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Cytogenetics is a study on the genetic considerations associated with structural 

and functional aspects of the cells with reference to chromosomal inclusions. 

Chromosomes are structures within the cells containing body’s information in the form of 

strings of DNA. When atypical version or structural abnormality in one or more 

chromosomes prevails, it is defined as chromosomal aberrations (CA) depicting certain 

genetic pathogeny (known as genetic disorders).  The present study assumes the presence 

of normal and abnormal chromosomal sets in varying proportions in the cytogenetic 

complex; and, stochastical mixture theory is invoked to ascertain the information 

redundancy as a function of fractional abnormal chromosome population. This 

bioinformatic measure of redundancy is indicated as a track-parameter towards the 

progression of genetic disorder, for example, the growth of cancer. Lastly, using the 
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results obtained, conclusions are enumerated, inferences are outlined and directions for 

future studies are suggested. 
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CHAPTER I 

INTRODUCTION 

1.1 General  

Seeking a statistical methodology in bioinformatics to analyze chromosomal 

aberrations at cellular level forms the primary goal of the present study. As well known, 

chromosomal aberration could be a major cause of human diseases implicated by the so-

called genetic disorders. That is, while the collection of normal chromosomes in the cells 

depict a healthy cytogenetic status, the presence of any abnormal chromosomal details 

would imply atypical conditions within the cell reflected as possible genetic disorders. 

If the cytogenetic complex is devoid of any aberrations, its associated features that 

decide the normal cellular functions are largely non-random and mostly deterministic; as 

such, the cell at cytogenetic level can be considered as ‘organized’ and entropy-free. On the 

other hand, should this complex contain aberrated versions of chromosomes, it can be 

regarded as being ‘disorganized’; and, the associated extent of disorganization can be 

modeled in terms of the accompanying entropy details. Such entropy aspects of abnormal 

features cells would determine the extent of the progression of the associated disease 

(genetic disorder). Typically, cancer for example, is viewed in terms of unregulated cell 

growth promoted by chromosomal aberrations. 

In short, the present study is objectively indicated to pursue relevant studies in 

analyzing the extent of abnormal features at cytogenetic complex in terms of the associated 
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dis-organizational statistics and entropy characteristics. Relevant informatics of the 

cytogentic framework forms a new and novel branch of bioinformatic tasks useful in 

genetic disorder studies. 

1.2 Cytogenetics: A Review 

Cytogenetics is a branch of genetics that correlates the structure, number and 

behavior of chromosomes with hereditary and certain diseases. It is a study concerned with 

cells and its constituent chromosomes. Chromosomes basically depict a collection DNA 

strings seen within the cells. They can be microscopically examined and characterized by a 

process known as karyotyping, which is an effort to elucidate the number and structure of 

chromosomes. Chromosomal features, when seen distorted, denote abnormalities that can 

be identified in a diverse spectrum of disease states, particularly in humans. For example, 

early embryonic death, minor-to-major congenital defects, development of cancer and 

infertility (or sterility) can be mentioned as those due to genetic disorders caused by 

chromosomal aberrations. Relevantly, informational entropy can be adopted to quantify the 

extent of such chromosomal aberrations at the cellular level. The underlying efforts form 

the theme of the present research. 

1.3 Chromosomes: An Outline 

Normal human-body consists of about 50 trillion cells. In the nucleus of each cell, 

genetic material is well-organized with compactly packaged DNA and histone proteins. 

The plethora of such structures is called chromosomes. DNA and histones bind together 

due to the existence of electrostatic forces between negatively-charged phosphate group 

in the DNA and positively-charged amino acids (AAs) in the histone proteins. 

Structurally, chromosomes may vary widely across different organisms; in general, DNA 
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molecule could be circular or linear. Eukaryotic cells have large linear chromosomes 

while prokaryotic cells have small circular chromosomes. Further, cells might contain 

more than one type of chromosome in an organism, for example, mitochondria in 

eukaryotes and chloroplast in plants. 

Somatic cell of humans consists of 46 chromosomes organized into 23 pairs. In 

each pair, one chromosome comes from maternal and the other from paternal source. 

There are 22 pairs of autosomes that determine the genetic traits and one pair of 

allosomes that specifies sex, typically indicated as XX for female, and XY for male [1.1]. 

Each chromosome has a constriction point known as centromere, which divides 

the chromosome into two sections or arms. The short-arm of the chromosome is labeled 

as p-arm and the long-arm of the chromosome is labeled as q-arm. The location of the 

centromere gives the chromosome its characteristic shape. 

Chromosomes are essential units responsible for cellular division and they must 

be replicated, divided, and passed successfully to their daughter cells so as to ensure 

genetic diversity and survival of the progeny. Moreover, an ordered organization of the 

genetic material at molecular level is required by the cell for its normal functionality 

across all living systems. A typical chromosomal structure is illustrated in Figure 1.1. 

1.4 Chromosomal Aberrations 

Chromosomal aberrations reflect the abnormality aspects of the chromosome vis-à-

vis the number or structure. They usually occur when there is an error in cell-division 

following meiosis or mitosis. Some factors that influence chromosomal aberrations are as 

follows: Increased maternal age, abiotic environment, ionizing radiations, autoimmunity, 

viral infections and chemical toxins etc. 
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Numerical aberrations in chromosomes occur when a default is encountered in the 

usual number of chromosomal pairs. When an individual is missing a pair of chromosomes, 

a condition known as monosomy, as in Turners syndrome 45X occurs; or, when an 

individual has more than two chromosomes in a pair, a genetic disorder occurs as observed 

in Downs syndrome 21 Trisomy. 

 

Figure 1.1: Chromosome structure with its components, DNA and histones. 

 

(Adapted from US National Library of Medicine, Available at: 

http://ghr.nlm.nih.gov/handbook/illustrations/chromosomestructure) 

 

Structural aberrations in chromosomes imply whenever an individual chromosomal 

structure is altered. Such structural variations can be classified into five categories: 

Deletions depicting a portion of chromosome missing or deleted; duplications where a part 

of chromosome is duplicated resulting in extra genetic material; translocations implying a 

part of chromosome transferred to another chromosome; inversions denoting a part of 

chromosome broken and again getting attached upside down rendering, the genetic material 

inverted and formation of rings, with a portion of chromosome broken off and assuming a 
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shape of ring, (with or without the loss of genetic material) [1.2]. Typical chromosomal 

aberrations are illustrated in Figure 1.2 and 1.3. 

 

Figure 1.2: Single chromosome mutation (1) Deletion, (2) Duplication and (3) 

Inversion.  

 

 

Figure 1.3: Two chromosome mutations: (1) Insertion and  (2) Translocation. 

(Adapted from Wikipedia, Available at: 

http://commons.wikimedia.org/wiki/File:Two_Chromosome_Mutations.png and 

http://commons.wikimedia.org/wiki/File:Single_Chromosome_Mutations.png) 
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In general, all species can be affected by chromosomal diseases. Prevalent in 

humans are genetically- defined diseases due to errors made in chromosomal segregation 

during meiosis or as a result of exogenous influences. As indicated earlier, complications 

such as minor-to-minor congenital defects, development of cancer, infertility/sterility and 

early embryonic death etc. are caused by chromosomal abnormality. In view of the wide 

prevalence of chromosomal disorders and related pathology, it is imperative to acquire a 

broad-base of relevant knowledge towards proper medical diagnosis vis-à-vis genetic 

disorders. As such, the present study is motivated with a scope and objectives to evolve 

some research considerations as outlined in the following sections: 

1.5 Scope and Objectives of the Present Study 

The gross efforts exercised in this research can be summarized as enumerated 

below to indicate the tasks performed and essential outcomes/contributions derived thereof: 

 Understanding the stochastical disorganization at cytogenetic level 

 Developing cytogenetics-inspired approach to assess the informational  

redundancy that results from the admixture of abnormal chromosomes and 

normal chromosomes 

 Deducing relevant algorithms in terms of entropy features of the chromosomal 

aberrations via statistical mixture theory 

 Applying entropy-based measures to determine the severity of genetic 

disorders such as growth of cancer. 

The efforts as above are novel in the sense that the information-theoretic approach 

pursued is unique and new in the context of cellular cytogeny. To the best of author’s 



  

  7 

 

knowledge no such cohesive entropy-specific techniques have been exercised in the context 

of chromosomal aberrations evolving in a cytogenetic system of cellular complexity. 

Matching the scope of the research conceived, the objectives of the research pursued can be 

enumerated as follows: 

 To survey and compile literature on chromosomal aberrations and related genetic 

disorders 

 To model the cytogenetic complexity in terms of the associated ‘disorganization’ 

caused by chromosomal abnormality coexisting with normal chromosomal contents 

 To develop relevant models to portray the abnormal features of chromosomes via 

statistical mixture theory 

 To formulate an entropy metric (or information-theoretic measure, in Shannon’s 

sense)  to compare the contents of an admixture normal and abnormal 

chromosomes using stochastical mixture theory 

 To elucidate the informational redundancy in terms of entropy features seen in the 

cytogenetic complex system, so as to differentiate normal and abnormal 

chromosomal implications. 

1.6 Motivation and Contributions 

The present study, in short is conceived to find compatible quantitative measures on 

the severity of chromosomal aberrations on the basis of disorganizational features of 

cytogenetic complexity. Consistent with this objective, the motivated effort addressed in 

this research is inspired by the quest to seek certain avenues of unexplored strategies in 

modeling chromosomal abnormalities observed in a cytogenetic complex system via 

entropy considerations. Hence, the informational entropy (in Shannon’s sense) arising from 
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varying proportions of normal and abnormal chromosomes as a stochastical mixture in a 

cytogenetic system is examined. Relevant quantitative assessment of genetic disorders 

versus chromosomal aberrations can help deciding the severity of related diseases seen in 

patients. 

Inspired by the need, the motivated research tasks performed have resulted in 

outcomes, which are summarized below: 

1.6.1 Summary of Contributions 

 A comprehensive outline on cytogenetics for bioinformatic analysis and data- 

mining: Bioinformatics at cytogenetic level is sparse 

 A complex system depiction of the cytogenetic framework: Again, the 

complex system description of cytogenetics is rarely done 

 Constructing the stochastical structure of the cellular system in terms of 

normal and abnormal chromosomes via the complex system considerations 

 Hence, proportional and stochastical mixture models on the population of 

cytogenetic contents is developed 

 Introducing the concepts of entropy and information to determine the 

stochastical features of the cellular complex with normal and abnormal 

contents 

 Applying stochastically-justifiable logistic function description to cancer 

growth resulting from cytogenetic abnormality. Model results are compared 

against available data. 
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1.7 Thesis Layout 

In order to cohesively address the research efforts commensurate with the 

objectives indicated and present the outcomes thereof, this thesis is written with an 

organized set of chapters as follows: 

 Chapter I: Introduction - This (present) chapter provides an introduction to the topic 

of research pursued with an indication of relevant scope and objectives; and, the 

general format of thesis organization is outlined 

 Chapter II: Cytogenetic Complex System - Elaborated in this chapter are details 

pertinent to cytogenetic complex system. An archive of literature is reviewed and 

salient details on the organized as well as disorganized features of the cellular 

interior are presented consistent with the topic of interest 

 Chapter III: Chromosomal Aberrations - This chapter outlines the general aspects of 

the algorithms prescribed in knowing the extent of normal and abnormal 

chromosomal entities present in a cytogenetic complex. Available methods are 

reviewed and discussed 

 Chapter IV: Mixture of Normal and Abnormal Chromosomes: Evaluation of 

Chromosomal abnormality via Simple Proportion Mixture Model- With the 

conceived objective of developing algorithms to estimate the quantitative profiles 

of normal and abnormal chromosomes in the cells 

  Chapter V: Statistical Mixture Model of Normal and Abnormal Chromosomal 

Admixture: Application to Cancer Growth Models- This is written to indicate an 

entropy-based approach that determines the relative proportion of chromosomal 
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aberrations being present using stochastical mixture theory. Hence, the concept of 

informational redundancy (in Shannon’s sense) is invoked to frame a compatible 

algorithm. The application of the algorithms developed is demonstrated using 

relevant examples of real-world data sets. The associated analytical pursuits are 

described and presented along with algorithmic representations. Computational 

procedures are outlined in evaluating the informational redundancy of the mixture 

containing normal and abnormal chromosomes   

 Chapter VI: Results, Discussions and Summary - This chapter is written to present 

the briefing of results due to number of experimental simulations using the test 

algorithms. Relevance of results obtained are discussed with necessary conclusions. 

1.8 Closure 

This introduction chapter is written to outline the overall content of the thesis and 

provides details on the scope of the research, underlying objectives and driving 

motivation. Further, the thesis organization is specified with a format outline on ensuing 

chapters. 
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CHAPTER II 

CYTOGENETIC COMPLEX SYSTEM 

2.1 Introduction 

Cytogenetics is concerned with the study of structure and function associated with 

the cell at chromosomal level.  Implicated by genetic abnormalities and medical 

considerations the art of cytogenetics become widen subject in modern medical science. 

With the advent of development in genetics in the early part of the last century, a number of 

studies were undertaken to identify molecular cytogenetics and the relevant considerations 

in the related pathogenic condition, both wet lab experiments and theoretical considerations 

have been advocated to examine chromosome structure and learn about the relationship 

between chromosome phenotype so as to determine the causes of chromosomal aberrations. 

Commensurate with the objective of this thesis in ascertaining the disorganized 

aspects of cellular/chromosomal frame work, this chapter is written to provide a descriptive 

and illustrative note on the cytogenetic complex system period. Hence presented are 

relevant definitions as well as anatomical features of cellular constituents along with the 

associated functional attributes. 

2.2 Cellular Constituents: Chromosomal Complexity 

As described in chapter 1, a cellular constituent refers to a collection of the original 

DNA in transcriptomic form known as the chromosomes. As illustrated in Figure 1.1, the 
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chromosomal structure contains distinct parts. Described in this section is an outline on 

each part. 

2.2.1 Centromere 

Centromere refers to a DNA region found in the vicinity of the middle section of 

chromosomes, where two sister chromatids are in closest contact. Centromere was 

described by the German biologist, Walter Flemming in 1880s [2.1] as the "primary 

constriction" of the chromosome facilitating chromosomal inheritance process. 

Centromere region stains in the fluorescent labeling less strongly than rest of the 

chromosome. Centromere also plays key role in the so called kinetochore formation and 

spindle attachment. Shown in Figure 2.1 is a simple diagrammatic depiction of a 

centromere. 

 

Figure 2.1 Diagrammatic representation of a centromere 

(Adapted from Wikipedia, Available at: 

http://commons.wikimedia.org/wiki/File:Two_Chromosome_Mutations.png) 
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With reference to Figure 1.1, it can be seen that a chromosome has two arms p 

(shorter arm) and q (longer arm). Further, considering the location of the centromere and 

connection of the arms, the chromosomes can be divided into six types namely, 

metacentric, submetacentric, acrocentric, telocentric, subtelocentric and holocentric 

(Human’s chromosomes are however classified into only four types: Metacentric, 

submetacentric, acrocentric, and telocentric). 

Metacentric: A chromosome is metacentric, if its two arms are approximately equal in 

length.  The formation of metacentric chromosome is due to a balanced translocation or 

due to the fusion of two acrocentric chromosomes. 

 

Submetacentric: A chromosome is submetacentric if the lengths of the arms are unequal. 

 

Acrocentric: A chromosome is acrocentric, if the p arm is hard to observe in spite of its 

presence. In humans, chromosome numbers 13,14,15,21 and 22 are acrocentric. 

 

Telocentric: A chromosome is telocentric, if the centromere is located at the terminal end 

and humans do not have such telocentric chromosomes. 

 

Subtelocentric: A chromosome is subtelocentric, if its centromere is located closer to its 

end than to its center. 

 

Holocentric: A chromosome is holocentric, if the entire length of the chromosome acts as 

a centromere [2.1]. 

 

The process of cell division can be described in two contexts, namely mitosis and 

meiosis. The underlying aspects can be understood from Figure 2.2. 
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Figure 2.2: Diagrammatic representation of cell division namely, mitosis and meiosis. 

