

that they did not actually create Android [His12]. In 2003, Android Inc. was started by

Andy Rubin, Rich Miner, Nick Sears and Chris White, and it was not until 2005 that

Google bought Android realizing its potential and fulfilling their goal of breaking into the

mobile phone industry [His12] [HisO12]. Google made the first release of their Android

Platform in September 2008, though at that time it was not used in any commercial

devices [AndT12]. Although Android was bought by Google, its development is actually

a group effort. On November 5th, 2007 the Open Handset Alliance was established

[Ind12]. This alliance of technology and mobile industry leaders, led by Google, agreed

to collaborate and develop the Android Platform in order to provide users with cutting

16

edge products at a faster pace and lower cost. The alliance is currently comprised of 84

companies who are “committed to commercially deploy handsets and services using the

Android Platform” [Wha12].

 The main idea behind the Android Platform was creating an open source software

for mobile devices that prevents one provider from monopolizing the market with

undisclosed technological advancement, stunting the growth of other providers and

keeping costs high for consumers [AndO12]. This approach has been successful; the

Android market is anything but stunted. Since their original release, they have made

numerous releases, often making 2-3 per year. With every version of Android released,

the platform gets more powerful and distinctive, becoming one of the leaders in Mobile

Platforms [And12].

Figure 3: Android Version over Time

Figure 3 above depicts the evolution of the Android Platform [AndT12]. Android

version 1.0 was the original release in September 2008, and was not yet used in

commercial devices. Android version 1.1, released in February 2009, was an update to

1.0 and was the first to be used in a commercial device. Android version 1.5, codenamed

Cupcake, was released in April 2009, and was the first to be utilized by manufacturers.

17

Android version 1.6, codenamed Donut was released in September 2009, and had

improvments in the areas of the camera, screen, navigation and more.

In October 2009, version 2.0 was released, and shortly there after was updated as

version 2.1 in January 2010, these two releases go by the name Éclair and was improved

in the area of the user interface, keyboard, speed, calender, and had a phone based design,

as did version 2.2 Froyo (Frozen Yogurt) that was released in May 2010. Gingerbread,

version 2.3 was released in December 2010, and later had an update released in

September 2011. Honeycomb is the codename for 3 different versions, 3.0, 3.1 and 3.2,

which where released in February, June and July of 2011, and had a centric design. Ice-

Cream Sandwich, version 4.0, was released in October 2011, and was focued on merging

the designs of versions 2 and 3 , and improved many aspects of the platform such as a

refined User Interface, improved email, social networking, and many others.

Recently in July of 2012, the newest version of Android, version 4.1 codenamed

Jelly Bean was released. It focused on further improving some aspects of the User

Interface as well as other parts of the platform such as photo checking, USB audio, and

more [AndT12].

3.2 Android Platform Architecture

The Android Platform was developed using the Linux kernel, which is the open

source core of the operating system, and is basically in charge of resource management

[Ana12]. Linux was originally developed by Linus Torvalds in the early 1990’s, and was

influenced by the creation of Minix(a Unix operating system for personal computers).

The Kernel is subdivided into 3 levels, the system call interface (deals with read

and write commands, etc.), the architecture-independent kernel code (it is the same in all

18

architectures), and the architecture-dependent kernel code (this is the platform specific

code) [Ana12]. The kernel has a monolithic design, containing the basic services within

the kernel. The biggest advantage of the Linux Kernel is its portability; it can be utilized

in many different platforms. Linux is referred to as the most popular open source

operating system and is both efficient and stable, making it a reliable base to build on,

and so it seems a good choice for the makers of the Android Platform[Ana12].

The Android platform’s software contains good User Interface capabilities, a

good browser, large selection of connectivity options, and a good handle on graphics and

media, and data storage methods [IntA12]. The platform also provides support for

location-based services and accelerometer [IntA12]. Figure 4 depicts a simple view of

the Android Platform software layers, and lists some of the services each performs.

19

Figure 4: The Software Layers of the Android Platform [Spe12].

Android applications are written in Java and run on a Virtual Machine (Dalvik

Virtual Machine), and are comprised of activities (to implement the UI for the app),

services (for long running apps), content provider (to manage data access), and/or

broadcast receivers (to respond to events or process data elements) [IntA12]. When an

application is deployed, an XML file, the AndroidManifest file, containing the

configurations for the app is also deployed; without this file the app would not be able to

run [IntA2].

20

3.3 Open Source Community

 The Android Platform was developed on the principle of open source software,

meaning that the source code and documentation are available to the public free of

charge. The main premise of this approach is communication [AndO12]. Google and

their partners have established many forums where users and developers can interact and

share information [AndO12]. There are also countless websites that provide blogs,

tutorials, and examples of Android related information. As a result, it is not difficult for

new users to break into the Android domain and begin developing apps and customizing

their system. Android development, unlike other popular mobile platforms, is not only for

the people who oversee the Android Open Source Project and develop the actual source

code, it is a universal goal for all Android enthusiasts.

 The way users can contribute in the improvement of the Android Platform is by

writing new apps, reporting bugs, and contributing source code to the Android Open

Source Project [AndO12]. As long as the code is suitable, meaning it is done in the same

language and style (Java and OO), it should not be rejected. The way code is contributed

is quite simple, the code is first submitted by the community member, then it is analyzed

and verified by an approver (usually Google employee), and approved if it meets Android

Project criteria [AndO12].

In order to develop Android applications, a user must download the Android SDK

(Software Development Kit). Then it is possible to use an IDE to develop the app, such as

Eclipse, which has an Android Developer Tools (ADT) Plugin that makes developing

apps from your own computer, regardless of OS type, straight forward [Dev12]. Once the

environment is set up, there are many libraries and classes available for use in the Java

21

language. Importing these into a project allows for many powerful operations of your

app.

A convenient aspect of the SDK is the Mobile Device Emulator, which is

basically a simulated android handheld device. This allows a person who does not have

an Android device to create apps and test their behavior as it would be when running on

the device. This illustrates another way in which Android displays its openness, by not

requiring users that want to develop apps to have a device to work on, providing instead a

way to freely create code, test it and improve the platform.

All these aspects of the Android Platform are an example of sharing and

openness, and are contributing factors to the speed at which the Android movement is

growing.

3.4 Java Android and the Campus Driver Assistant on an Android Platform

 For this project we used the Eclipse IDE, and utilized the ADT plugin to create

the application. The Android API’s provide many useful packages that allow users to

access the vast functionality of the Android device, such as the classes that allow the user

to create a user interface for their application. Eclipse also allows for good integration of

Java classes that are called from the Android Java Project. The app can incorporate user

defined classes by importing them into the project and calling methods within the project.

Our app has the following tasks which were implemented using the Android

capabilities:

• User Interface: where the user inputs data which is retained and utilized in the

application. In our application, the user interface allows the user to enter

information such as the destination building and user type (e.g. student, visitor,
22

and staff). It is also used to allow the user to choose an appropriate parking lot

based on the selected user type.

• Google maps: the map of the campus is displayed for the user with the path

overlaid.

• Connecting to the server: the application uses the HTTP protocol to connect to the

server and retrieve the campus map.

The readily available Android packages allow easy access to many classes which are

already implemented and tested. Some of the important packages we used for this project

are:

• android.content – this allow the creation of the UI [Ref12].

• android.Activity – this deals with creating windows to place the UI [Ref12].

• android.os – provides basic operating system services [Ref12].

• android.widget – contains UI elements to use in the app [Ref12].

• javax.xml.parsers – contains the classes needed to parse XML documents

[Ref12].

• org.w3c.dom.* - provides the official java bindings for the DOM [Ref12].

23

Figure 5: Our User Interface

 Figure 5 above shows our user interface, with the drop down menus allowing the

user to select the type, campus, and destination. When the submit button is pressed

the information is processed by the application in the background.

24

CHAPTER 4: THE XML PARSER

 In many software projects, data is sometimes received in bulk or in a different

format than expected. In order to be used, it needs to be parsed, or broken up into

component pieces that can be utilized by the program. For this parsing to occur, there

must be some mechanism in place that can read and break apart the data and store the

desired data in a format acceptable for use. One of the most common ways data is

retrieved and needs to be parsed is when it is in XML format. XML stands for Extensible

Markup Language, and it was designed originally to help with large-scale electronic

publishing, but has also made an impact in exchange of wide variety of data via the web

[Ext12]. It is not surprising, therefore, that XML parsers are implemented for many

languages and platforms.

4.1 Background on XML Parsing

 XML was developed in 1998 by the W3C (the World Wide Web Consortium)

[Thi04]. It was developed as a specification for transferring and storing data. One of its

major benefits is its simplicity. It is similar to HTML in the way it houses elements

within tags and is easily understood by human readers as well as computers. It is also

very useful since it can be used with different languages and platforms, so the data it

holds is not available only to a limited group [Thi04]. Perhaps the most impressive

25

quality, and the reason why it is so valuable, is the fact that the author of the XML

document can encode data using any tags they define [Thi04]. There is not a predefined

list of element tags and attributes that users need to adhere to.

Since XML is very useful and popular, XML parsers are necessary to take

advantage of all XML has to offer. XML parsers are implemented in quite a few

languages, such as Java, C, C++, C#, and Python [Thi04]. There is also the option of

creating an XML parser for specific needs. Parsing XML is so common now, that all

modern browsers have a built in XML parser [XmlP12]. A parser basically reads the

XML document, identifies the tags, and extracts the data between the tags. This allows a

computer program to access and use the data from the XML file.

4.2 Parsers and Libraries Description

 There are many implementations of parsers. They are available in different

languages and platforms. For instance, the Expat XML parser library is written in C

language but there is a module available for Python and Perl users [TheE12], while the

Xerces parser has an implementation in C++ as well as Java, and Perl [TheA12]. Another

parser, the XmlReader, is used to read XML data in the .Net Framework Silverlight

[Pro12]. Although there are many different ways to approach the parsing of an XML file,

the two most popular parser models available are the Document Object Model (DOM)

and the Simple API for XML (SAX).

Figure 6, outlines some of the differences between the characteristics of the DOM

parser and the SAX parser. The DOM parser is an object-based model, is good for

parsing complex structures, and has optional validation [Dom12]. The SAX parser is an

event-based model, works better for parsing simple structures, and also has optional

26

validation [Dom12]. The DOM parser is slower than the SAX, but unlike the SAX it can

update the XML document in Memory. Another difference between the two parsers is

their element sequencing. DOM is capable of traversing the entire tree structure in

memory, whereas the SAX parser pinpoints a specific element within the overall

structure and ignores the rest [Dom12]. There are pros and cons to both parsers, so

deciding which to use depend on the needs of the application.