(Adapted from accessexcellence.org, Available at: 

http://www.accessexcellence.org/RC/VL/GG/comparison.php) 

 

Centromeres play major role in cell division in mitosis (which divides 

chromosomes in a cell nucleus) as well as in meiosis (which denotes specific cell division 

in reproductive phases) by directing accurately relevant segregation of chromosomes. 

The number of chromosomes is halved in meiosis, with the mitotic division differing 

from the typical mitotic division in two aspects as follows: 
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 In first mitotic division, chromosomes from maternal and paternal pair at the 

beginning of the meiosis, divides into two sister chromatids resulting in four 

chromosomes 

 In mitosis, the sister chromosomes are pulled towards opposite poles, whereas in 

meiosis four chromosomes attach to a spindle and the sister chromosomes attach 

to the same pole. 

Maternal chromosomes move to one pole and paternal chromosomes move to 

opposite pole. The separation of maternal and paternal genes during the formation of 

sperms and eggs is mainly due to centromere’s unique role. 

In mitosis, sister chromatids are joined together at centromeres until the spindle 

check point has been passed that happens during metaphase hence resulting in accurate 

cell division. Centromere dictates the assembly of kinetochore which is defined as a set 

of proteins that assemble on the centromere providing the point of attachment for the 

spindle microtubules denoting the part of the cytoskeleton provides structure and shape to 

a cell, during cell division they participate in the formation of spindle fibers. 

Centromeres are regions of specialized chromatin because such regions are 

conserved during the course of evolution the molecular composition is however can be 

different in different species, and, centromere identity is preserved during cell division. 

Centromere protein- A (also known as CENP-A) remains associated with 

centromere throughout the cell division as it is the integral component of the nucleosome. 

In the synthetic phase (or S phase), this CENP-A marks the position of centromere on 

two DNA strands. CENP-A containing nucleosomes are divided more or less equally 

between two DNA strands. CENP-A loading factor recruits additional CENP-A to the 
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centromeres. The activity of CENP-A appears to be fundamental to centromeres, in as 

much as cells that lack CENP-A fail to divide properly [2.1]. 

Centromeres consist of highly repetitive DNA regions and bound kinetochore 

proteins that are proteins are required for the attachment of microtubules to chromosomes 

during cell division. In eukaryotes, centromere basic function is highly conserved but 

divergent sequences are observed within closely related species. 

Prokaryotes have low copy number of DNA, so that a minimal system would 

prevail for DNA segregation.  Relevant bacteria has plasmids where chromosomes are 

present and centromere as well as kinetochore-like structures play key role in segregating 

the chromosomes, in such species via  partitioning (Par) apparatus that resembles an 

eukaryotic spindle. Such bacterial par systems encode three elements: (i) Centromere like 

site on plasmid DNA; (ii) Protein binding to this site and (iii) Actin-like ATPase. 

As an example, the par systems of the Escherichia coli R1 plasmid contain parC, 

ParR and ParM and of the Enterococcus faecium plasmid pGENT contains cenE, PrgO. 

Both have similarities such as centromeric regions are curved, these regions consist of 

two sets of repeats:  DNA binding proteins ParR in E.coli and PrgO in E.faecium that 

binds to the centromeric regions of parC in E.coli and cenE in E. faecium forms 

nucleoprotein complexes. The segregation proteins ParM and PrgO interact with their 

corresponding nucleoprotein complexes and form dynamic actin-like filaments for active 

and directed plasmid partitioning. Centromere’s DNA is bendable or curved in order to 

support tight winding of DNA around protein binding sites from prokaryotes to 

eukaryotes [2.2]. 
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Budding yeast, Saccharomyces cerevisiae the centromeric DNA is very simple in 

organization, being only of 125 to 200 bp long and this region 125 bp locus known as 

CEN plays a significant role in mitotic and meiotic chromosome segregation. The CEN 

sequence is organized into three domains, consisting of two highly conserved protein-

binding sites (termed CDE I and CDE III) flanking a 78-86 bp high (A + T) central 

sequence (CDE II). Mutational analyses have shown that the 25 bp CDE III binding site 

is absolutely essential for centromere function [2.3]. 

The centromere functionality is conserved in all eukaryotes from yeast to humans, 

relevant details are as follows: 

 The centromere is the site of kinetochore assembly (the protein complex that 

drives chromosome segregation); they are formed at one and only one site on each 

chromosome. Further, centromere depicts the last region where sister chromatids 

remain tethered by cohesion until anaphase (Anaphase means third stage of 

mitosis, where the daughter chromosome move towards opposite poles) 

 Centromere incorporates a sensor, known as the spindle checkpoint that monitors 

attachment of sister kinetochores to microtubules from both poles and hence 

tension across sister centromeres 

 Kinetochore-associated motor proteins are responsible for the movement of 

chromosomes along microtubules toward the spindle poles.  

The centromere of yeast can be studied under two categories namely, (i) budding 

yeast and (ii) fission yeast. In budding yeast, for example in Saccharomyces cerevisiae, it 

differs from fission yeast or Drosophila melanogaster and humans with the absence of the 

silent chromatin.  
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In fission yeast, such as Schizosaccharomyces pombe, Drosophila melanogaster 

(also known as fruit fly which belongs to Drosophilae family) has basic similarities with 

humans, such as kinetochores binding to microtubules. The kinetochore is organized in 

such a way that it coordinates with microtubule binding sites so that movement of the 

microtubules is well controlled. In yeast, centromeric DNA is closely packed in such a 

way that the genes placed within those regions are transcriptionally silent. 

Heterochromatin is typically present in Drosophila and humans. Studies on the fission 

yeast reveal the role of repressive heterochromatin in centromere function. 

Human centromeres are relatively large, several million base pairs (bps) and 

consist predominantly of the same 171-bp sequence, known α-satellite DNA, repeated 

hundreds of thousands of times and by a number of centromeric proteins (CENPs) . 

Centromere is recognized by the components of the kinetochore in cell division phases. 

The centromeric DNA is normally in a heterochromatin state that is condensed state; this 

is required for recruiting cohesion complex mediated after DNA replication and during 

anaphase.  In this chromatin histone3 is replaced with a centromeric specific variant 

CENP-A, The presence of CENP-A is believed to be important for the assembly of the 

kinetochore on the centromere. CENP-C has been shown to localize almost exclusively to 

these regions of CENP-A associated chromatin. CENP-B, binds specifically to alpha-

satellite DNA sequences, CENPs as a result help in regulation of heterochromatic 

modification, later followed by cell division. 

Constitutive proteins are permanently associated with centromere, the key 

proteins are CENP-A (centromere protein A), CENP- B, CENP-C and CENP-G and the 
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facultative proteins are associated with centromere temporarily. These are CENP-E, 

CENP-F and turblin [2.4]. 

2.2.2 Complexity of Eukaryotic Genomes 

Eukaryotic genomes can be regarded as complex systems due to following 

reasons; 

 The introns and exons are such that, the introns are predominant accounting about 

ten times more than exons 

 Eukaryotic genes are normally present in multiple copies known as gene families 

and also they are present as pseudogenes (denoting inactivated genes due to 

mutations) constituting nonfunctional genes 

 Repetitive DNA sequences are significantly present in eukaryotic genome. Nearly 

40 % is usually repetitive DNA sequences and some of them even prevail as 10
5
 

to 10
6
 copies per genome. 

The number of genes in eukaryotes is very high. For example, human genome is 

estimated to contain about 100,000 genes. Only a small fraction of the genome in the 

complex eukaryotes corresponds to protein-coding sequences [2.5]. 

2.2.3 Types of Centromere Sequences 

There are two major classes of centromeres, namely, (i) regional centromeres 

wherein the DNA sequences are not defined and the functions of such centromeres are 

not known. These centromeres contain large amounts of DNA and are often packaged 

into heterochromatin. They typically consist of large arrays of repetitive DNA (for 

example, satellite DNA) where the sequence within individual repeat elements is similar, 

but not identical. As said earlier, the primary centromeres in humans are repeat units 
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denoted as α-satellite. A number of other sequence types are also found in the regional 

centromeres for example, as in the fission yeast. (ii) Point centromeres denote entities 

wherein the DNA sequences are both necessary and sufficient to specify the centromere 

identity as well as the functions in organisms. Point centromeres are smaller and more 

compact. In budding yeasts, the point centromere region is relatively small, (about 125 

bps DNA) and contains two highly conserved DNA sequences that serve as binding sites 

for essential kinetochore proteins [2.6]. 

2.2.4 Wet-lab characterization of the Centromere 

In fluorescent in situ hybridization (FISH), fluorescent probes are used to bind 

only those parts of the chromosome so that a high degree of sequence similarity can be 

observed subsequently, via fluorescence microscopy to find out where the fluorescent 

probe is bound to the chromosomes. FISH is used to detect and localize the presence or 

absence of specific DNA sequences on chromosomes in determining centromere specific 

satellite sequences that are expected to have the copy number being low. 

Immunoprecipitation is another technique where precipitating a protein antigen 

out of a solution using an antibody (that specifically binds to particular protein) is used to 

determine human neocentromeres. Such neocentromeres of humans are not composed of 

repetitive DNA. Hence immunoprecipitation is adopted. A related version namely 

chromatin immunoprecipitation (ChIP) is used with specific antibody followed by pyro-

sequencing to determine the order of nucleotides in DNA. 

Bacterial artificial chromosome (BACs) is an approach used to sequence the 

genome of organisms, where a short piece of DNA of the organisms is amplified as an 

insert in BACs and then sequenced [2.7]. 

http://en.wikipedia.org/wiki/Hybridization_probe
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Chromosome
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In the wet-lab based centromere DNA sequencing, the associated limitations are 

as follows: (a) Since centromere is a largely tandem array of species specific repeats, in 

eukaryotes sequencing becomes difficult due to the size considerations; and  (b) 

Repetitive DNA tends to be unstable in species like Escherichia coli, (when replicate 

bacterial artificial chromosomes) is attempted. 

2.3 Centromere  Aberrations: Disorganization of Cytogenetic Framework 

 When normal chromosomes are spliced and incorrectly repaired, then 

chromosomes with absence of centromere or addition of multiple centromeres could be 

formed. Such aberrant structures are undesirable because, they do not segregate properly 

and may often get lost from the dividing cell. In germ cells, this will result in unbalanced 

eggs or sperm (caused by extra or missing chromosomes or chromosome segments).  

In humans and animals, errors in centromere may result in miscarriages, birth 

defects as well as, they may lead to cancerous cells. Centromere loss or extra centromeres 

would cause chromosomal segregation and may result in aneuploidy state (that is, the 

occurrence of one or a few chromosomes above or below the normal chromosome 

number). Rarely in humans, neocentromeres could be seen at new sites on a 

chromosome; and, currently over 60 known human neocentromeres have been identified 

on re-arranged marker chromosomes. This formation may be due to inactivation of 

centromere. The newly formed centromere is originally euchromatic (meaning lightly-

packed form of chromatin as in DNA, RNA and protein) and lacks α-satellite DNA 

altogether. Any errors in centromere proteins may also result in auto immune diseases 

[2.8]. 
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2.4 Chromatin – Structural and Functional Modifications: A Review 

Another dimension of cellular complexity arises from chromatin constituents, the 

details of which are as follows: Human beings have 23 pairs of chromosomes per cell. 

That is, a total of 6 billion base pairs of DNA per cell. Normal human body consists of 50 

trillion cells. Genetic material organization at molecular level is highly required by the 

cell for its normal functionality. In eukaryotic cell genetic material is well organized by 

compactly packing DNA with proteins called histones, in the nucleus hence, the achieved 

state is known as chromatin. DNA bounds to histones due to the existence of electrostatic 

forces between the negatively charged phosphate group in DNA and positively charged 

amino acids in histone proteins. 

The eukaryotic cells when stained with basic dyes turned into bright color during 

cell division (mitosis and meiosis) due to its granular content i.e. condensed chromatin 

present in the nucleus. The term chromatin was coined by Walther Flemming in the year 

1882 [2.9]. Chromatin is not found in prokaryotes (e.g., bacteria) that lack nucleus. 

Chromatin means “colored body”.  The fundamental unit of chromatin is Nucleosome, 

which is composed of DNA and histones. These nucleosomes, units of repeat ion are 

regularly spaced along a genome to form a nucleo-filament for higher level of compact 

organization and resulting into a chromosome. The main purpose of the chromatin 

existence is to regulate the biological processes such as DNA replication, gene 

expression, chromatin assembly and condensation, and cell division; the cell needs to 

change its structure of chromatin   at certain specific regions of the genome and also 

coordinated time points, Most structural changes occur at nucleosome level, Chromatin 

histone modifications are very essential which are discussed in detail later.  
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Chromatin is the DNA of the nucleus and associated proteins such as histones. 

Mostly the protein consists of multiple copies of five types or kinds of histones. The 

amino acids arginine and lysine residues have free amino group   that attracts the 

hydrogen ions giving tem positive charge. These amino acids tightly bind to the 

negatively charged phosphate groups of DNA.  Chromatin might also consists of non-

histone proteins such as transcriptional factors (TF) which are present in very small 

amounts, association of TF’s with DNA is more transient. The five histone proteins 

variation from one cell type to another or from one species to another is very less when 

compared with the other non-histone proteins. 

Histones keep the DNA organized, but also help to regulate expression of genes. 

Specifically modifications to histone proteins, such as methylation and acetylation help to 

regulate genes by activation or silencing. Later, chromatin code is read by the 

transcriptional regulators as histone modifications can modulate the accessibility of DNA 

to   TF’s. For example, β-globin gene regulation studies revealed that histone methylation 

might block DNA’s access to TF’s while acetylation might change the electrostatic 

interactions within the chromatin to open up DNA and allow gene transcription.  

2.4.1 Structure of DNA and Chromatin 

DNA molecule is a very flexible, based on the environmental conditions DNA 

can exist in many forms, there are three types of double helices DNA’s in nature namely, 

A- DNA, B- DNA and Z –DNA. A and B forms of DNA are right handed forms whereas 

Z-DNA is left handed form. Hydrated DNA usually assumes B- form, whereas A-form is 

achieved when there is little water to interact with the helix and is also conformation 

adopted by the RNA.  The Z-form has methylated deoxy-cytosine residues and occurs 
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during transcription where negative supercoiling stabilizes it. The most commonly 

occurred type of DNA in living organisms is B-DNA. DNA is deoxyribonucleic acid 

consisting of structural units called nucleotides, nucleotide consists of nitrogenous bases 

(Adenine-A and Thymine-T are pyrimidine bases while Cytosine-C and Guanine-G are 

purine bases and A), five carbon de-oxy ribose sugar and phosphate. The base pairing 

occurs in DNA, that is, GC pair is bound by three hydrogen bonds and AT pair is bound 

by two hydrogen bonds. Phosphate groups are joined by ester bond. In humans DNA is 

double stranded, the two strands run in opposite directions to each other therefore anti-

parallel. The fundamental structural unit of chromatin is assemblage of DNA wound 

around the histone proteins. 

Histones: These are present in eukaryotic cell nuclei, chemically they are highly 

alkaline and their function is to order the DNA into structural units called nucleosomes. 

Histone proteins have structural and functional role in transition of active and inactive 

chromatin states. There are two types of histones namely core histone and linker histones. 

Core histones consists of H1/H5, H2A, H2B, H3, and H4 and linker histones consists of 

H1 and H5. As indicated earlier, Chromatin consists of structural units so called 

nucleosomes, which consists of approximately 147 base pairs of DNA wrapped around a 

histone octamer consisting of two copies of each of the core histones H2A, H2B, H3, and 

H4, the linker histone H1 or H5 are usually positioned on top of the nucleosome for 

stabilizing higher order chromatin structure. 

The four core histones, i.e.  H2A, H2B, H3 and H4 are relatively similar in 

structure and are highly conserved through evolution. H2A and H2B form the dimers; 

and H3 and H4 constitute the tetramers. The helix turn helix motif of DNA and also the 
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feature of long tails on N- terminal end on aminoacid structure is common feature in core 

histone. Histones have maintained higher degree of conservation in the course of 

evolution; however the histone variants in the nucleosomal octameric core that had 

evolved played diverse roles in the gene regulation and epigenetic silencing. 

 

 

Figure: 2.3 Structure of chromatin 

 (Adapted from faculty.jsd.claremont.edu, Available at: 

http://faculty.jsd.claremont.edu/jarmstrong/researchint.htm) 

 

Histones binding to DNA critically depend on the amino acid sequence of the 

histone and do not depend on particular nucleotide sequences in the DNA. Histones are 

highly conserved molecules during the course of evolution. For example, Histone H4 in 

the calf (young cow) differs from pea plant at only two amino acid residues in the chain 

102. 

Although amino acid sequence is same, each histone molecule differs in structure 

due to its chemical modifications that occur later to individual amino acids, for example 

acetyl groups to lysines, phosphate groups to serines and threonines and methyl groups to 

lysines and arginines. 75 to 80% of histone molecule is present in its core, the remaining 
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percentage at the N-terminal dangles out from the core as histone tail. The chemical 

modifications occur on these tails especially of H3 and H4 and these changes are 

reversible. Histone modifications affect chromosome function through at least two 

distinct mechanisms. Primarily, histone modifications may alter the electrostatic charge 

of the histone resulting in a structural change in histones or their binding to DNA and 

secondly, modifications are binding sites for protein recognition modules, such as the 

bromodomains or chromodomains that recognize acetylated lysines or methylated lysine, 

respectively. Histones are subjected to a wide variety of posttranslational  modifications 

including but not limited  to lysine acetylation, lysine and arginine methylation, serine 

and threonine phosphorylation, and lysine ubiquitination and sumoylation, these 

modifications occur within the histone at N-terminal tails protruding from the surface of 

the nucleosome. 

Nucleosome: It is a subunit of chromatin composed of short length of DNA 

wrapped around a core of histone proteins. The human genome contains 23 chromosomes 

i.e. approximately 3 billion nucleotide pairs therefore compact organization is very 

important each nucleosome is about 11nm in diameter , the DNA double helix wraps 

around  a central core of eight histone proteins to form a single nucleosome, the second 

histone protein (H1) fastens the DNA to nucleosome core explained below in detail [2.9].  

Chromatin is the repeating units of nucleosomes, which consist of ~147 base pairs 

of DNA wrapped around a histone octamer consisting of two copies of each of the core 

histones H2A, H2B, H3, and H4. Linker histone H1 is positioned on top of the 

nucleosome core particles stabilizing higher order chromatin structure.  The changes in 

chromatin structure are effected by modifications that are very predominant in the core 
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histones at their N- terminal tails. The chromatin modifications are due to acetylation, 

methylation, phosphorylation, ubiquitylation, sumoylation, ribosylation, deamination and 

isomerization.  Enzymes play a key role in catalyzing these chemical reactions. For 

example the chemical compounds like methyl or acetyl groups can be covalently linked 

to certain amino acid residues, such as lysine or arginine, further resulting in the 

modification of amino acids serve as docking sites (active site) for other proteins, which 

specifically recognize the histone mark and enable them to wrap or unwrap during the 

cell cycle such as mitosis, meiosis and interphases [2.10]. The total mass of a single 

nucleosome complex is about 100,000 daltons.  In eukaryotes the higher order of packing 

gives the chromosome its compact structure i.e. typical human chromosome is about 

0.1cm in length and would span the nucleus 100 times. 

2.4.2  Chromatin Organization 

 Based on microscopic observations, two-levels of chromatin organization are 

indicated: They are: (i) Heterochromatin and (ii) Euchromatin. They refer to states of 

compaction (DNA and histones) and their transcriptional potential. Heterochromatin is 

tightly coiled form of DNA mean’s condensed, genetically inactive but may play a role in 

controlling metabolic activities, transcription and cell division (Interphase).  Chromatin in 

this state stains darkly in karyograms (Heitz, 1928) [2.11]. Heterochromatin is usually 

localized on periphery of the nucleus in a eukaryotic cell. Heterochromatin does not alter 

its structure in condensation throughout the cell cycle. There are two types of 

heterochromatin, namely constitutive and facultative heterochromatin depending on the 

DNA that they contain. 



  

  28 

 

Constitutive heterochromatin predominantly occurs at centromere and telomeres. 

They usually exist as highly condensed state with repetitive DNA and are largely 

transcriptionally silent. As constitutive heterochromatin is genetically inactive mostly, 

thus serves as a structural element of the chromosome. 

Facultative heterochromatin is a non-repetitive and inactive DNA, but under 

specific developmental or environmental signals, loses its condensed structure and 

become transcriptionally active, for example the inactive X chromosome in female 

somatic cells. 

In general, heterochromatin is greatly enriched with transposons and other junk 

DNA and usually replicates late in S-phase of the cell cycle. Genes present in 

heterochromatin are generally inactive (no transcription) and increased methylation of 

cytosines in CpG islands of the gene’s promoter is observed. 

 Histones in the nucleosomes of the heterochromatin shows decreased acetylation 

and increased methylation of lysine-9 in histone H3 (H3K9) providing binding site for 

heterochromatin protein (HP1) which in turn blocks transcriptional factors need for gene 

transcription. Increased methylation of lysine-27 in histone 27 in histone H3 (H3k27) is 

also observed. 

Euchromatin: In euchromatin DNA and histones are loosely or lightly packed, 

mostly transcriptionally active.  Chromatin in this state stains lightly in karyograms (a 

diagram of chromosomes of a cell arranged in homologous pairs). It is found in both 

eukaryotic and prokaryotic cells (even wit out nuclei), but heterochromatin is found in 

eukaryotes. The cells can transform euchromatin into heterochromatin and vice versa, the 

reason behind this transformation is to control gene expression and replication, as these 
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processes behave differently in   compact and condenses states of chromatin (accessibility 

hypothesis). This transformation of chromatin state is due to the chemical reactions 

occurring on the N-terminal of the histone tails by the action of specific enzymes. In 

general euchromatin is loosely packed in loops of 30 nm fibers, genes are active and 

decreased methylation of cytosines in CpG islands of the gene promoters   and lysine-9 

and lysine-27 in histone H3. Heterochromatin and euchromatin differ in their biophysical 

conformations and in metabolic expression of their genes but same in their basic structure 

of DNA arranged within chromosomes [2.11]. 

Pre-nucleosomes: A novel chromatin particle was discovered recently by 

biologist James Kadonaga [2.12] named pre-nucleosomes, which is a precursor of 

nucleosome made up of intermediate DNA – histone complex. The nucleosome is the 

basic repeating unit of chromatin. The pre-nucleosomes are converted into nucleosomes 

by motor proteins that use the energy molecule ATP.  The packing of DNA with histone 

proteins to form chromatin plays key role in stabilizing chromosomes and regulation of 

genes mainly in DNA replication. The pre-nucleosome is likely to be an important player 

in how our genetic material is duplicated and used [2.12]. 

2.4.3 Abnormal Features of Chromatin 

Epigenetics is the study of heritable changes in the chromatin without involving 

the changes in the DNA sequences. The chromatin histone proteins associated with DNA 

may be activated or silenced. In a multicellular organism, the differentiated cells express 

only genes that are necessary for their own activity. Epigenetic changes in an organism 

occurs in its lifetime, but if any mutations occur  in the DNA of the sperm or egg  that 

undergoes fertilization, then some epigenetic changes are inherited from one generation 
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to the next [2.13]. The aberrant chromatin state is the cause of disease; hence by 

unrevealing the chromatin structure and its functionality it is easy for us to understand 

many diseases including developmental disorders and tumors. Chromatin plays key role 

in the all aspects of cell behavior (transcription, translation and protein synthesis). 

Embryonic development and stem cell behavior is regulated by chromatin. It also impacts 

the cell cycle including chromatin condensation during mitosis and DNA replication 

during S phase.  Chromatin studies in stem cells such as embryonic stem cells help us to 

better understand the induced pluripotent stem cells. As stem cells and tumor cells have 

unique chromatin structure, more active state of chromatin compared to normal cells. 

Breakthroughs can be achieved in the fields such as Cancer biology, regenerative 

medicine etc. [2.14]. 

2.5 Closure 

 This chapter is written as an overview on cytogenetic complex based on a 

number of archival literature details. Its contents are useful toward understanding the 

studies presented in the ensuing chapters. 
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CHAPTER III 

CHROMOSOMAL ABERRATIONS 

3.1 Introduction 

As indicated in earlier chapters, the present study is a cytogenetic-inspired 

approach to determine quantitatively the extent of the presence of chromosomal 

aberrations. In this context, it is necessary to identify first existing measures that are 

traditionally used to quantify the chromosomal abnormality (CA). The following sections 

outline the details available thereof in the archival literature. 

3.2 Chromosomal Aberrations: An overview 

There are two regimes of quantifying chromosome abnormality. They correspond 

to:  (i) At nucleotide level and (ii) at cytogenetic level. Relevant details are as follows: 

CA at nucleotide level: The variations account approximately 12% of human genomic 

DNA and the genetic variations such as deletion, duplication or inversion, these might 

range from one kilo base to several mega bases in size whereas single nucleotide 

polymorphisms (SNPs) differ from what is known as Copy number variations (CNVs) as 

the effect is only on one single nucleotide base. CNVs are mutations that might include 

deletion, duplication or inversion. 

Human genome consists of nearly 6 billion nucleotides of DNA packaged into 

two sets of 23 chromosomes. One set inherited from each parent. The segments of DNA 

ranging in size from thousands to millions of DNA bases might vary in copy number. 
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CNVs might even lead genes to dosage imbalances. CNVs sometimes might not 

be directly related to cause of disease in particular. In some cases CNVs may influence 

gene expression, phenotypic variation and adoption by altering the gene dosage. Hence 

CNVs play an important role in human disease as well as drug response. Gene dosage 

describes the number of copies of a gene in a cell and gene expression can be influenced 

by higher and lower dosages, for example deletion lowers the gene dosage. Immune 

system and brain development are mostly enriched by CNVs in the course of evolution. 

CA at cytogenetic level: CNVs mentioned earlier depict a kind of structural 

variations having an abnormal number of copies of one or more sections of the DNA in 

chromosomes of the cells, CNVs includes large regions of genome that ate involved in 

insertions, deletion, duplications and translocations. Unequal recombination’s also leads 

to CNVs. this variation is about 12% of human genomic DNA and each variation ranges 

from one kilobases (kb) to several megabases (mb) in size. CNVs are caused by 

inheritance or de nova mutation (i.e. genetic mutation that neither parent possessed nor 

transmitted). CNVs were first unrevealed by Human genome project, that estimated 0.4% 

of the genomes of unrelated people typically differ with respect to copy number. De novo 

mutations have been observed in identical twins even though they have identical 

genomes. CNVs have been associated with susceptibility or resistance to disease [3.1]. 

CNVs play a role in evolutionary adaption in humans as well as other mammals. 

For example human salivary amylase gene (AMY1) is present in 6 to 15 copies, which 

plays a key role in adoption to high starch diet that improves the ability to digest starchy 

food, whereas chimpanzees only have two diploid copies of AMY gene [3.2]. There are 
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two types of CNVs Broad events consisting of several Mb or even the whole 

chromosome while focused events, consisting of normally restricted to few Mb. 

CNVs can be detected by various types of tests: fluorescence in situ hybridization, 

comparative genomic hybridization, high-resolution array-based tests based on array 

comparative genomic hybridization, and quantitative-PCR based technique for analysis 

and/or validation of known CNVs. The most efficient method used in detecting CNVs is 

array-based method or Virtual Karyotype. BAC (Bacterial Artificial Chromosome) arrays 

are historically the first micro array methods used in detecting DNA copy number 

analysis. 

 Single nucleotide polymorphisms (SNPs): SNP is a DNA sequence variation that 

occurs at a single nucleotide. Genetic code is specified by four nucleotides namely, 

adenine, thymine, cytosine, and guanine (A, T, C, G) in the genome. SNPs occur mostly 

in non-coding regions compared to coding sequence. SNPs occur normally throughout 

the individual DNA. SNPs occur in every 300 nucleotides on average; approximately 10 

million SNPs are present in the human genome. The SNPs are found in DNA between 

genes. The SNPs that occur within a gene or in a regulatory region near a gene play direct 

role in diseases by affecting gene function. 

 Mostly SNPs do not have effect on human health but it might be helpful to 

understand drug response, susceptibility to environmental factors such as toxins and risk of 

developing particular diseases. SNPs found in coding region are particularly of interest as 

they alter the biological function of a protein, only 3-5 % of the human DNA sequence 

codes for the production of protein while the rest remains non coding region where the 

occurrence of SNPs might not be much of interest. 
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SNPs are genetically stable and occur frequently throughout the genome. They act 

as “biological markers”, meaning that these DNA segments are present within an 

identifiable physical location that can be easily located and used to construct chromosome 

map showing the positions of known genes or markers. 99.9% of one individual DNA 

sequence is identical to another individual, only 0.1% difference is present, of which 80% 

are contributed by SNPs. Identification of genetic components of disease is facilitated by 

studying SNPs. 

SNPs occur when DNA replication enzymes make an error as they copy the cell’s 

DNA during meiosis; hence the enzyme incorporates approximately one mistake in 9-10 

million nucleotide bases. Some SNPs that are harmful cause diabetics, cancer, heart 

disease, Huntington’s disease and hemophilia. Sometimes changes in each gene become 

apparent under certain conditions leading to susceptibility of lung cancer. 

Techniques to detect SNPs are hybridization techniques that include micro arrays 

and real time PCR. Enzyme based techniques such as nucleotide extension, cleavage, 

ligation and direct sequencing are few techniques used to detect SNPs present in the human 

genome (a genome represents all the genetic material within the chromosomes and  the so-

called transcriptome depicts the entire set of gene transcripts. Following the central dogma 

hierarchy, proteome denotes the entire set of proteins) [3.3]. 

3.3 Features of Chromosomal Aberrations  

Chromosomal abnormalities as discussed earlier are result from either a variation in 

the chromosome number or from structural changes. These changes might have occurred 

spontaneously or induce by environmental agents such as chemicals, radiation etc., 

Mutations occur when there is mistakes when genes are copied as cell division occurs to 
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produce new cells. Chromosomal abnormalities may involve autosomes, sex chromosomes, 

or both.  

Cytogenetics, is used to understand chromosomal disorder and their relationship to 

health and disease. Cytogenetic analysis are those diagnostic methods to analyze these 

disorders such as prenatal diagnosis, multiple birth defects, and abnormal sex development 

and in some cases of infertility or multiple miscarriages, cancer, hematological disorders. 

The types of chromosomal disorders that can be detected by cytogenetics are numerical 

aberrations, translocations, duplications, deletions, and inversions. 

Identification of individual chromosomes was difficult until the discovery of 

staining techniques such as Q-banding reveals the structural organization of chromosomes. 

The banding patterns are important in recognizing the genetic disorder. Chromosomal 

abnormalities of even a minute segment or band are now known to be the basis for number 

of genetic diseases.  

Rearrangement: Chromosomal rearrangements can cause cancer by forming a 

hybrid gene or by disregulation of gene. (Hybrid genes are fusion of two different genes at 

the rearrangement break points). The aberrant chromosome formed due to rearrangement is 

a hybrid gene, which in turn codes for aberrant protein that disrupts the normal 

functionality of the cytogenetic system, for example, chronic myeloid leukemia.  

Fluorescence in situ hybridization (FISH) is the most common method used to 

detect chromosomal rearrangements. More than 200 different types of fusions have been 

identified, they often involve oncogenes that cause cancer (MLL, RET and EWSR1 

genes).hybrid genes are not specific to particular type of cancer, as the same hybrid gene 

involved in multiple types of cancer, hence these genes might initiate cancer progression 
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in a variety of different tissues. Disregulation of normal genes can cause the conversion 

of normal cells into cancerous cells. Overexpression of gene is usually observed in the 

disregulation. Mutations in the human DNA repair genes can deregulate normal cellular 

processes as well as active gene when transposed might result in activation of silent gene 

[3.4].    

 Clonal or non-clonal chromosomes: A part of cytogenetic characterization and 

classification of chromosomal aberration involves elucidating normal karyotypes and 

identifying major recurrent chromosomal aberrations. Cells that accumulate mutations 

correspond to a somatic evolution and implicate natural processes like aging and 

development of diseases like cancer. The survival of the cell in the somatic evolution 

with acquired mutation is decided by the increased fitness of the cells.  