If the app is dealing with a large number of simple XML structures, the SAX

parser would probably be of more use since it would cut down timing costs. If the app is

dealing with complex XML structures and needs to be able to access the data in an

orderly fashion, then the DOM parser would be a better choice. This decision does not

have to be antagonized over too much however, because the two parsers share some of

their implementation [Cla12]. Ultimately, for our project we needed to look at what

characteristics where more important for our application, and choose accordingly.

Figure 6: Comparison of DOM and SAX Parsers [Dom12].

27

4.3 XML Parsing and the Campus Driver Assistant on an Android Platform

 Parsing was necessary for our Campus Driver Assistant since the map we retrieve

from the server is formatted in XML. We had to select a parser in order to be able to

break up the map XML data and store it in the hierarchal structure as was outlined in the

class diagram. After considering the two most popular parsers, we selected to use the

DOM parser. The XML file that we retrieve from the server is large and complex, thus

we decided to use DOM to perform parsing.

 The DOM parser comprises methods that traverse, access, insert, and delete from

the XML tree [XmlD12]. In order to manipulate the XML, it first needs to be loaded into

a Document object. This is done by the DocumentBuilder Class and the

DocumentBuilderFactory Class, which create an instance of the DocumentBuilder and

allow it to parse XML from a variety of sources, including URL’s as in our case [Cla12].

 Once the Document is created, elements from the XML can be extracted using

the tags as a way to identify and distinguish between the elements types. In our

interpretation of the use of the parser, each element is stored with others of its kind,

defined by the tag. Once all the elements are separated according to their tag, each

individual element is parsed and an object of the appropriate class is created and its

attributes are set. This establishes the class hierarchy structure we were aiming for, and

we can use the stored data to establish a path to the user’s destination.

Figure 7 displays a short snippet of code from the parser class. The first portion

shows how we create the Document object and use it to parse the URL containing our

map. The Document object now holds the information we need so we extract it by

referring to the tag. We then create first a Node then an Element object which now holds

28

all the XML data we need in one bunch and needs to be extracted piece by piece to be

usable. The next step is creating a CampusMapObject which will hold the hash maps of

the segments and vertices that are the basic units we need in order to find the destination

path for the user.

We continue with creation of a list structure that will hold all the building

elements we extract from the Element object that contains all the XML data. Then for

each of the buildings within the list (this is directed by the for loop), the function

parseBld is called, which parses the specific building information, and then the building

is added as a vertex in the CampusMapObject vertices hash table (or segments hash table

for other elements, like road segments).

The next portion of the code shows this parseBld function, and the way it extracts

all the attributes of the building element, such as the id, the directional coordinates, and

the building name and abbreviation. The function then returns the Cmo.Building

structure, which is a child class of the Cmo.Vertex class and is actually the object

required for CampusMapObject to be able to add the building to the vertices hast table.

This technique is used for all the elements in the XML structure until all of them are

broken down and added as either vertices or segments to their appropriate hash table.

29

Figure 7: Parser code snippet.

30

CHAPTER 5: THE CAMPUS MAP

The idea of mapping surroundings has been around for hundreds of years. It

became a priority for sailors and merchant travelers, in the 15th and 16th centuries, to map

coasts and keep a record of places where specific goods, markets, and resources where

located [TheH12]. Since the time these early navigators, the mapping of the world has

improved enormously, employing strategies and technologies they could not even have

imagined. Mapping and navigation were revolutionized by the use of satellite and aircraft

imagery [Goo12]. Satellites orbiting earth and aircraft flying over different areas supply

in depth pictures of their surroundings, even ones previously inaccessible. The amount of

precision and detail available from these sources is amazing, but the fact that internet

users have access to this technology free of charge is remarkable. Applications such as

Google Earth and Google Maps provide directions and images to users for free. After

obtaining the digitally compiled maps and photographs, they incorporate them into their

applications, which are easily accessible to users through the internet [Goo12]. Using

these applications, users can find and view locations anywhere in the world, from getting

a glimpse of distant far off places such as the Egyptian pyramids, to getting the address of

the closest coffee shop to their current location. Mapping has surely been transformed in

the last few decades.

31

5.1 Google Map of Campus

 In order for us to create a well detailed, all-encompassing map of the Florida

Atlantic University campuses, we needed to obtain a satellite image of the each campus.

Focusing first on the Boca Raton campus, we used the Google Maps API which allows

users to embed a map obtained from Google Maps into their web-sites and applications

using JavaScript, and even overlay their own data over the map image, as we do with the

path in this application [GooM12].

Figure 8 depicts the original campus map obtained from Google Maps with no

path overlaid and little detail available apart from the imagery. Google Maps currently

provides directions for the campus itself, but not inside the campus. That is, it does not

provide directions to individual buildings and locations inside the campus. When a user

gives the destination as a building within the university campus, the directions given will

take the user into the campus and state that the destination has been reached, but they will

not take the user directly to the building they expected. This can create confusion and

stress for users. The goal of our application is to develop an application that provides

driving directions inside the campus. For this we need to design a mapping tool that

allows us to add buildings, parking lots, street information, etc.

32

Figure 8: Google Campus Map (Unaltered).

5.2 Map Editor Tool

 Since the Google Map of the Boca Raton campus is not detailed enough for our

purposes, a special tool was designed to add data to the map and easily access the map’s

XML. This map editor tool was created using HTML, JavaScript, and the Google Maps

API v3. The tool is basically an HTML page stored on the server, which has JavaScript

code embedded within to provide dynamic functionality, and utilizes the Google Maps

API to access and manipulate the campus map.