Cells in neoplasmic (tumorous condition) try to increase their fitness with the 

resources like oxygen, glucose and space, further they generate more daughter cells 

competitively as compared to cells that lack mutation, considering such mutant cells 

called (clone) with the available resources expand in the neoplasm. Relevant clonal 

expansions form the signature of natural selection in cancer and correspondingly the 

population of aberrated cells (that promote the neoplasmic) cancerous conditions are 

clonal chromosomes. 

The biological significance of clonal karyotypic abnormalities in neoplasms 

indicated above has been understood to a fair extent. However there are chromosome 

aberration that are not consistent within the cytogenetic definition  of a clone, but do exist 

as an artifact manifesting in random losses of cells and causing karyotypic 
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instability/evolution such, non-clonal abnormalities may predict future, clinically 

significant clones being ignored as discussed in [3.5]. 

Contamination karyotypes: In cytogenetic context molecular karyotyping involving tissue 

culture often shown the presence of contaminations that limit the efficacy of karyotype 

evaluations. For example, details pertinent to karyotyping products of conception with 

maternal cell contamination. Relevant studies are useful for fetal welfare. Thus, 

contamination karyotypes implies cross contamination of cytogenetic entities of two 

systems such as maternal and fetal. 

3.4 Chromosomal Aberrations and Genetic Disorders 

Genetic disorder is a diseased state caused by abnormalities in genes or 

chromosomes. Usually they are present from before birth. Sometimes genetic disorders 

are passed down from parent’s genes or might be caused by new mutation changes to the 

DNA. For example same type of cancer can be caused by inherited genetic condition or 

by mutation due to non-genetic causes. 

Single Gene disorder: nearly 4000 human diseases are caused by single gene disorder. 

The cause of single gene disorder is due to mutated gene. Based on chromosomal 

location the genetic disorders can be classified into autosomal and X-linked types. 

Further these are sub-divided into Autosomal dominant, Autosomal recessive, X-linked 

dominant and X-linked recessive based on their allelic expression. 

3.5 Chromosomal Aberrations: Oncological Considerations 

Accumulation of genetic alterations in the cells causes human cancer. 

Chromosomal abnormality associated with cancer was first discovered by Peter Nowell 
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and David Hungerford in 1960 [3.6] in chronic myeloid leukemia (unrestricted growth of 

myeloid cells in the bone marrow).  

In 1969, Foulds [3.7] had studied about cancer and its stage evolution, and later in 

1982, Berenblum [3.7] established three distinct stages: the initiation stage, the promotion 

stage and the progression stage. If the first two stages underlie the triggering of cell 

transformation, the third stage determines the transformation of a benign tumor into a 

malignant form, with the maintenance and evolution of malignancy. 

Proto-oncogenes encode proteins that are involved in the control of cell growth. 

Alteration of the structure and/or expression of proto-oncogenes can activate them to 

become oncogenes capable of inducing in susceptible cells the neoplastic phenotype 

(neoplasm means abnormal proliferation of cells, while Neoplasms may be benign, pre-

malignant (carcinoma in situ) or malignant (cancer). Oncogenes can be classified into 

five groups based on the functional and biochemical properties of protein products and 

their normal counterparts (proto-oncogenes). These groups include growth-factors, 

growth-factor receptors, signal transducers, transcription-factors, and others such as 

programmed cell-death regulators [3.8].  

Models of genetic abnormality representing the cancer: Cancer is caused by a sequence 

of genetic abnormalities arising in a tumor cell.  Understanding the order relevant of 

occurrences for the staging of tumors is very crucial in cancer treatment. The genetic 

changes influence tumor progression either by deactivation of tumor suppressor genes 

(that increases the probability of further genetic changes) or by activation of oncogenes 

(that gives the cell cancerous properties). The model depicting occurrence of genetic 
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abnormalities can be divided into two types namely, the linear structure model and 

oncogenetic tree-based structure model. 

Linear model: The genetic profile of individual tumors varies widely because no single 

mutation is present in all tumors; certain genetic changes tend to occur early in the 

development and others relatively late. The steps involved in carcinogenesis were first 

studied by Vogelstein et al. [3.9] in colorectal tumorgenesis as a preferred order of 

occurrence of the genetic abnormalities while acknowledging the existence of other 

pathways. 

Oncogenetic tree model: The so-called tree model represents a combination of several 

pathways in single model meaning that certain genetic abnormalities may lead to several 

other changes due to increased chance of occurrence; whereas, in the linear model, it is 

quite opposite. Hence, oncogenetic tress allows multiple possible pathways and parallel 

progression along several pathways in the same tumor. Oncogenetic trees include linear 

model as a special case. Oncogenetic tree model was first studied by Desper et al. [3.10]. 

It is subdivided into branching trees and distance based trees. Cancer is genetically 

heterogeneous even in tumors that are considered to be clinically or pathologically 

homogeneous. For example, renal cell carcinoma has a high degree of genetic 

heterogeneity. Hence, tree models capture heterogeneity. Moreover they are not 

dependent on a single linear progression, so tree models are more flexible and realistic 

when compared to a linear model. 

Branching trees: In a branching tree, there is one node called a root, and every other node 

denotes one of the events. An edge depicted as (i : j) represents a hypothetical cause-and-

effect relationship meaning that the occurrence of event i makes the occurrence of j more 
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likely. Thus, heterogeneous possibilities for how oncogenesis can progress can be 

represented. The choice of which edge to include in the branching tree is based on a 

weight function that takes into account how often each event occurs and how often each 

pair of events take place together in the same tumor. 

Distance-based trees: The distance-based trees have all of the events at the leaves, 

whereas the internal nodes are hidden, unnamed events (much like a phylogenetic tree 

has the existing species) as leaves, and the hypothetical common ancestors as internal 

nodes.  Another significant difference is that, in such trees, each edge has a length, and 

the trees are drawn so that the horizontal distance along an edge is proportional to length. 

The trees are constructed by first defining an (n x n) distance matrix that describes for 

each pair of events whether they tend to occur together or not. The second step is to use 

existing phylogenetic methods to find the phylogenetic tree that best fits the distance 

matrix. For this reason the trees constructed by this method are called “distance- based 

trees.” 

The event labels A, B, C, D, E, and F in Figure 3.1 represent CGH aberrations.  

The CGH or comparative genomic hybridization (also known as chromosomal 

microarray analysis CMA) is a molecular-cytogenetic method for the analysis of copy 

number changes (gains/losses) in the DNA content of a given subject's DNA and often in 

tumor cells. CGH will detect only unbalanced chromosomal changes. Structural 

chromosome aberrations such as balanced reciprocal translocations or inversions cannot 

be detected, as they do not change the copy number. 

In Figure 3.1, cancer progression is from left to right. The top two models are 

examples of branching models because all vertices have a label. The top model is a path 
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and a tree; the middle model denotes only a tree, but not a path and the bottom model 

does not represent a tree because there are two paths stem from the root to event E.  

 

 

Figure: 3.1 Oncogenic Tree Models [3.10] 

3.6 Closure 

Commensurate with the objectives of the present study, this chapter offers an 

outline featuring details pertinent to chromosomal aberrations. Pertinent information 

includes definitions on the types of CA, their implications on genetic disorders and 

oncological states. A gamut of citations is presented on the topics addressed.  
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CHAPTER IV 

MIXTURE OF NORMAL AND ABNORMAL CHROMOSOMES: EVALUATION OF 

CHROMOSOMAL ABNORMALITY VIA SIMPLE PROPORTION MIXTURE 

MODEL 

4.1 Introduction 

The traditional approach in cytogenetics that measures cell contamination is based 

on representing the cell-contents by simple fractions of normal and abnormal chromosomes 

being present. Relevantly, reviewed in this chapter is such a traditional proportion fraction 

concept applied to the mixed states of normal and abnormal chromosomes in a cytogenetic 

complex and evaluate the global pathogenic state of genetic disorders. For example, 

indicated in [4.1], is an estimation of the incidence of chromosomal abnormalities (for a 

given male/female sex ratio of conception) among spontaneously observed abortions 

masked by maternal cell contamination (MCC). The results obtained in [4.1] is reproduced 

in Table 4.1. The analysis pursued in [4.1] leads to determining the frequency (or relative 

percentage) of spontaneous abortion versus MCC under the conditions such as those 

indicated in Table 4.1.  

Essentially, the traditional approach as in [4.1] of analyzing a mixture of normal 

cellular contents with contaminations such as abnormal chromosomes relies on specifying 

each content in terms of their relative percentage that is, in terms of simple prorated values. 

Suppose the normal chromosomes content is Nc % and the percentage of aberrated 

chromosome is Nac% so that the total (Nc + Nac) = 100%. Then, the data acquired clinically 
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or otherwise denote the underlying inferential statistics to depicting the associated 

variances on Nc and Nac. 

Table 4.1: Possible maternal cell contamination details in two groups of “46,XX” 

spontaneous abortions with or without Y chromosome [4.1] 

 

Exogenous 

characteristics 

 

Symbol 

 

“Y +” spontaneous 

abortions (n = 18) 

With Y chromosome 

 

“Y -” spontaneous 

abortions (n = 94) 

Without Y chromosome 

 

Gestation  X1 8.88 ± 2.60 8.86 ± 2.76 

Maternal age X2 26.00 ± 6.54 25.54 ± 5.27 

Paternal age X3 27.21 ± 6.36 28.28 ± 5.58 

Diagnosis: Blighted 

ovum 

X4 4 20 

Diagnosis: Missed 

abortion 

X5 12 62 

Diagnosis: Others X6 2 12 

Tissue type for 

culture initiation: 

Extra-embryonic 

mesoderm 

X7 14 64 

Tissue type for 

culture initiation: 

Chorionic villi 

X8 3 30 

Tissue type for 

culture initiation: 

Duration of long-

term culture 

X9 35.08 ± 16.88 24.05 ± 13.86 
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The study due to [4.1], the data set as in Table 4.1 supposedly accounts for its full 

range of statistical variations on the class of spontaneous abortions observed. However, 

such statistical inferences [4.1] are limited in presenting the associated statistical error-bar 

on the observed details. That is, the observed inferences in [4.1] are confined to, almost a 

deterministic specification. But, in reality, any statistical inference should be specified 

within a stretch of error-bar on the observed variable versus the input variables. Hence 

indicated below is a method to accommodate error-bar specification on the analysis such as 

in [4.1]. 

 Given a data set as in Table 4.1, the net effect of the proportional content of 

abnormal chromosomes can be determined by logistic regression of the details on various 

exogenous entities involved. That is, relevant data can be logit-regressed in order to find 

the net risk-factor due to all the exogenous characteristics listed as X1 to X9 in Table 4.1. 

All such factors will then be collectively accounted for in determining the cumulative MCC 

based risk-factor on observed abortions. The outcomes will correspond to an error-based 

stretch of details. The method of logistic-regression is outlined below:  

Denoting z = (X1 + X2…+ X9), the aforesaid risk-factor can be defined in terms of 

logistic-regression function, f (z) = [1/1 + exp (z)] by randomly changing the ensemble 

value of {Xi}1…..9.  

Notwithstanding, the classical representation of f(z) = [1/1 + exp (z)], when the 

variable set of exogenous factors constituting z is statistically random, f(z) can be written 

modified indicated by Dupont in [4.2]: The modified logit function f(z) = (1/2) + 

(1/2)Lq(z/2) with q being a stochastical order-function denoting the random feature of the 
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statistics involved. When q  1/2, it corresponds to a total disorder and when q  , the 

system depicts an ordered entity. Accordingly, a pair of risk-factor variations versus an 

ensemble of random-trials on the set {Xi} (concerning MCC-specific characteristics) can 

be obtained to represent the upper and lower bounds of risk statistics involved. Relevant 

details on the computations are presented below. 

4.2 Cytogenetic Mixture Contents: Statistical Implications 

 The considerations on log-regressing the data as applied to a cytogenetic complex 

are illustrated in this study with an example pertinent to the details of [4.1]. That is, the 

problem of assessing the net contamination details via logistic function regressed risk-

factor is indicated here with reference to clinical data on maternal cell contamination 

described in [4.1]. 

4.3 A Case Study: 

 Suppose a model is considered depicting the cytogenetic complex with its 

constituents being regarded as a mixture of simple proportion either by volume or by 

weight. Hence considered in [4.1] is a heuristic approach in which a cell is modeled with 

items of contaminated and uncontaminated nature within certain proportion. Hence the net 

effect of contamination on the overall abnormal feature of the cytogenetic complex is 

evaluated. Specifically considering a maternal cell contamination depicting certain 

undesired cellular entity (leading to spontaneous abortions) is considered and a simple 

proportionality model is indicated on the incidence of MCC versus chromosomal 

abnormality masking the possibilities of spontaneous abortions. The model in [4.1] 

eventually provides an estimation of the risk involved as a result of MCC. The data used 

thereof corresponds to clinical samples from 97 patients with aborted embryos.  
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The risk factor deduced as above, however conforms to a single value deduced 

from the clinical data. It ignores various associative considerations of statistical nature such 

as gestational age, maternal and paternal ages, diagnostic details on blighted ovum and 

missed abortion etc., tissue type used for culture initiation and duration of long term 

culture. All these characteristics are mostly random but within specified bounds and they 

constitute the exogenic variable {Xi} indicated earlier in making of a log regression 

function f (z) with z = ƩiXi.  

 In order to accommodate the statistical notion to the underlying features in 

designing f (z), the method due to [4.2] is invoked to obtain the risk factor evaluation with 

its error-bounds specified by upper and lower limits. 

4.3.1 Case Study Example: Maternal Cell Contamination [4.1] 

This problem is concerned with developing a mathematical model to evaluate the 

MCC, which causes spontaneous abortions as discussed in [4.1]. Hence, the significance of 

cytogenetic analysis of prenatal selection factors on fetus health is studied. 

Presented in [4.1] is an analytical model that estimates the incidence of 

chromosomal abnormalities specific to MCC. A high rate of MCC may distort the state of 

chromosomal abnormality encountered in spontaneous abortions across the first trimester 

of pregnancy. In [4.1], a method is indicated to estimate such MCC effects of cytogenetic 

interest in prenatal situations vis-à-vis abortion implications.  

In the MCC model due to [4.1], N denotes the number of samples of spontaneous 

abortions observed with four major versions of chromosomal constituents namely, (A: 46, 

XX), (B: female spontaneous abortions with chromosomal abnormalities), (C: 46, XY), and 

(D: male spontaneous abortions with chromosomal abnormalities). 
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Hence, N = (A + B + C + D), where the set A, B, C, D are karyotypes with A being 

the chromosomes in the maternal cells. The chromosome A: 46, XX is further subdivided 

into four types as follows with reference to the sex-ratio of the embryo: Afn : 46, XX 

(female normal); Afa  : female spontaneous abortions with chromosomal abnormalities 

(female abnormal); Amn :46, XY (male normal); Ama : male spontaneous abortions with 

chromosomal abnormalities (male abnormal); As such, it follows that: 

A = (Afn +  Afa  + Amn  + Ama)                                                                                  (4.1) 

For a representative sample of N, the relative proportions of B, C and D and Afn and Afa are 

indicated in [4.1]; and, the results are reproduced in Table 4.2 

4.3.2 Computational Details and Discussion on Case Study Example 

The mathematical model in [4.1] is based on the structure of cytogenetic factors 

expressed in terms of proportions of various chromosomal entities identified earlier as A, 

B, C and D; hence, the factor for MCC is indicated as k = (C+D)/(C+D+B). It defines the 

probability of male embryo detection in the A group. The influence of MCC as a function 

of k is then estimated on the spontaneous abortions observed. 