 The Map Editor tool allows easy manipulation of the map. Since a lot of the

buildings, streets and other aspects of the campus are not marked in the original, this has

to be done manually, and this tool made it fast and easy. The Map Editor allows

33

operations to be performed on the map that result in the XML file being created and then

permits this version to be saved onto the server. It also allows for existing XML versions

to be opened and manipulated. Some of the operations that can be performed on the map

are listed below.

• Left click on the map to place a node. Click vertex to toggle selection.

A new vertex is in selected state.

• Right-click on a node to edit properties (for Building and Parking nodes).

• Create a segment from the selected vertex by left-clicking another vertex.

• Left-click on a RoadSegment to toggle direction.

• Right-click on a RoadSegment to add street names or to delete it.

When the map is initially loaded into the map editor tool, the above operations are

used to add the data to the map. There is a window on the page that shows the XML of

the map currently being manipulated. The changes to the map are visually overlaid on the

map in different colors and buttons as stipulated within the JavaScript file; this is

displayed by Figure 9. Note that this map is not displayed for the user.

34

Figure 9: Altered Campus Map

Once the data for all the vertices and segments, including id’s, geographical

coordinates, etc., has been entered the XML file containing the information is complete.

The complete, detailed XML file is the one that is retrieved from the server when our

application runs. This XML code is what the parser breaks down and stores. The data is

then used to find the shortest path to the user’s destination and a clean map overlaid with

only the resulting shortest path is displayed to the user in their Android device.

35

CHAPTER 6: FINDING THE SOURCE-DESTINATION PATH

 Once the data parsing and appropriate classification of the objects has been done,

the next step is to create a data structure or “a way to store and organize data in order to

facilitate access and modifications” [Cor01]. In Computer Science, a graph refers to a set

of vertices and a set of edges that connect two vertices [Ski12] and this is the data

structure selected for this application. The graph will hold the objects and allow an

algorithm to compute the shortest path along a group of edges.

Graphs can be directed or undirected, cyclic or acyclic, connected or strongly

connected, etc. Directed graphs use directed edges to determine the vertex that can be

reached from the edge. If a graph is undirected, it means both vertices that the edge

connects, can be reached using that edge [Ski12]. A graph is cyclic if it contains a cycle

of motion which repetitively accesses the same nodes, or vertices, with every pass.

Connected graphs are those in which there is a path between every two vertices, but that

path need not be direct [Ski12]. Strongly directed refers to directed graphs which contain

a path from each node to the others, so if there is a unidirectional path from one node,

node A, to another, node B, there must be another path available from node B to node A.

There are other characteristics a graph can exhibit, but for our purposes, the graph

structure is simple.

36

6.1 Designing the Graph Data Structure

 Since our graph represents streets, building, and walkways, it is logical that it

needs to be directed, cyclic, and connected. It would not make sense for our edges to be

undirected since roads have a direction. Although most of our edges are bidirectional,

such as the roads in our campus map, there are some areas where roads are one-ways, or

unidirectional. This may create a cycle in our graph. A must-have characteristic of our

graph is connectivity. Our graph must be strongly connected, meaning every node in our

graph must have a path available to every other node otherwise there would be a vertex,

or building, which has no available path leading to it, meaning that it would be an

unreachable destination. Having a destination that is unable to be reached would make

little sense in an application which is supposed to direct drivers to desired destinations.

One other characteristic in our graph is weighted edges. In order to represent the

distance between vertices, our edges have a field that stores the “cost” of the edge. The

cost refers to the length of the edge, or the specific distance between the two vertices the

edge connects. The cost is actually determined by the geographical coordinates in the

Google Map in our Map Editing tool. The distance between the endpoints of the segment

is computed and then set as a field within the map XML. When the map XML is retrieved

and parsed, the field containing the cost is set for each segment in the graph.

Figure 10 shows an example of a graph similar to the one utilized for this project

(left), and also shows a snippet of our XML code (right).The code shows how the XML

file is constructed; the tag organization, the attributes of each element, etc. The elements

are defined by opening and closing tags. In the piece of code shown, the first element

described is a parking lot, with the tag name <par id=?> and end tag </par>, with unique

37

ids for every element. It has coordinate attributes with tags <ll>, and internal tags <lat>

and <lng> which hold the latitude and longitude coordinates. The parking element also

contains other attributes, such as the <parking> field, which describes the type of user

that can park in the lot: student, staff, or visitor.

The other element shown in the figure is a road segment with tag <rseg id=?>,

and contains elements such as the id of the two endpoints of the segment, and an integer

that describes the direction of the segment, which indicates if the segment is bidirectional

or unidirectional, and if so what the direction is. The element also contains a cost

attribute to indicate the length of the segment.

Figure 10: Anatomy of a diagraph and XML code.

 The way we constructed our graph was by using a minimum priority queue

structure where the nodes are arranged depending on their proximity to the source. A

queue operates in a first-in first-out principle, but a minimum priority queue is different.

It arranges the nodes not depending on which first arrived, but on predefined selection

criteria, such as based on a comparison of a field within the nodes. In our case, each node

38

has a variable which holds the total distance from the source, and at each run of the

algorithm that determines the shortest path, the field is adjusted and the queue is updated.