For a specific set of details presented in Table 4.2, and considering the karyotypes 

46, XX  relevant representative values on B, C and D are as follows: B (abnormal female = 

139), D (abnormal male = 94) and C (46, XY = 86). These are typical sample sizes of the 

observed numbers in the model of MCC presented in [4.1]. Hence the corresponding factor 

of MCC, namely k = 0.564. Relevant to this value of k, the  risk-factor resulting from the 

influence of MCC is shown in [4.1], by a single value approximately equal to 0.95% over a 

range of k between 0.2 to 0.5, and, the associated risk of spontaneous abortion corresponds 

to, 50% - 95%. 
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Table 4.2 Proportional Modeling the structure of cytogenetic factors of prenatal selection 

corrected for cell contamination [4.1] 

 

Cytogenetic factor Observed 

 value 

Expected value 

46, XX frequency A/N [A(1 - k) - (A B 

k)/(C+D)]/N 

46, XY frequency C/N [C{1+ (A k)/(C+D)}]/N 

Frequency of female 

spontaneous 

abortions with 

chromosomal 

abnormalities 

 

B/N 

 

[B{1+ (A k)/(C+D)}]/N 

Frequency of male 

spontaneous 

abortions with 

chromosomal 

abnormalities 

 

D/N 

 

[D{1+ (A k)/(C+D)}]/N 

Frequency of 

chromosomal 

abnormalities in total 

sample 

 

(B+D)/N 

 

[(B+D){1+ (A 

k)/(C+D)}]/N 

Frequency of 

chromosomal 

abnormalities in the  

“46 XX” group 

-  

k(B+D)/(C+D) 

Sex ratio in 

spontaneous 

abortions with normal 

karyotype 

 

C/A 

 

[C{1+ (A k)/(C+D)}]/ 

[A(1-k)-(A B k)/(C+D)] 

 

The simple proportion-based analysis due to [4.1] gives only a rigid span of results 

on the risk-factor as above. In contrast, suppose the risk-factor is deduced on the basis of f 

(z), the results can be specified error-bounded with upper and lower levels as illustrated in 
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Figure 4.1. Here, in order to specify the error-bounds, f(z) is taken as follows: f(z) = ½ + ½ 

Lq (z/2) as discussed in [4.2], where q → ½ denotes the upper-bound and q → ∞ depicts 

the lower-bound. Further, Lq (x) denotes the so-called Langevin-Bernoulli function given 

by: Lq (x) = (1+1/2) coth [(1+1/q) x] – (1/q) coth [(1/q) x]. 

4.4 Results 

4.4.1     Case-1a: “Y+” Spontaneous Abortions 

Presented in Table 4.1 are details concerning possible MCC as regard to two groups 

of “46, XX” spontaneous abortions with and without Y chromosomes indicated 

respectively as (Y +) and (Y −). 

 

 

Figure 4.1 (a) A risk-factor versus an ensemble of trials (T1, T2……T14) of data presented 

in Table 4.1 for (Y+) state 
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Figure 4.1 (b): Risk-factor versus an ensemble of trials (T1, T2……T14) of data presented in 

Table 4.1 for (Y ) case. 

 

 With reference to Table 4.1 and (Y+) status, the sum total of exogenous 

characteristics (that decide the underlying risk) namely, i 1,2,...9

i

z X  is determined for a 

nominal set of {X i}. Hence, f(z) = ½ + ½ Lq (z/2) is evaluated. Inasmuch as Table 4.1 

suggests the existence of a span of deviation with respect to the nominal values of each Xi, 

a number of random trails on each X i can be specified; and corresponding f(z) is evaluated 

for each ensemble set. (For example, with X 1 = 8.88 taken as a nominal value, it is varied 

randomly in each trial over the deviation, ± 2.60 indicated in Table 4.1). Hence, the 

evaluated risk-factor deduced via f(z) = ½ + ½ Lq (z/2) over an ensemble of several 
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statistical trials is plotted in Figure 4.1 (a); further, for q = ½ (upper-bound) and q → ∞ 

(lower bound) corresponding computed data are also shown in Figure 4.1 (A).  

In addition, the infimum and supremum pair is deduced on the bounds assuming a 

statistical quantile of 48 % about the mean value.  

4.4.2   Case-1b:“Y−” Spontaneous Abortions 

Again, with reference to (Y −) case indicated in Table 4.1, similar computations 

done for (Y +) are repeated and the results are illustrated in Figure 4.1(B) 

4.5 Discussion and Closure 

Relevant to the results obtained and presented the following observations can be 

made:  (i) with no MCC being present the associated risk is as low as 20% and the highest 

risk is specified as 95%. (ii) in reality taking the statistical variation of the various factors 

(Xi) of the contaminated state allows the prediction of the risk via logistic regression. 

Correspondingly an upper and lower bound of the risk-factor involved is deduced along 

with the associated infimum and supremum limits. As illustrated in figures 4.1 (a) and 4.1 

(b). In the studies due to [4.1] the model indicated signifies the extent of possible 

spontaneous abortion resulting from MCC under various prenatal selection factors. For a 

given set of A, B, C, D and N, MCC (k) and male, female ratio as indicated in table 4.1, the 

associated risk value for Y+ case evaluated by logistic regression is 0.731 and 

corresponding value for Y− is 0.888. In contrast the present study rather specifies an error 

range which can be considered as more realistic. 

 Thus the present study is based on proportional mixture considerations on the 

contaminated and uncontaminated entities in cultured cells. It provides thereof the range of 

risk involved (specified within an error bound on the possible contamination 
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related risk-factor of possible abortion). The analysis and the computation of the risk bound 

are based on relevant details of chromosomal abnormalities and MCC available in [4.1]. 

 In essence the work reported in [4.1] gives on a single risk factor value, whereas 

the present study gives a more realistic statistical span of risk-factor. 
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CHAPTER V 

STATISTICAL MIXTURE MODEL OF NORMAL AND ABNORMAL 

CHROMOSOMAL ADMIXTURE: APPLICATION TO CANCER GROWTH 

MODELS 

5.1 Introduction 

In the contexts of biostatistics, randomly-mixed state of two or more entities is 

generally indicated as a simple, prorated ratio of each existing population as described in 

the previous chapter. However, such arithmetic proportion could only be a limiting case 

of a “truly statistical mixture” as observed by Lichtenecker and Rother in [5.1] and by 

Neelakanta et al. in [5.2]. Though not specifically applied in biological contexts, relevant 

statistical mixture formulations of [5.1 and 5.2] can be considered as judicious candidates 

for example, to quantify the state of chromosomal mixture constituents in a cytogenic 

complex. Hence, considered in this chapter is a way to model the quantitative extents of 

normal and aberrated chromosomes that exist as a statistical mixture in a cytogenetic 

complex (in contrast with simple proportion model considered earlier in assessing such 

mixtures). Hence discussed in this chapter, are the following research efforts: 

 To review the unique contexts of statistically-mixed constituents (at cytogenetic 

level) and apply statistical mixture theory to quantify their proportional existence 

 To gather from literature relevant details on typical cytogenetic mixture 

constituents, their types, their population and contexts pertinent to normal and 

pathogenic conditions of certain genetic disorders  
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 Modeling the dynamics of growth (or decay) of a specific constituent (such as 

aberrated chromosomes) coexisting with other constituents like normal 

chromosomes as a part of the statistical mixture 

 Determining the extent of chromosomal aberrations via statistical mixture theory 

vis-a-vis relevant etiology and genetic pathological states induced for example, 

spontaneous abortions 

 Studying the competitive growth and decay dynamics of normal and abnormal 

chromosomes coexisting in a cytogenetic complex leading to the proliferation of 

observed pathology like cancer symptoms. 

Necessary introductions on the above considerations and the associated details are 

outlined below:  

5.1.1 Proportional-content Theoretics Applied to Cytogenetic Constituents: A Revisit 

As discussed in the previous chapter, the state of chromosomal constituents has 

been studied classically, in terms of fractional population of normal chromosomes versus 

other cell contaminations. For example, as detailed in the previous chapter, studied in [4.1] 

is a mathematical model where the maternal cell contamination (MCC) is estimated in 

terms of various embryonic chromosomal attributes. In general, the fraction of cell 

contamination is termed as cytogenetic factor; and, the net effect of such contamination is 

addressed in [4.1] via traditional statistics of expected average of the contents involved; 

and, pertinent study is performed using the classical approach via statistical analysis and 



method. Hence, the significance of such analysis is indicated towards prenatal 

selections in spontaneous abortions caused by abnormal chromosomal contents. Hence, the 

simple proportion mixture-theory applied to normal and abnormal chromosomal contents at 
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embryonic level is used to deduce the gross abortion conditions in subjects at clinical 

levels. Apart from such proportional mixture statistics considerations studied in last 

chapter, a statistical-mixture theoretic framework can also be developed to address the 

cytogenetic contaminated states. Relevant details and implications are as follows.   

5.2 A Review on Statistical Mixture Theory: Applications to Cytogenetic Contexts  

At the cellular level, the inherent aspects of cytogenetic complex correspond to a 

set of encoded messages associated with the structural and functional attributes of 

chromosomes. Each non-aberrant chromosome occurs at a specified probability in the 

cytogenetic complex in conformance with the associated cytogenetic information. 

Pertinent to such informatic statistics of chromosomes, one can associate an efficiency 

factor, related to the constituents of the cytogenetic complex having aberrant 

chromosomes; and, the extent of abnormality can then be optimally deduced in terms of 

this information efficiency factor.  

5.2.1 Information efficiency () pertinent to Cytogenetic Informatics  

In order to define and evaluate the cytogentic information efficiency (), an 

universe (Ώ) of a complex system made of the mixture entities, namely normal and 

abnormal chromosomes can considered with the total chromosomal population being N. 

Suppose a constant ci is assigned as a cost-factor to each chromosome (indexed as 

i = 1, 2…., N) whose occurrence probability is Pi. Then, the average cost per 

chromosome (cost-function) can be written as follows: 

  av i i

i = 1, N

C = P c                         (5.1)               
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The optimization of this cost-function (in constituting the overall cytogenetic 

layout) would refer to a value of Cav C over the entire set of chromosomes and subject 

to certain constraints on the associated entropy (Shannon information) profile. The lowest 

bound (infimum) of  C  is then given by [5.3], 

infC| = H(x)/ln(N)                        (5.2) 

where N as indicated earlier, depicts the total chromosomal counts and H(x) is the 

entropy of the ensemble of aberrated chromosomes being present. The constrained 

optimization of interest is to optimize the cost-function as above in order to determine the 

net effect of coexisting aberrant chromosomes along with normal chromosomes. That is, 

inasmuch as both normal and aberrant chromosomes prevail in the cellular complex as 

mixture constituents, the entropy of the ensemble of this mixture should be viewed in 

terms of the redundancy arising from the prevalence of the aberrant chromosomes 

(contributing negentropy) in the system and implicating the said cost-function. 

Hence, it is possible to define an information efficiency () factor of the 

cytogenetic complex using the classical concepts of information theory. It is the ratio of 

the average information (per chromosome) of the ensemble to the maximum possible 

(average) information (per chromosome) [5.3]. That is, 

η = H(x)/Cln(N)                        (5.3) 

  And, concurrently, (1 − η) can be regarded as a redundancy factor (R). It refers 

to the reduction in information content of an ensemble from the maximum possible and it 

is specified as follows: 

           R = (1− H/ Hmax)                                                                                                  (5.4) 
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where, the entropy functional denotes any H statistical divergence (or distance) metric  

such as, Jensen-Shannon (JS), Kullback-Leibler measure etc.[5.4] 

5.2.2 Quantifying the Mixture Attributes of Cytogenetic Complexity via Redundancy 

factor  

The aforesaid redundancy factor (R) can be attributed to a cytogenetic complex 

via statistical mixture theory as follows:  Following the concept of statistical mixture 

theory due to Lichtenecker and Rother [5.5], the underlying heuristics specifies a 

weighted probability r that describes the effective statistical attribute of the mixture 

proportioned by the attributes θ and (1 − θ). In terms of a binary mixture of two 

constituents 1 and 2 with populations n1 and n2, θ = n1/ (n1 + n2) and (1 − θ) = n2/ (n1 + n2). 

Relevant weighted probability is given by: 

  θ1

2

θ

1 PPθr


                                                                                (5.5) 

which is valid, within the statistical upper and lower bounds, namely, (rmin ≤ r ≤ rmax). 

Explicitly, rmin and rmax are given by: 

 21max θ)P1(θPr                                                                                          (5.6a)
 

and 

           

1

21

min
P

θ)1(

P

θ
r










 




                                                                                        (5.6b) 

The statistical bounds as above conform to the extreme arithmetic and 

geometrical-mean statistics of the constituents. With reference to the set {r: rmin and rmax}, 

the corresponding Shannon measure of entropy (negentropy), I can be written as a 

function of r as follows: 
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I(r) = − rln(r))r(H                                                                                         (5.7a) 

I (rmin) = −H(rmin) = −rmin  ln(rmin)                                                                                                    (5.7b) 

I (rmax) = −H(rmax) = −rmax  ln(rmax)                                                                                            (5.7c) 

                                                                                   

Suppose one of the constituent entities of the statistical mixture, say, the one with 

a population n2 has a uniform distribution implying that the occurrences of its elements 

(in the statistical mixture space) are equally-likely. That is, (P21 = P22 = P23 = …= P2n2 = 

1/n2), so that, [P21 + P22 + P23 + …+ P2n2 = 1]. In contrast, the other constitutive entity 

(with a population n1) is presumed to be of elements each bearing a distinct probability of 

occurrence. That is, (P11  P12  P13  … P1n1) and [P11 + P12 + P13 + …+ P1n1= 1]. In the 

context of cytogenetic complex, the population of aberrated chromosomes can be 

regarded as that with no information and as such, it belongs to the subset of cardinality, 

n2 with considerations of equally-likely occurrences. This uniformly-distributed entities 

assumed as above is consistent with the so-called Laplacian concept on probability of 

equally-likely occurrences. For example, aberrated chromosomes coexisting with normal 

chromosomes in a mixed state within a cellular system denote such population n2, 

inasmuch as the roles of such aberrated chromosomes are non-informative in the regular 

functions of the cellular complex. The presence of such aberrated chromosomes denotes a 

state of maximum entropy resulting from its uniformly-distributed contents. On the 

contrary, pertinent to each normal chromosome, it prevails with a distinct (unequal) 

occurrence probability as decided by its designated structural and functional 

characteristics. Hence, normal chromosomes can be regarded as informative 
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(negentropic) entities of the cytogenetic complex (However, the informative 

chromosomes could be redundantly present). 

From information theory point of view, it is known that equally-likely 

occurrences of entities or events of a set of random variants mean a degree of certainty 

whereas, random (unequal) chances of occurrences imply an associated uncertainty of the 

set. The certainty consideration will bring down the negative entropy (or information 

content) of the set while, any uncertainty involved will augment the negative entropy. 

Thus, the existence of equally-likely probabilities associated with the elements 

(such as aberrated chromosomes) of a mixture, it amounts to specifying an efficiency to 

the associated information content of the whole set; and, the related considerations lead to 

a redundant information-theoretic attribute [5.3] to the set in Shannon’s sense. Such a 

measure of redundancy (R) can be specified in the context of a statistical mixture as 

indicated earlier by (equation 5.4):  

 
Mr)(H

r)(H
1R                                                                                                   (5.8a) 

where [H(r)]M denotes the maximum value of H(r) over the fraction 0 ≤  ≤ 1 (or 1 ≥ (1 – 

) ≥ 0) of the binary mixture constituents. Further, referring to the upper and lower 

bounds on r specified by equation (5.6), the corresponding range of R can be deduced as 

follows: 

 
Mmax

max
min

)r(H

)r(H
1R                                                                                          (5.8b)                                                                

and 
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Mmin

min
max

)r(H

)r(H
1R                                                                                          (5.8c) 

Thus, the complexity metric of a statistical measure evaluated using the 

redundancy measure (R) as above can be adopted to analyze the entropy features of the 

binary constituents of such mixtures. That is, considering a heterogeneous mixture of 

normal and aberrant chromosomes, their relativeness in causing genetic disorders can be 

estimated using the parameter, R. 

5.3 Statistical Mixture of Cytogenetic Contents: Implications on Observed   Pathogenic 

States   

In view of the general considerations in describing the statistically-mixed state of 

complexity of normal and abnormal chromosomes outlined above, the scope of the 

present study is to address the following specific tasks on certain clinically observed 

pathogenic conditions (such as cancer growth). 