This is done repeatedly until the destination is reached. The vertices, or nodes, whose

shortest path has been discovered are removed from the queue and are places in a

HashMap structure which will later be used to recreate the shortest path between the

source and destination.

6.2 An Algorithm for Finding the Shortest Path

 An algorithm, as it pertains to computers, is described as a computational

procedure that takes input and transforms it into output [Cor01]. Basically, an algorithm

is an operation performed on some values to produce another set of values. There are

many different algorithms available to solve a variety of problems by different

approaches. For this application, an algorithm is necessary in order to produce the

shortest path possible between one point on the graph and another. There are a number of

possible algorithms that target finding a shortest path, and they share some of their

techniques, such as the method named Relax, which actually checks how each edge

would affect the path of the vertices it connects, if it shortens the path it is included in the

branch holding the shortest path, if it lengthens it, it is not included [Cor01]. They also

have their own way of approaching the problem, and are aimed at different graph types.

 One of the popular algorithms that compute the shortest path between nodes in a

graph is the Bellman-Ford algorithm. This algorithm deals with graphs that contain

negative-weigh edges [Cor01]. While searching for the shortest path, it makes sure that

the graph does not contain a negative-weight cycle that is reachable from the source

[Cor01]. If no such cycle exists it returns a boolean value of true, and produces the

39

shortest paths and their weights. If a negative-weight cycle does exist, it returns the

boolean value of false, to signify no solution is possible. The main disadvantage of

Bellman-Ford is that it has a large complexity O(VE).

 Another algorithm which is concerned with finding the shortest path in a graph is

the DAG-Shortest Path algorithm. It deals with DAGs (Directed acyclic graph), and

handles negative edges, but by the definition of the graph, no negative-weight cycles can

occur so it does not need to deal with them [Cor01]. This algorithm sorts the graph

topologically into a linear ordering of the vertices, and then it does one pass over the

sorted vertices and processes each vertex by relaxing each edge leaving from that vertex

[Cor01]. DAG-Shortest Path algorithm is the most efficient in terms of complexity

O(V+E) but we cannot use it since our graph is not acyclic.

 Another important algorithm for computing a shortest path is Dijkstra’s Shortest

Path Algorithm. It deals with weighted, directed graphs with non-negative edges [Cor01].

The basic idea behind this algorithm is to implement a minimum priority queue, choosing

from a few possible structures, like a min-heap or an array. Each of the vertices in the

queue has an adjacency list that keeps track of the nodes that are directly accessible from

that particular vertex. The algorithm utilizes the adjacency list as it loops over each

vertex, starting from the source, extracts it from the queue and relaxes each edge coming

out of it, checking if the edge should be included in the shortest path branch of the

adjacent node, or if another node has provided an edge with a lower cost [Col01]. Figure

11 below is an example of the pseudocode of Dijkstra’s Algorithm, and the basis for our

interpretation of the algorithm. The complexity of Dijkstra is O((V+E)lg V).

40

Figure 11: Pseudocode of original Dijkstra's Algorithm [Col01].

6.3 Dijkstra’s Shortest Path Algorithm

 The algorithm selected to find the shortest path from the user’s current position to

the desired destination is Dijkstra’s Shortest Path Algorithm. From the description above,

it is the algorithm that works well with our campus map graph. Our graph has no

negative-weight edges and we use a min-priority queue data structure to store it. The

min-priority queue is implemented using a predefined java.util.PriorityQueue object, in

which we order the nodes by comparing each node’s current distance from the source

provided by the edges currently being relaxed. The node at the head of the queue, whose

edges will be relaxed when the node is extracted, has the smallest distance from the

source.

As is shown in Figure 12, Dijkstra’s shortest path algorithm creates a tree that

expands from the root (or source) out until all the vertices are contained within the

branches of the tree [Dij12]. No vertex is part of more than one branch, since each is

explored by the branch that creates the shortest path from the source to that vertex, and

41

only one branch can contain that path. In the figure, the yellow colored node is the source

and the branches stem out from it until all the nodes are included.

For our application, the algorithm was optimized according to our objective. It is

not necessary for every node in our structure to be included in the shortest path tree. Our

interest lies with the path between the source and the user defined destination. Once the

destination is reached, or is part of a branch of the shortest path tree, we stop the

algorithm; that means we do not continue to discover the remainder nodes. Figure 13

shows an example of Dijkstra’s Shortest Path Algorithm running until it reaches the

destination.

Figure 12: Dijkstra's Shortest Path Algorithm example running on a graph [Dij12].

42

Figure 13: Dijkstra's Alg. example running up to predefined destination
node[Dij12].

Another way the algorithm was altered from the typical interpretation is that since

we are not exploring shortest paths to all the vertices, but just to the destination, there is

no need to add all the vertices to the queue since that would just take up time, space, and

add unnecessary bulk. Instead, we have chosen to begin with just the source in the queue,

and then as it is removed in order to be placed into the hash table of completed vertices,

the vertices it shares edges with are added to the queue.

This is the technique used for the rest of the vertices as well, until the destination

is reached and the algorithms stops. Figure 14 shows the pseudocode version of our

implementation of the algorithm. It extracts the vertex with the minimum distance out of

the queue, and then checks to see if the vertex is the destination. If that is the case the

algorithm stops, if not, the OurRELAX operation is done. This operation refers to the part

43

of the code where each vertex at the other ends of the segments associated with the

current vertex are also extracted and the segment lengths are compared and updated, and

then added back to the queue. Once this is done the algorithm continues to do this until it

encounters the destination.

Figure 14: Our pseudocode version of Dijkstra's.

44

CHAPTER 7: COMPONENT INTEGRATION

In any project that entails multiple components, the biggest challenge is

integrating the parts into one operational, cohesive whole. This is usually difficult due to

the fact that problems and error arise with the introduction of every new part since it was

previously only required to operate on its own. Issues with compatibility are not evident

until an attempt to combine components takes place.

The best way to begin integration is to add components one at a time. Once this

combined portion is working as expected another part can be added. This way the errors

and compatibility problems can all be worked out on a smaller scale to ensure nothing is

missed or overlooked. If the pieces are instead just thrown together all at once and the

application is tested, the chances of it running are minimal and the amount of problems

will un-doubtingly be so large as to cause much confusion when trying to resolve them.

7.1 Component Creation and Integration

 The order in which the components of the project were created, impacted the way

in which the components where integrated since our strategy was to add each component

once it was functional on its own, and then begin work on a new component. The first

part of the project to be tackled was the UML diagram. Since it lays out the structure of

the data, it is difficult to begin any other portion of the project before this one. Once the

class hierarchy was agreed upon, and the diagram was complete, the coding components

45

could be initiated.

 The first coding component to be realized was the User Interface (UI). This

component is composed of three classes, one for the activity that displays the menu

options to the user, one that implements the listener that responds to the user selections,

and one that implements the activity that calls all the other features of the program and

displays the results to the user. This is all done with the Android packages, which access

different features of the Android device, such as activities, menus, and windows for the

UI. This is a logical starting point, since without this component the program cannot be

tested as it would run within an Android device. To test this code, the Android testing

device (Samsung Galaxy S Blaze) is connected to the computer and the run option is

selected in the Eclipse IDE. As long as the device drivers are correctly installed, a menu

appears and asks you to select the device. Once this is done, the app runs on the device

and the UI should be visible. As soon as the app was working as expected, work on the

next component could begin.

 The Campus Map Tool, which allows the construction of the detailed map that

supplies the XML data to be extracted, was being developed simultaneously. It was

necessary in order to create the detailed campus map and be able to provide the XML to

the application component of the project. As soon as the tool was completed, the creation

of the in depth campus map began, and many testing versions were made.

In order to distinguish between different kinds of data obtained from the UML,

the project required a class that outlined the kinds of data types of which objects could be

created and stored. This class hierarchy is vital to the program and works in tandem with

the parser, creating the object types of each piece of data according to the tag the parser

46

finds. Once the hierarchy was developed, the parser was built to create objects of the

specified types as it extracted the data.

 The next component tackled was the XML parser. In order for any of the other

components to have the data they will need to function, the campus map XML needs to

be retrieved from the server and the data needs to be broken up and stored. These tasks

are done by the class implementing the DOM Parser. When assured that the parser is

working correctly, the class is added to the Android UI project, and the project is tested

and errors are corrected.

 The next step was to create the algorithm to find the shortest path from the user’s

current location to the destination. For the development of this component, the first thing

that had to be done was to choose an algorithm from the available shortest path

algorithms. Once Dijkstra’s Shortest Path Algorithm was selected, and the code was

created based on the pseudocode, the component was added to the project and tested.

When we were satisfied that the algorithm was working correctly, work began on the

next component. The last task regards displaying the shortest route on the Google map,

providing driving directions to the driver.

Figure 15 shows a scenario of running our application on an Android smartphone

platform. As illustrated in Figure 15a and 15c, for testing purposes, we created two fields

where the user enters the source and destination id’s, and when the information is

submitted, the application’s different components work together as expressed above in

the thesis. The final results are shown in Figure 15b and 15d, where in the user’s device,

a map is displayed with the route overlaid. In the left hand bottom corner of the screen of

47

Figure 15b and 15d, there is a button marked “Drivable”, which allows the user to toggle

between the driving direction and walking direction paths.

Figure 15a and15 b display the directions required for a walkable path from the

user to the destination. This is visible in the map since the walkable paths are displayed in

green with the pink overlay on top of the shortest path. An example of a drivable path is

shown in Figure 15c and 15d. The drivable paths on the map are shown in blue with the

pink overlay signifying the shortest path to the destination. It is important to state that the

drivable paths may be used in walkable routes; however the opposite is not true.

Currently for testing purposes the map allows the user to click on different squares along

the outlined portion in order to set the source and destination, and the route overlay, as

well as the length, are calculated between the two selected vertices.

48

Figure 15: User interface with resulting map and path.

49

7.2 Difficulties with Integration

 One of the difficulties we ran into when integrating was when combining the

parser to the project, which at the time was basically the Android UI. Initially, the plan

was to use the SAX parser. This implementation was tedious and it was hard to maintain

the state of the parser with multiple levels in the hierarchy of objects. We decided to use a

DOM parser and the implementation was more efficient.

 Another issue when it came to integration was Dijkstra’s Algorithm. Designing

the priority queue structure to store the graph was challenging, because we had to provide

an efficient way for nodes to access their neighbors and update their distance in the

queue. Our objective was to be able to do this without using a linear traversal of the

queue, which would increases complexity. Another issue was that in the priority queue

data structure, changing the total cost does not rearranges/sorts the nodes in the queue. To

deal with this, we had to dequeue the element, relax the cost, and then insert the element

back.