 Copy-number alterations versus cancer growth 

 Ploidy and aneuploidy involvement in oncological contexts 

 Clonal and non-clonal alterations implicating cancerous growths. 

The following sections are devoted to describe the underlying considerations and 

hence, proposed are algorithms/computations relevant to cancer growth dynamics etc. 

5.4     Genetic Disorder and Cancer-Growth Considerations: Modeling via Copy number 

Alterations      

As indicated in Chapter 3, the copy-number and its alterations refer to changes in 

DNA of a genome that result in the cell having an abnormal number of copies of one or 

more sections of the DNA. One of the genetic aspects of cancer results from irreversible 
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structural mutations manifesting as changes in DNA copy number at distinct location in 

the genome [5.7].  Aberrations of this type affect the functions of a gene; and, in general, 

understanding and quantifying such aberrations is essential to comprehend the disease 

etiology. This could possibly help developing targeted therapies in gene-related 

pathogenic states. 

Developed in [5.7] is a multi-component scoring model for copy-number 

alterations (CNA) that cause genetic defects. The presence of such undesirable entities 

(CNA) is modeled as “noise” and the associated tumor heterogeneity is described in 

terms of related “noisy impurities” designated as ‘stromal admixture constituent’. 

Typically four scoring parameters are identified in [5.7]  to quantify the copy-number 

alterations. These are as follows: Single-copy gain (Ao), amplification (A1), hemi-

zygomatic loss (Do) and homozygous deletion (D1). The explicit definitions of Ao, A1, Do 

and D1 are as follows: 

Single-copy gain (Ao): When a gene copies itself, and the repeats are located in small 

clusters (known as tandem repeats) or spread throughout the genome, it is defined as 

single-copy gain 

 

Amplification (A1): This refers to selective, repeated replication of a certain gene or genes 

without a proportional increase in other genes in the genome 

 

Hemi-zygomatic loss (Do): Hemi-zygous means having one copy of a gene instead of 

usual two copies. For example, male is hemi-zygous for most X chromosome genes and 

any loss occurred in above condition is known as hemi-zygomatic loss 

 

Homozygous deletion (D1): Homozygous means having two identical alleles for a given 

trait; and, deletions are fragments of chromosomes that are missing. 

http://en.mimi.hu/biology/trait.html
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5.5      Ploidy and Aneuploidy Involvement in Tumor Growth 

In the contexts of observed carcinoma, the non-aberrant cells may also coexist 

with the aberrant cells. In such situations as mentioned in earlier (Chapter 3), the 

aneuploidy refers to the presence of abnormal chromosomes in a cell and it is an 

indication of chromosomal abnormality. Aneuploidy could imply either missing or the 

presence of extra chromosome states within the cytogenetic complex causing genetic 

disorders with relevance to some forms of cancer. 

The fraction of ploidy and aneuploidy states for example, may estimate the extent 

of tumor growth as indicated in [5.8] with reference to breast carcinoma. The infiltration 

aneuploidy into the non-aberrant cells would result in tumor conditions across different 

extents of ploidy, from haploid to polyploidy levels. Given a ploidy, the tumor is 

observed when a corresponding aberrant cell fraction exists. Typically for low ploidy, 

high fractions are indicated to confirm tumor conditions. With higher ploidy, however 

tumor can be seen even at lower aberrant cell fraction. An exercise called allele-specific 

copy number analysis of tumors (ASCAT) first determines the ploidy of tumor cells and 

specifies the fraction of aberrant cells. 

5.6     A Mixture-state Model of Cytogenetic Complex in Terms of Clonal and Non- clonal 

Alterations 

In cytogenetic contexts, the abnormal number of chromosomes is of interest in 

developing models that represent the dynamics of cancer evolution resulting from 

patterns of chromosomal aberrations [5.9]. Relevant chromosome abnormality is 

specified in [5.9] in terms of clonal chromosomal aberrations (CCA) and non-clonal 
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chromosomal aberrations (NCCA). (The definitions of CCA and NCCA are given in 

Chapter 3). The NCCAs include numerical changes (aneuploidy and structural 

aberrations). When the aberration observed due to translocation is less than 20%, then it 

is considered as NCCA; otherwise, it is CCA.  

The genesis and growth of cancer can be specified by a kinetic model in terms of 

proportions of NCCA and CCA.  Presented in [5.9] is a kinetic model of cancer evolution 

and progression elucidated in terms of four entities and related pathway considerations. 

The interacting dynamics of normal cell (A), NCCA (N) and CCA (C) plus the associated 

pathways of interaction are illustrated in Figure 5.1. 

In the model of Figure 5.1, there are interacting coefficients denoted as k1, k2…, 

k6.  Further, the set {k1, k2} imply balancing trend imposed towards depletion of A, if 

balancing trend is positive; otherwise A is subjected to repair and application; likewise, 

k3 and k4 represent the balance between the depletion of CCA (C) and NCCA (N) 

respectively if positive, and, if negative, it implies the repair and replication of CCA and 

NCCA. The set k5 and k6 denote the balance between the demise of NCCA and CCA 

respectively, if positive; and, when negative, it implies the repair and replication of 

NCCA and CCA. Further, the four quantities A, N, C and D (denoting the concentration 

of nonfunctional chromosomes) can be rendered as dynamic variables changing with 

respect to time (τ), further at any instant (τ), A (τ) + N (τ) + C (τ) = 1. 

Hence, it is assumed in [5.9] that A, N and C are growth functions  (for example, 

exponential functions of time with a time-constant) and relevantly, the resulting cancer 

growth function is indicated in terms of the functional attributes of A, T and C with 

respect to time in the context of tumor proliferation as described below. 
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Figure 5.1 Proposed pathway for cancer evolution and progression when kn is 

equal to the pseudo reaction rate constant [5.9] 

 

5.7 Dynamics of CCA and NCCA Profiles 

As described in the previous section, a cell depicts a cytogenetic complex system 

containing CCA and NCCA entities being present in a state of statistical mixture. 

Relevantly, a complex system model can be ascribed to specify the associated 

spatiotemporal states as outlined in the following subsection.  Further, in the complex 

system framework of a cell, the dynamics of the associated activity as regard to the 

growth or decay of the constituent populations can be modeled in terms of a stochastical 

differential equation as presented later. 

5.7.1 Quantifying Stochastical Mixture Attributes of the Contents in the Cytogenetic 

Complexity [5.3]  

Consider the universe of a complex system specified by a domain X(x)} as 

illustrated in Figure 5.2.  Suppose two constituent (interactive) subsystems {x (); i = 1, 2, 
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…, , …, n1} and {x (); j = 1, 2, …, ,…, n2} are respectively characterized by two sets of 

attributes  and ; that is,   {x (μ, )} where x  X and (n1 + n2) = N depicts the 

cardinality of the total universe  of the compositional domains.  

Further, the occurrence probabilities of the sets {x (); i = 1, 2, …, , …, n1} and 

{x (); j = 1, 2, …, ,…, n2} are {P1} = i  and {P2} = j with the subscripts 1 and 2 

depicting the attribute sets {}and {}  respectively. 

 

   

Figure 5.2 A complex system : X depicting a mosaic of statistical mixture 

constituted by a pair of binary subsystems (compositional domains) [5.3] 

 

Suppose the randomness associated with the subsets of Figure x is expressed in 

terms of the aforesaid occurrence probabilities P1 (μ; i : n1) and P2 (; j : n2), 

(corresponding to the attribute sets {μ} and {}, respectively). Now, the maximum 

entropy concept [5.10−5.12] applied to each group in the domain X leads to the following 

entropy functionals: 

H(s) = ln(n1 + 1)  ln(n1) with n1 >> 1                                         (5.9a) 

x  ε   X :  Ω   

 

x();  = i =1 

i = 2 

i = n1 

… 

… 

… 

… 

… x();  = j =1 

j = n2 

j = 2 
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H(s) = ln(n2 + 1)  ln(n2) with n2 >> 1                                                                 (5.9b) 

where s and s refer to some metrics of gross complexity corresponding to the 

extensiveness of the populations of the sets{x (); i = 1, 2, …, n1} and {x (); j = 1, 2, …, 

n2}respectively.   

With reference to a complex system viewed in an entropy-based framework, the 

global complexity (depicting sμ and s) has been described in [5.10−5.12] in terms of a 

complexity metric (S). It is defined using the associated disordered sets of constituents 

and it corresponds to a solution equal to exp(− β) where β is a Lagrangian that maximizes 

the entropy functional of the complex system. Further, considering a large set of 

disordered entities (constituting a complex system), s defines a dichotomy of two regimes 

[5.10]: (i) 0  S < 1and (ii) 1 < S < . When S is very small (S  0), the system is 

regarded as “simple”; and, as S  , the system becomes totally complex. (The value of 

S = 1 is a transition that bifurcates the system of being simple or complex when viewed 

in terms of the entropy involved). 

Equations (5.9a) and (5.9b) are consistent with the so-called Jaynes’ principle of 

maximum entropy or maximum uncertainty and a class of distribution corresponding to 

the maximum entropy formalism has been identified in [5.13] to exist.  Further, equation 

(5.9a and 5.9b) concurrently leads to the following Shannon information formulations 

[5.14]: 





iX;x

1111 )ln(PP }n1,2,..., i);μ(x{I


                                                          (5.9c) 

and 
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j;Xx

222 





                           (5.9d)                               

Equations (5.9c) and (5.9d) can be regarded as implicit representations of gross 

complexity pertinent to the sets {x (); i = 1, 2,…, n1} and {x (): j = 1, 2, …, n2} 

respectively, in lieu of the relations specified by equations (5.9a) and (5.9b). While 

equation (5.9a) depicts the maximum entropy measuring the gross complexity (s) of the 

set {x (); i} or {x (); j}, an alternative metric can also be specified to measure the 

relative complexity between these sets. It refers to a pair of cross-entropy functionals, 

which can be written in the following forms [5.12]: 





i

 )/Pln(PP)s| |D(s)s| |H(s 211μ μ                                         (5.10)                  





j  

 )/Pln(PP)s|D(s)s| |H(s 122|μ μ                                                    (5.11) 

The cross-entropy functionals of equations (5.10) and (5.11) denote 

synonymously the “statistical divergence” D (s||s) between the random attributes of {x 

(i): μ} versus {x (j): }, or vice versa. This cross-entropy measure also refers to relative 

or mutual information content in Shannon’s sense. Further, the measure specified via 

equations (5.10) and (5.11) follows Kullback’s minimum (directed) divergence or 

minimum cross-entropy principle [5.15].   

In addition, the cross-entropy concept of depicting the relative complexity as 

above, implicitly implies an expected logarithm of the likelihood ratio (L), namely, 

 

IIj2

Ii1

])[(P

])[(P
L






                                                                                        (5.12)    
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where [P1]I and [P2]II are respective probabilities of observations of the attributes {μ} 

and {ν} in the complex system when a certain hypothesis (hI, hII) is true.  Corresponding 

to L, a log-likelihood ratio function (LLR) given by ln(L), can be defined and regarded as 

a “discrimination measure” that provides a choice, whether to choose {μ} in preference to 

{} or vice versa. (The LLR is well-known [5.12] as a useful metric in decision-making 

efforts and can be considered identically to depict a measure of contrast between the 

constituents involved). 

Designated as Jensen-Shannon (JS) measure [5.16], it is a variation of the 

Kullback-Leibler divergence formulation and it is explicitly given by the following 

expression: 

)P(Hπ)P(Hπ)PπPH(π)P,P(JS 2211221121π                                                   (5.13a)

 where (π1, π2) ≥ 0 and (π1 + π2) = 1; and,   





i

111 )ln(PP)P(H


                                                                                           (5.13b) 





j

222 )ln(PP)P(H


                                                                                      (5.13c)                      


 


iu jv

v221v1u221u12211 )PπPπln()PπPπ()PπPπ(H                               (5.13d)    

The weights 1 and 2 in the above relations for example, can be taken 

respectively as  = n1 / (n1 + n2) and (1  ) = n2 / (n1 + n2) in the context of a mixture 

complex. 

Exclusive to a binary statistical mixture, a measure of global complexity can be 

specified in terms of the maximum entropy associated with the disordered constituent 
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entities (1 and 2) (assuming each having a large population namely, (n1 and n2)   and 

exist as a mixture of specified proportion).  

5.8 Temporal Changes in the Cytogenetic Constituents: Neoplasmic evolution 

The cellular contents at the cytogenetic level expressed in terms of quantitative 

chromosomal aberrations are important in deducing certain genetic-based diseases such as, 

carcinogenesis. Hence, mathematical models have been developed to indicate the extent of 

cancer growth that is, the neoplasmic evolution with respect to time (t). For example, 

described in [5.17], is the progression of human cancer characterized by the accumulation 

of genetic instability due to chromosomal aberrations; and, it is indicated that the 

chromosomal abnormalities plus the aneuploidy could be as high as 90% in human 

malignant tumors. Relevantly, it is specified that, the underlying idiographic features of 

tumors can be analyzed via cytogenetic and/or molecular features pertinent to chromosomal 

entities.  

Modeling of tumor development in general, can help understanding carcinogenesis 

and the related dynamics of pathogenic conditions. Hence, basic linear models were 

classically developed for example, as in [5.18] for colorectal tumors; however, the inter-

relationship between chromosomal abnormalities coexisting in the cytogenetic complex 

may force the underlying growth model to be nonlinear. In addition, a biologically 

comprehensive neoplastic development should be viewed in a stochastical framework 

(rather in terms of deterministic variables) consistent with the complexity of the cellular 

system and its contents having spatiotemporal randomness 

An effort towards addressing the balanced/unbalanced states of cytogenetic 

contents, which take into relevant interaction considerations alone, has been exercised by a 
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stepped progression of the number of imbalances of the tumor (NIBT) [5.19]. It denotes a 

discrete version of nonlinear evolution of cancer growth.  

More rigorously, a continuous nonlinear mathematical model in the context of 

interaction between tumor cells and oncolytic viruses has been developed in [5.20]; and, 

with the help of differential-equation calculus, relevant stability of the system has been 

established. In essence, the model considers infected and uninfected versions of tumor cells 

growing in logistic fashion. The stochastical aspect of tumor invasion in the surrounding 

space degrading the extra-cellular matrix is studied via two classical efforts due to 

Anderson and Chaplin [5.21] and Othmer and Stevens [5.22]. 

The Anderson-Chaplin model [5.21] is framed on the basis of various biological 

and biomedical considerations; and, hence the formation of endothelial cell (EC) surface 

developing in response to certain chemicals (called TAF) is described via EC migration of 

spatio-temporal dynamics using ordinary differential equations (ODE). Additional random 

features to the said dynamics are included in the model due to Othmer and Stevens [5.22]. 

More comprehensively, developed in [5.23] is an asymptotic profile of the solution 

to parabolic ordinary differential equations pertinent to tumor angiogenesis dynamics. It 

resolves thereof certain solvability issues of ODEs seen in [5.21] and [5.22].  

Yet another model on early tumor growth and invasion has been developed via 

cellular automaton considerations by Patel et al. [5.24]. Essentially, a hybrid cellular 

automaton model of early tumor growth that describes the activity of individual cells and 

continuous evolution and their microenvironment, forms the main theme in [5.24]. 
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5.8.1 Chromosomal Aberrations: A Stochastical Profile 

An important query of interest in modern context is to know whether the 

chromosome aberrations are random events or have arised from an internal (endogenous) 

deterministic mechanism. Discussed in [5.25] is the stochastical nature of chromosome 

aberrations in solid-tumors; and, several related Shannon information functions are 

evaluated thereof to describe the disorderliness present inside a tumor.  Hence, suggested in 

[5.25] is that, in the context of quantifying the spread of aberrations, the generating process 

is neither deterministic nor totally random; but, it produces variations that can be specified 

between two extrema. The study in [5.25] is fortified with relevant data on 79 different 

kinds of solid-tumors having 30 or more karyotypes retrieved from [5.26]. 

The mixture-state of contents expressed in terms of the stains at DNA level in the 

chromosomal structures is featured and expressed in terms of autosomal genetic markers in 

[5.27]. Specifically the combinations of alleles at different locales (loci) on the 

chromosome that are transmitted together are considered. This one fold, single and simple 

allele (known as haplotype) forms the general framework to test the hypothesis on mixed 

stain analysis advocated in [5.27]. 

The implication of neo-plastic transformational dynamics concerning the induction 

of chromosomal aberration through direct and bi-stander mechanism has been addressed 

via a state-vector model.    

5.8.2 Stochastical Dynamics and Bernoulli-Riccati Equation on Tumor Growth Model  

Notwithstanding various growth models of tumors due to chromosomal aberrations, 

yet considered here is a method to predict a compactable growth function that describes the 

dynamics of evolution of tumor via the presence of disordered entities constituted by a 
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stochastical mixture of normal and abnormal chromosomes present in the receptacle matrix 

of the body, where the tumor is observed. In all, the spatio-temporal framework of the 

disordered set of entities mentioned above is assumed as a complex system and hence 

relevant stochastical time-evolution of tumor growth is indicated in closed functional form. 

This growth function is verified against the results obtained by other models. 

In the context of a complex system description pertinent to the cytogenetic 

framework, the associated growth or decay of the constituents (being present as a 

stochastical mixture) can be elucidated via stochastical differential calculus as described 

below.   

 Pertinent to the nonlinear growth function under consideration, by resorting to a 

natural extension of the first-order equation in calculus, namely y'(t) = po (t) + qo (t), a 

deterministic nonlinear, first order equation of the following type can be specified: 

y'(t)  = po (t) + qo (t) y + ro (t) y
 n                                                                    

                     (5.14) 

where po (t), qo (t) and ro (t) are continuous functions of t and n ≠ 0. The above equation is 

well-known as the Bernoulli equation which can be transformed into an integrable form 

using an appropriately chosen (new) dependent variable. 

In equation (5.14) the functional coefficients po, qo and ro denote definite attributes 

of the nonlinear activity in the deterministic framework as governed by the differential 

equation. The coefficient po characterizes the external stimulus that enables the nonlinear 

activity to commence and remain sustained. Depending on the output value y, the 

prevailing activity is weighted by the extent of that output value leading to the nonlinearity 

perceived. This is accommodated in equation (5.14) by the coefficient ro, which decides the 
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output-dictated influence on the nonlinear activity. (Should ro be equal to zero, the activity 

degenerates to a simple linear input-output relation). The exponent n stipulates the degree 

of the output entity in formulating the extent of nonlinearity involved. If n = 2, equation 

(5.14) is known popularly as the generalized Riccati equation. The coefficient qo in 

equation (5.14) contributes to the linear input-output relation and could be set equal to zero, 

if the nonlinear activity predominates. It should be noted that in general, po, qo and ro could 

be constant coefficients as well. 

Assuming the extent of nonlinearity limited by n = 2(first order nonlinearity), the 

Bernoulli equation given by equation (5.14), can be reduced to a simpler Riccati equation 

namely, 

y′(t)+ ro (t)y
2
(t) + po (t) = 0             

                                                                                          
     (5.15)  

Equation (5.15) assumes that the underlying activity is more likely (or 

predominantly) nonlinear and the output y(t)  that governs such a nonlinear behavior. It 

implies a simple case with a second degree influence (with n = 2). Further, it is indicated in 

[5.11] that the solution to equation (5.12) can be written as follows: 

y(t) = LQ(t)                                                                                                  (5.16) 

where LQ(t) is popularly known as the Bernoulli or modified Langevin function. (It is also, 

sometimes referred to as Brillouin function or Langevin-Bernoulli function). The function 

LQ(t) is explicitly given by:  (1+1/Q) coth [(1+1/Q) t] – (1/Q) coth [1/Q) t].  

When indicated for a nonlinear stochastical process, the Q-value in equation 5.16 

decides the extent of disorderliness associated with the system. For example, in statistical 

mechanics [5.11], Q denotes an “order parameter” for the underlying stochastical process; 
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and, when Q → ½, it refers to a total isotropic disorder. When Q → ∞, the system is 

presumed to settle at a totally ordered-state. Hence, in the event that the underlying 

growth/decay process indicated in a stochastical framework, relevant dynamics can be 

stipulated within a pair of  upper and lower bounds corresponding to Q → ½ and Q → ∞,  

respectively. 

The application of the above model to the stochastical aspects of cancer growth 

[5.9] is presented in the following section (Result). 

5.9   Cancer Growth Models 

              Presented in [5.9], a mathematical model relating chromosomal aberrations to 

cancer progression. As discussed earlier, the details in [5.9] are mathematical formulations 

on the dynamics of cancer in terms of the associated cellular immortalization process so as 

to get an insight into cancer initiation and progression useful for new therapies. 

 

Table 5.1 Stage specific mutation pseudo reaction rate constants [5.9] 

Stage k1 k2 k3 k4 k5 K6 

0.5 0.3570 1.7184 0.5829 2.0579 −2.1074 3.6334 

1.5 0.2329 0.4361 0.6583 0.0043 −0.0733 −0.3289 

2.5 −2.2540 0.0311 0.5793 −0.3865 0.2343 −1.2784 

3.5 Undefined Undefined 2.5799 0.2894 0.3028 −2.4589 

4.5 Undefined Undefined −1.4807 1.4906 −1.1675 0.9254 

5.5 Undefined Undefined −0.4786 0.4282 −3.1675 0.7142 

6.5 Undefined Undefined 0.0809 0.4338 −0.6497 0.1562 
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Further, the data adopted in [5.9] refers to experimental studies at the Center for 

Molecular Medicine and Genetics and Wayne State of University, School of Medicine. It 

represents stage visual snap-shots of the biological process for a specific cancer 

progression. It refers to wet-lab experiments on specimen harvested from p
53 

mutation 

leading to determining chromosome numbers and translocations classified into NCCA or 

CCA category. 

Table 5.2 Calculation of C*, N* and CH* 

Stage 

τ 

C N CH Sum 

(C+N+CH) 

N*= 

N/Sum 

C*= 

C/Sum 

CH*= 

CH/Sum 

0.5 0.2749 0.2741 1 1.549 0.17695 0.17746 0.64557 

1.5 0.3039 0.5667 1 1.8706 0.30295 0.16246 0.53458 

2.5 0.2129 0.8159 1 2.0288 0.40215 0.10493 0.49290 

3.5 −0.0532 0.9816 1 1.9284 0.50902 −0.02758 0.51856 

4.5 0.8489 0.5343 1 2.3832 0.22419 0.35620 0.41960 

5.5 0.8477 0.1503 1 1.998 0.07522 0.42427 0.50050 

6.5 0.7479 0.2403 1 1.9882 0.12086 0.37616 0.50296 

 

Using the experimental data as above, empirical curves on the concentration ratio of 

normal chromosomes (A), concentration ratio of NCCA (N) and concentration ratio of 

CCA (C), are indicated as functions of cancer growth stages  (τ) with, A (τ) + N (τ) + C (τ) 

= 1. 
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For empirical depiction via least-square curve fitting, the growth and decay 

functions are assumed as corresponding exponential functions with appropriate 

coefficience and reaction rate-constants for the growth or decay. The co-efficients are taken 

in normalized set equal to 1 and the rate constants are indicated by k1, k2…,k6  relevant to 

the following differential equations of the dynamics involved.  

dA (τ) / dτ = −k12A                                                                                                (5.17) 

dC (τ) / dτ = k2A (τ) + k4N (τ) – k36C (τ)                                                    (5.18) 

dN (τ) / dτ = k1A (τ) + k3C (τ) – k45N (τ)                                                    (5.19) 

where, k12 =  k1 + k2 , k36 = k3 + k6 and k45 =  k4 + k5. 

The rate-constants used are indicated in Table 5.1 

Table 5.3 Experimental and empirical data on N(τ) and C(τ) of [5.9] and computed 

data of the present model 

 

 Experimental Results Theoretical Results Present Study 

τ Nobs Cobs Ntheor Ctheor N: [1−LQ(τ)] C: LQ(τ) 

0.5 0.2741 0.2749 0.2038 0.2901 0.905864 1.079419 

1.5 0.5667 0.3039 0.4156 0.3081 0.067601 1.786625 

2.6 0.8159 0.2129 0.8934 0.3324 0.003587 1.840631 

3.5 0.9816 −0.0532 0.9947 −1.3798 0.00018 1.843505 

4.5 0.5343 0.8489 −230.90 1.5700 8.99 x 10
−6

 1.843650 

5.5 0.1503 0.8477 −6734 0.6283 4.47 x 10
−7

 1.843657 

6.5 0.2403 0.7479 0.8659 0.6383 2.23 x 10
−8

 1.843658 
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The empirically fitted mathematical functions for A, C and N are as follows: 

A(τ) = AOe
−k12τ

                                                                                              (5.20) 

where, AO = 0.99 and k12 = (k1 + k2) 

C(τ) = k4 / k346 (1 − e
−k345τ

)                                                                            (5.21) 

N(τ) = k3 / k345 (1 − e
−k345τ

) + 0.01e−
−k345τ

                                                    (5.22) 

where, k346 = (k3 + k4 + k6) and k345 = (k3 + k4 + k5) and AO = 0. 

 

Present Model: Considered in this study is a non-empirical formulation for N and C 

variations with respect to τ. It is based on assuming a logistic growth function model of C 

or N with respect to the variable τ. 

 

Figure 5.3 Plot of LQ(τ) (series 1)and 1 − LQ(τ) (series 2) of Table 5.3 
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Inasmuch the growth of clonal and non-clonal constituents in the chromosomal 

complex is decided by the associated stochastical considerations of the populations of N 

and C and their interactions. In such complex system the use of Langevin-Bernoulli 

function has been indicated as feasible logistic function to denote the growth or decay 

profile of the constituent entities [5.28a & b]. 

That is, given a variable x, its growth as a function of time in normalized form, as 

LQ(t) and the corresponding decay function is 1 − LQ(t). Here Q decides the order-

disorder characteristics of the complex systems; and Q decides the initial rate (MO) of 

growth or decay. The corresponding order-parameter of the system is given by P. S. 

Neelakanta and De Groff [5.29]. θ = 3/2 ((MO) – 1/2, In terms of Q, MO = (1/3 + 1/3Q) 

and hence, Q = 2θ. The order parameter θ can be assumed on equi-partition 

considerations equal to (1/3)
rd

 of the constituent population namely, N*, C* and CH* 

(where the asterisk denotes the normalized values); and, CH denotes the total 

chromosomal content assumed as 100% denoting (clonal aberrations + non-clonal 

aberrations and normal chromosomes). The normalization indicated above refers to the 

sum of C, N and CH contents. For example, considering the growth stages of cancer 

indicated in [5.9], the following Table 5.2 is deduced. 

Thus, (θ = N* + C* + CH*)/3 can be determined and Q = 2θ can be ascertain using 

this computed values of Q, LQ (τ) and 1 − LQ (τ) can be determined. Therefore, the growth 

and decay values of C and N respectively are determined as function of τ as indicated in 

Table 5.3 along with the experimental data and empirical evaluations available in [5.9]. 
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Figure 5.4 Experimental data in normalized form of C(τ) , N(τ)  and CH (τ) and τ denotes 

the stage of cancer growth  as available  in [5.9] 

 

The above results are graphically presented in Figures5.3, 5.4 and 5.5 respectively. 

For comparison, illustrated in Figure 5.4 are graphical representations of C(τ), N(τ) and 

CH(τ) relevant to (i) Experimental results [5.9], (ii) Empirical results [5.9] and (iii) Present 

study. Further, considering mathematical aspects of linking cancer and viruses, relevant cell 

responses are considered as modeling parameters of interest. Recent developments in 

genetic engineering aim at interaction between tumor cells and oncolytic viruses. 

Specifically as analyzed and presented in [5.20] is a mathematical model on such 

interaction dynamics and the associated stability consideration are obtained in relevant 
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analysis both infected and uninfected tumor cells being present is considered and  the 

possibility of tumor load getting eliminated with time using virus therapy is suggested. 

 

 

Figure 5.5 Plots of C(τ) ,N(τ) and CH(τ) 

Series1: Decay (Present Method) 

Series2: Decay [5.9] 

Series3: Decay [5.9] 

Series4: Growth (Present Method) 

Series5: Growth [5.9] 

 

In the model of [5.20] the tumor cells population representing as “X” and infected 

tumor cell population represented by “Y” are assumed to grow in logistic fashion. Further 

the following assumptions are made in the model proposed. 
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 The oncolytic viruses*(Oncolytic viruses*: These refer to virus that preferentially 

infect and lyse/break down the cancer cells) enter tumor cells and replicate 

subsequently 

 The tumor cells get infected with invading oncolytic viruses 

 The infected tumor cells then cause infection in other tumor cells. 

The initial condition on X and Y are: X(o) = Xo> 0 and Y(o) = Yo> 0. 

Relevant bounded solutions on the cancer growth are obtained via differential 

equations formulated using the growth logistics. Relevant solutions for the differential 

equation are based on numerical procedure via Runge-Kutta method. Further, the computed 

result available in [5.20], conform to the following parameters: 

 r1 = Maximum growth rate of uninfected cell (= 40) 

 r2 = Maximum growth rate of infected cell (= 2) 

 K = Holding or carrying capacity of the cellular media (= 100) 

 a = A measure of immune response of the individual of the viruses that  prevents it 

from destroying the cancer (= 0.05) 

 b = Transmission rate of the viral dispersions (= 0.02) 

  α = Rate of infected cell killing by the viruses (= 0.003). 

Corresponding to the presumed data as above, the computed densities of tumor 

cells as functions of time are presented in [5.20] For the values of r1 assumed, the initial 

growth rate seen in [5.20] is, m = 0.35 to 0.4. With value of b changed to 0.06, the initial 

slope m becomes approximately 0.7. 
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Given, the initial slope m and assuming a stochastical framework of growth/decay 

dynamics, suggested in this study, functions LQ(t) and the decay (1− LQ(t)) to depict the 

growth and decay profiles respectively. Here, the Q-value denotes the order function 

(disorder factor), and it is related to m by the relation: Q = 1/(3m−1). Hence when m ≈ 0.7, 

Q → 1 and when m ≈ 0.35, Q → 20. Thus, (Q → 1) data corresponding to b = 0.06 implies 

an upper-bound on growth dynamics; and (Q → 20) data for b = 0.02 specifies the lower-

bound growth dynamics. 

 

 

Figure 5.6 (a) Growth function curves 
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Shown in Figures 5.6 (a), 5.6 (b), 5.7 (a) and 5.7 (b) are computed results with the 

proposed LQ (.) function on growth and decay profiles. The results in [5.20] are also shown 

for comparison. 

 

 

Figure 5.6 (b) Decay function curves 

 

The results of [5.20] shown that the growth/decay dynamics falling in the regime 

outside the upper/lower bound constraint with Q = 0.5. For example, if Q = 0.1 is used, the 

results of [5.20] are closer to the proposed model with LQ(.) function. 

When Q → 0 means that the underlying statistics corresponds to non-interacting 

populations being present. For example in Figure 5.6 (a) considering  the normalized time 
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(tN), the results of the [5.20] are on the interaction domain around 0.2 to 0.3 and later, the 

dynamics corresponds to non- interaction regime. Similar observations can be made with 

growth/decay curves of Figures 5.6 (b), 5.7 (a) and 5.7 (b).  It implies that in the initial 

stage the constituent of the cellular medium, namely infected and non-infected parts 

interact with the oncolytic viruses with a dispersion rate of b = 0.02 being present. After a 

certain growth/decay time, the interaction ceases. 

 

Figure 5.7 (a) Growth function curves 

 

When the b-value, namely transmission rate of viral dispersions change to 0.06, the 

decay and growth curves are shown in Figure 5.7 (a) and in Figure 5.7 (b). In this case, the 

states of growth and decay conform to non-interaction of included constituents in the cells. 
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Figure 5.7 (b) Decay function curves 

 

5.10 Discussions and Concluding Remarks 

In summary presented in this chapter of the following research task and the results 

are following 

 Statistical mixture theory is applied to the mixture constituents of a cytogenetic 

complex 

 Both normal and contamination entities in the cytogenetic complex are 

considered. Hence, the presence of abnormal constituents such as cell aberrations, 

are estimated in terms of information redundancy parameter  
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 The mixture state of clonal and non-clonal alterations in cancer evolution is 

analyzed in the context of the cancer growth 

 Specific to the temporal evolution of oncological state, calculations using 

available data are made with respect to deducing cancer growth or decay curve. 