 As expected in all implementation projects, besides design, implementation and

component integration, we perform several iterations of testing and fixing the errors.

50

CHAPTER 8: CONCLUSIONS

In today’s fast pace world, it is convenient to be able to depend on directional

software to help you get to destinations promptly. Applications such as Google Maps and

GPS units have become very popular with consumers for that reason [Kin11]. Just like

any relatively new technology however, there is still plenty to improve on before these

applications encompass all the desired options. This project focuses on providing

directions inside a university campus, since applications like the ones stated above cannot

direct users within the campus to specific buildings or parking lots. Since campuses are

usually large and confusing, it is often hard for people to find their way around, so using

a tool like GPS is very helpful. It is unfortunate that the directions provided by GPS

would only direct the user to the campus, but would not be able to lead them to the

specific destination inside the campus.

8.1 Conclusions on the Project

The Campus Driver Assistant on an Android Platform is an Android application

written in Java programming language, and is intended for Android smart phones and

devices. The app implements a user interface to establish the user type and desired

destination, and then retrieves a map from the server in order to find the shortest path to

that destination. It does this by parsing the XML data the map contains, which has been

defined using the Map Editing tool constructed for the project. Then an optimized form

51

of Dijkstra’s Shortest Path Algorithm is run on the graph containing the element objects

from the XML. Once the path is found, it is displayed for the user in their device,

overlaid on the campus map.

8.2 Future Works

 The campus driving directions application can be enhanced with additional

features and in the end can be integrated with other projects falling under the Campus

2020 umbrella. Some future works pertaining to our project are:

• GPS supplied source- Accessing the GPS capabilities of the phone to ascertain the

current user location.

• Display detailed directions - have a text box next to the map displaying the path,

with list of step by step directions.

• Dynamic directions – turn-by-turn directions that are updated depending on user

movements.

• Use voice directions - implement voice instructions of directions so users are

verbally alerted when to turn, or when they have reached the destination, etc.

52

REFERENCES

[Ana12] Anatomy of the Linux Kernel, Jones, M.T.,

http://www.ibm.com/developerworks/linux/library/l-linux-kernel/, last accessed

September 2012.

[And12] Android-Discover Android, http://www.android.com/about/, last accessed

September 2012.

[AndO12] Android Open Source Project,

http://source.android.com/about/philosophy.html,

http://source.android.com/index.html,

 http://source.android.com/community/index.html,

http://source.android.com/faqs.html#why-did-we-open-the-android-source-code,

last accessed September 2012.

[AndT12] Android Timeline and Versions, http://faqoid.com/advisor/android-

versions.php, last accessed September 2012.

[AniX12] An Introduction to XML, http://www.xml.com/pub/a/98/10/guide0.html, last

accessed October 2012.

[Cam12] Campus Maps Simex,

https://play.google.com/store/apps/details?id=com.simexusa.campusmaps_full&h

l=en, last accessed November 2012.

53

[Cla12] Class DocumentBuilder,

http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/DocumentBuilder.

html, last accessed October 2012.

[Cor01] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., “Introduction to

Algorithms”, Second Edition, 2001.

[Dev12] Developer Tools, http://developer.android.com/tools/index.html, last accessed

September 2012.

[Dij12] Dijkstra’s Algorithm,

http://www.cs.sunysb.edu/~skiena/combinatorica/animations/dijkstra.html, last

accessed October 2012.

[Dom12] DOM versus SAX,

http://publib.boulder.ibm.com/infocenter/tpfhelp/current/index.jsp?topic=%2Fco

m.ibm.ztpf-ztpfdf.doc_put.cur%2Fgtpx1%2Fdomsax.html, last accessed October

2012.

[Ext12] Extensible Markup Language (XML), W3C, http://www.w3.org/XML/ last

accessed October 2012.

[Goo12] Google Earth Map Data,

http://computer.howstuffworks.com/internet/basics/google-earth6.htm, last

accessed October 2012.

[GooM12] Google Maps Developer Documentation,

https://developers.google.com/maps/documentation/, last accessed October 2012.

[Gps12] GPS.gov Roads and Highways, http://www.gps.gov/applications/roads/, last

accessed September 2012.

54

[His12] The History of Android Operating System,

http://www.android30tablet.com/android-news/history-of-android-operating-

system/, last accessed September 2012.

[HisO12] History of Android: First Applications, Prototypes, and Other Events, Simon

Hill, 2011, http://www.brighthub.com/mobile/google-android/articles/18260.aspx,

last accessed September 2012.

[Ind12] Industry Leaders Announce Open Platform for Mobile Devices

http://www.openhandsetalliance.com/press_110507.html, last accessed September

2012.

[Int12] Introduction to OMG’s Unified Modeling Language (UML),

http://www.omg.org/gettingstarted/what_is_uml.htm, last accessed September

2012.

[IntA12] Introduction to Android Development, Ableson, F.,

http://www.ibm.com/developerworks/opensource/library/os-android-devel/, last

accessed September 2012.

[Int(2)12] Introduction to the Unified Modeling Language,

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/intro_rdn.pdf,

last accessed September 2012.

[Kel12] Kelly, M., Lindquist, D., Campus Map, http://campusmap.michaelkelly.org/map,

last accessed November 2012.

[Kin11] Kincaid, J., Marissa Mayer: 40% Of Google Maps Usage Is Mobile (And There

Are 150 Million Mobile Users), 2011,

55

http://techcrunch.com/2011/03/11/marissa-mayer-40-of-google-maps-usage-is-

mobile-and-there-are-150-million-mobile-users/, last accessed October 2012.

[Nel12] Nelson, R., A Brief History of Cell Phone Design, Jun 2012,

http://news.yahoo.com/a-brief-history-of-cell-phone-design.html, last accessed

September 2012.

[Pro12] Processing XML Data with XmlReader and XmlWriter (Silverlight),

http://msdn.microsoft.com/en-us/library/cc189001(v=vs.95).aspx, last accessed

October 2012.

[Ref12] Reference of Android API’s,

http://developer.android.com/reference/android/package-summary.html, last

accessed October 2012.

[Sed12] Sedgewick, R., and Wayne, K., “Algorithms”, Fourth Edition,

http://algs4.cs.princeton.edu/42directed/, last accessed October 2012.

[Ski12] Skiena, S., Lecture 10: Graph Data Structures,

www.cs.sunysb.edu/~algorith/video-lectures/2007/lecture10.pdf, last accessed

October 2012.

[Spe12] Speed delivery of Android devices and applications with model-driven

development, Holstein, B.,

http://www.ibm.com/developerworks/rational/library/model-driven-development-

speed-delivery/, last accessed October, 2012.

[Str12] Street View Partner Program,

http://maps.google.com/help/maps/streetview/partners/, last accessed November

2012.

56

[TheA12] The Apache Xerces Project-xerces.apache.org http://xerces.apache.org/, last

accessed October 2012.

[TheE12] The Expat XML Parser, http://www.libexpat.org/, last accessed October 2012.

[TheH12] The History of Maps,

http://www.1worldglobes.com/History/historyofmaps.htm, last accessed October

2012.

[Thi04] Thiruvathukal, G.K., XML in Computational Science, ©2004

http://ecommons.luc.edu/cgi/viewcontent.cgi?article=1008&context=cs_facpubs

&sei-

redir=1&referer=http%3A%2F%2Fwww.google.com%2Furl%3Fsa%3Dt%26rct

%3Dj%26q%3Dparsing%2520xml%2520in%2520computer%2520science%26so

urce%3Dweb%26cd%3D3%26ved%3D0CD4QFjAC%26url%3Dhttp%253A%25

2F%252Fecommons.luc.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%253

D1008%2526context%253Dcs_facpubs%26ei%3DepN0UM7jI4TVrQG20IG4C

Q%26usg%3DAFQjCNFTakFvwJB_gqCq6DAUiEpesT7Afw#search=%22parsin

g%20xml%20computer%20science%22 , last accessed October 2012.

[Tig12] Tigris.org Open Source Software Engineering Tools, http://argouml.tigris.org/,

last accessed September 2012.

[UmlH12] UML History, http://www.sa-depot.com/?page_id=217, last accessed in

September 2012.

[UmlR12] UML Resource Page, http://www.uml.org/#Articles, last accessed September

2012.

57

[UmlT12] UML tutorial: Part One—Class Diagrams. Robert C. Martin,

http://www.objectmentor.com/resources/articles/umlClassDiagrams.pdf, last

accessed September 2012.

[Vie12] Viescas, A., What Does it Mean to Parse Data?

http://www.ehow.com/info_10021819_mean-parse-data.html, last accessed

October 2012.

[Wel12] Welcome to the project site for the UCSB Interactive Campus Map,

http://code.google.com/p/ucsb-icm/, last accessed November 2012.

[Wha12] What would it take to build a better mobile phone?

http://www.openhandsetalliance.com/index.html, last accessed September 2012.

[Woo12] Wood, T.D., How to Use a Hand Held GPS Receiver, Aug 2012,

http://www.rei.com/learn/expert-advice/gps-receiver-howto.html last accessed

September 2012.

[XmlD12] http://www.w3schools.com/dom/dom_parser.asp, last accessed October 2012.

[XmlP12] XML Parser, http://www.w3schools.com/xml/xml_parser.asp, last accessed

October 2012.

58

	FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation and Problem Statement
	1.2 Related Works
	1.3 Contribution
	1.4 Project Tasks and Thesis Organization

	CHAPTER 2: UML CLASS DIAGRAM
	2.1 UML
	2.2 UML Design Software
	2.3 Campus Map Class Diagram

	CHAPTER 3: THE ANDROID PLATFORM
	3.1 Android Platform Background
	3.2 Android Platform Architecture
	3.3 Open Source Community
	3.4 Java Android and the Campus Driver Assistant on an Android Platform

	CHAPTER 4: THE XML PARSER
	4.1 Background on XML Parsing
	4.2 Parsers and Libraries Description
	4.3 XML Parsing and the Campus Driver Assistant on an Android Platform

	CHAPTER 5: THE CAMPUS MAP
	5.1 Google Map of Campus
	5.2 Map Editor Tool

	CHAPTER 6: FINDING THE SOURCE-DESTINATION PATH
	6.1 Designing the Graph Data Structure
	6.2 An Algorithm for Finding the Shortest Path
	6.3 Dijkstra’s Shortest Path Algorithm

	CHAPTER 7: COMPONENT INTEGRATION
	7.1 Component Creation and Integration
	7.2 Difficulties with Integration

	CHAPTER 8: CONCLUSIONS
	8.1 Conclusions on the Project
	8.2 Future Works

	REFERENCES