Such growth and decay curve are non-empirically indicated via stochastically 

justified logistic function namely the Langevin-Bernoulli function. Comparisons are 

made with available results. 
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CHAPTER VI 

RESULTS, DISCUSSIONS AND CONCLUSIONS 

6.1 Introduction 

The studies performed in the earlier chapter are summarized and relevant 

deliberation of the outcome is discussed with inferential conclusions in this chapter. 

Further, open-questions on the research that provide a scope for further studies in this area 

are indicated.  

Commensurate with the objectives, and the efforts presented in the previous 

chapters, the specific tasks carried out in this research can be enumerated as follows: 

Cytogenetics is a study on the genetic considerations associated with structural and 

functional aspects of the cells, specifically seeking out the so called normal and abnormal 

chromosomal features. Chromosomes refer to a gamut of structures in the cells that contain 

a vast extent of body’s information stored in the form of strings of DNA. Within the scope 

of standard process of classifying each chromosome (known as karyotyping), normal 

chromosomes are traditionally identified and their structures are graphically represented. 

Notwithstanding the existence of such normal karyotypes of a given species, 

chromosomal abnormality may prevail reflecting the presence of atypical number of 

chromosomes or structural abnormality in one or more chromosomes. Defined as 

chromosomal aberrations (CA), such anomaly may indicate certain genetic pathogenic 

conditions (known as genetic disorders), either inherited and/or induced as a result of 
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abiotic ambient such as ionizing radiations. Such disorders can be quantitatively specified 

in terms of the extent of chromosomal aberrations observed.  

Further, presence of chromosomal aberrations implicitly depicts disorganization in 

the complexity of the underlying cytogenetics. The present study essentially addresses an 

analytical approach to quantify such disorganization via entropy considerations, using 

statistical mixture theory applied to the cellular contents of normal and aberrated 

chromosomes. 

Both numerical anomaly of abnormal number of chromosomes (known as 

aneuploidy) as well as structural alterations seen in the physical form of chromosomes 

would imply a stochastical framework of biological complexity. That is, the associated 

entities constitute a set of cytogenetic factors of randomness implied as a result of 

aneuploidy and diverse structural features in the cellular complex. The coexistence of 

normal and abnormal chromosomes can be regarded as a state of statistical mixture. 

Hence, informational entropy (in Shannon’s sense) is prescribed to measure the 

extent of such chromosomal aberrations. That is, by comparing the molecular entropy at 

cytogenetic level of normal and anomalous chromosomes, one can specify/elucidate the 

intrinsic property of genetic disorders associated with the disorder in cell phenotype 

complex. The informational entropy is consistent with the principle of stochastical mixture 

theory.  

Relevantly, the proposed approach assumes the presence of normal and abnormal 

chromosomal sets in varying proportions within the cytogenetic complex, and hence, the 

stochastical mixture theory is invoked to ascertain the information redundancy as a function 

of fractional abnormal chromosome population. Use of such computed details on 
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information redundancy of a cytogenetic system is indicated in this study as a track-

parameter towards the progression of genetic disorder, for example, the macroscopically 

seen growth of cancer. Lastly, using the results obtained, conclusions are enumerated, 

inferences are outlined and directions for future studies are suggested. 

6.2 Discussion and Inferences 

The essence of the study is to indicate the relevance of bioinformatics in the 

cytogenetic framework. Such a framework of cytogenetic system can be considered as a 

complex system made of normal and aberrated cells and their interacting statistics. 

In the conceived description of cytogenetic complex as above, the concept of 

informatics are introduced to ascertain the disorganized features in terms of entropy 

considerations or information contents in Shannon’s sense. 

Relevant details on the stochastical aspects of cellular complex, aberrated 

constituents (that may lead to genetic disorders etc.) and entropy features are used to 

model oncological growth. 

Consistent with the above efforts the following can be stated as salient outcomes 

 A comprehensive survey on cytogenetic complex viewed in the framework of 

bioinformatics 

 Mining of data related to cytogenetic bioinformatics 

 Compiling appropriate biostatistical methods for the  modeling pursuits 

 A simple proportion mixture model is developed to estimate the quantitative 

profiles of normal and abnormal chromosomes. Hence using the results in 

Nikitana et a.l. [4.1], the mathematical model concerning maternal cell 

contamination causing spontaneous abortions is revisited and the risk-factor is 
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specified within an upper and lower bound. Relevant outcomes can be considered 

as new 

 The mixture model is made more comprehensive using statistical mixture theory 

and applied to cytogenetic context. Again considering clonal and non-clonal 

alterations relevant to cancer growth model is deduced using Langevin-Bernoulli 

function. More similar modeling is indicated on the results due to Di 

Pierdomenico et al. [5.9] and Agarwal et al. [5.20]. 

6.3 Open-questions for Future Study 

 Relevant to the study summarized above, the following open-questions can be 

indicated for future studies. The essence of the present research on the cytogenetic 

complex can be extended to study the associated bioinformatics relevant to the following 

 Fuzzy aspects of overlaps of normal and abnormal contents and their functions in 

the cellular media 

 Sudden epochal aberrations that may lead to acute conditions and genetic 

disorders: stability analysis 

 Apart from oncogenetic viruses, the role of other virulent effects at cytogenetic 

level can be studied 

 Systematic application of bioinformatics and biostatistics in the cytogenetic 

framework towards appropriate data-mining and bioinformatics. 

6.4 Closure  

The present study is a debut attempt in the fusing concepts of bioinformatics, 

biostatistics and data mining in the context of studying cytogenetics. Though not 

exhaustive, it offers a new avenue of thinking for further studies.  
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APPENDIX 

COMPUTATION 

Computations/results: Chapter 4: To calculate upper and lower bounds (UB and LB) of 

risk factors for spontaneous abortion. Consider the data for two groups of “46, XX” 

spontaneous abortions with or without Y chromosome(Y+ and Y−) are presented in table 

4.1. 

Case study 4.1 (a): Computation for group “46, XX” spontaneous abortions with Y 

chromosome (Y+). 

Step I:  Prepare an ensemble of 14 trails (x1, x2…x14) randomly selected within the 

given range. In case a range is not specified, consider the range to be ±2 from the given 

value. The risk factor mentioned below are exogenous characteristics(X1 to X9) 

represented in Table 4.1. 

Risk 

Factor x1 x2 x3 x4 x5 x6 x7 

1 8.88 8.1 7.3 3.9 5.4 4.8 6.5 

2 26 32 22 18 26 11 20 

3 27.21 33 23 10 8 25 9 

4 4 3.56 3.69 3.8 3.96 3.6 3.54 

5 12 12.1 11.8 12.3 11.5 12.5 12.2 

6 2 2.2 1.96 1.5 2.4 1.8 1.6 

7 14 13.8 13.3 14.5 13.7 14.1 13.6 

8 3 3.3 2.8 2.5 3.5 2.9 2.6 

9 35.08 50 49 25 26 19 33 
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Risk 

Factor x8 x9 x10 x11 x12 x13 x14 

1 7.6 3.2 2.6 -1 1.5 -1 -2.6 

2 9 14 6.5 25.5 25 5 -6.54 

3 17 21 6.2 18 19 4 -6.36 

4 3.2 3.7 3.42 3.48 3.81 3.95 3 

5 11.6 12.4 11 11 10.8 11.2 10.5 

6 2.3 1.7 2.4 1.8 1.6 1.9 1.5 

7 14.3 14.2 14.4 12.8 13.5 12.6 12.5 

8 3.8 2.7 3.2 2.4 1.8 2 1.5 

9 29 31 22 1 5 -2 -16.88 

 

Step II: Calculate upper and lower bound for all the 14 trails for both the cases using 

modified Bernoulli-Langevin function for determining the risk factor f(z) 

f(z) = ½ + ½ Lq (z/2) 

where, (z) = summation of the nine exogenous characteristics (X1 to X9) specified in 

Table 4.1.  For upper bound (UB) consider q = ½ and for lower bound (LB) consider q = 

∞. 

 

 

 

 

 

 

 

 

 

Trial 

Upper Bound 

q = ½ 

Lower Bound 

q = ∞ 

x1 0.844151804 0.582138002 

x2 0.883997742 0.597549974 

x3 0.848718121 0.583747958 

x4 0.761640393 0.557348795 

x5 0.781963539 0.562862814 

x6 0.769036343 0.559321149 

x7 0.785422283 0.56383232 

x8 0.776055575 0.561228651 

x9 0.789445602 0.564972509 

x10 0.712640156 0.545088728 

x11 0.721092961 0.547116873 

x12 0.738823529 0.551480719 

x13 0.616645523 0.523753673 

x14 0.489346041 0.497864667 
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To calculate extrema (supremum and infimum) on the bounds UB and LB values: 

Extrema refer to: Sup (supremum) and Inf (infimum) that correspond respectively 

to certain ± off-sets prescribed on the basis of statistical quantile on a given variable. Two 

quantiles are specified thereof: 

 First level extremum corresponds to off-sets by 2
nd

 quantile criterion with ± 

47.73% off-sets  

 Second level extremum corresponds to off-sets by 1
st
 quantile criterion with ± 

34.13% off-sets 

Step I:   To calculate the error margins for the UB by considering with ± 47.73% off-sets 

i.e. 2
nd

 quantile [ZUB (1 +0 .4773) and ZUB (1 − 0.4773)]. 

 Similarly calculate the error margin for LB [ZLB (1 + 0 .4773) and ZLB (1 − 

0.4773)]. 

Step II: Calculate the average of the higher error margin [ZUB (1 + 0 .4773) and ZLB (1 + 

0.4773)] of both the bounds.  

 Similarly calculate the error margin for LB [ZUB (1 − 0 .4773) and ZLB (1 − 

0.4773)]. 

Step III:  Repeat Step I and Step II by considering ± 34.13% off-sets i.e. 1
st
 quantile. 

Step VI: The final averages obtained from Step III are called final statistical limit i.e. 

supremum and infimum. 

The calculated results for spontaneous abortions with Y chromosome (Y+) are shown 

below: 
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Trial Final Statistical Limit: 

Infimum 

Final Statistical Limit: 

Supremum 

x1 0.693959529 0.499984116 

x2 0.720845197 0.519354707 

x3 0.696964587 0.5021492 

x4 0.641752547 0.462370018 

x5 0.654323587 0.471427204 

x6 0.646310684 0.465654065 

x7 0.656478147 0.472979521 

x8 0.650653975 0.46878332 

x9 0.658990446 0.474789583 

x10 0.611946422 0.440895294 

x11 0.617045916 0.444569378 

x12 0.627795925 0.452314547 

x13 0.554859809 0.399765519 

x14 0.480326141 0.346065485 

 

The results are shown in Figure 4.1(a) A risk-factor versus an ensemble of trials (T1, 

T2…, T14) for (Y+) state. 

Case study 4.1 (b): Computation for group “46, XX” spontaneous abortions without Y 

chromosome (Y−). 

Risk 

factor x1 x2 x3 x4 x5  x6 x7 

1 8.86 5.54 3.82 6.89 4.62 2.18 6.33 

2 25.54 11.98 6.21 20.94 13.52 23.45 15.32 

3 28.28 16.32 23.41 24.61 7.53 18.74 21.78 

4 20 19.62 20.34 20.11 19.87 20.63 19.54 

5 62 61.44 61.29 62.35 62.18 62.64 62.41 

6 12 12.34 12.48 11.79 11.43 11.68 11.92 

7 64 64.21 64.65 63.82 63.52 63.38 64.38 

8 30 29.11 30.26 29.48 29.45 30.34 30.12 

9 24.05 16.82 18.54 11.67 22.43 18.23 14.67 
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Risk 

Factor x8 x9 x10 x11 x12 x13 x14 

1 3.01 7.21 2.76 7.9 5.9 -1 -2.76 

2 18.22 9.63 5.27 19 1 -2 -5.27 

3 10.24 13.65 5.28 2 4 7 -5.58 

4 20.65 19.43 20.45 18.45 19 18.94 18 

5 62.5 62.58 61.53 61.98 60.39 60.89 60 

6 12.21 11.57 12.56 11 10.95 11.2 10.83 

7 63.45 64.32 64.54 62.67 63.01 62.25 62 

8 29.28 30.65 29.55 28.32 29 28.87 28 

9 20.11 19.01 13.86 4.32 -6 -8.44 -13.86 

 

 

Trial 

Upper Bound 

q = ½ 

Lower Bound 

q = ∞ 

x1 0.974085863 0.662205515 

x2 0.957131207 0.642464319 

x3 0.959140217 0.644419841 

x4 0.964562608 0.65012654 

x5 0.955497837 0.640929415 

x6 0.964376594 0.649919135 

x7 0.962011776 0.647357863 

x8 0.958412394 0.643702404 

x9 0.957509757 0.642826919 

x10 0.943160167 0.63062655 

x11 0.943042723 0.630537652 

x12 0.918437131 0.614512997 

x13 0.908298141 0.609020766 

x14 0.874578494 0.59359266 
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Trail Final Statistical Limit: 

 Infimum 

Final Statistical Limit:  

Supremum 

x1 0.796135533 0.573599905 

x2 0.778281211 0.56073622 

x3 0.78021015 0.562125982 

x4 0.785624995 0.56602727 

x5 0.776739692 0.559625586 

x6 0.785433577 0.565889358 

x7 0.783036795 0.564162524 

x8 0.77950696 0.561619348 

x9 0.778641817 0.560996029 

x10 0.765723968 0.551688974 

x11 0.765623572 0.551616641 

x12 0.745854976 0.537373759 

x13 0.738249625 0.531894254 

x14 0.714336847 0.51466557 

 

The results are shown in Figure 4.1(b) A risk-factor versus an ensemble of trials (T1, 

T2…, T14) for (Y−) state. 
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Computations/results: Chapter 5: Case studies related to cancer growth models.  

Cancer growth model I: To calculate growth and decay of cancer consisting of clonal and 

non-clonal constituents in complex system, using Bernoulli-Langevin function presented 

in Table 5.3.  

Step I: Calculations related to normalized values for C, N and CH are represented as N*, 

C* and CH* in Table 5.2.  

Step II: The terms τ, q, x, y, I, II, LQ(τ) and A(τ) are descried below: 

q = 2/3(N* + C* + CH*) 

x = (1+1/q) τ 

y = (1/q) τ 

I = 1
st
 term of LQ(x) 

II = 2
nd

 term of LQ(x) 

LQ(τ) = I – II 

A(τ) = I – LQ(τ) 

Present study cancer decay function: N:1− LQ(τ) 

Present study cancer growth function: C: LQ(τ) 
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τ q x y I II LQ(t) A(t) N: 

1− LQ(τ) 

C: LQ(τ) 

0.5 0.6666 1.25 0.75 2.947 2.361 0.5854 0.4145 0.9058 1.0794 

1.5 0.6666 3.75 2.25 2.502 1.533 0.9690 0.0309 0.0676 1.7866 

2.5 0.6666 6.25 3.75 2.500 1.501 0.9983 0.0016 0.0035 1.8406 

3.5 0.6666 8.75 5.25 2.5 1.500 0.9999 8.25  10
−5

 0.0009 1.8435 

4.5 0.6666 11.5 6.75 2.5 1.500 0.9999 4.11  10
−6

 8.99    

10
−6

 

1.8436 

5.5 0.6666 13.75 8.25 2.5 1.5 1 2.05  10
−7

 4.47  

10
−7

 

1.8437 

6.5 0.6666 16.25 9.75 2.5 1.5 1 1.02  10
−8

 2.23   

10
−8

 

1.8437 

 

The values obtained for cancer growth and decay are plotted in Figure 5.5.  
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Cancer growth model II: To calculate growth and decay function for cancer using 

Bernoulli-Langevin function. 

Figure 5.6 (a) Growth function: 

Normalized 

time 

Reference 

[5.20] q = 0.5 q = 0.1 

0 0.013888889 0.000166669 0.0007 

0.05 0.027777778 0.083153217 0.33760036 

0.1 0.061111111 0.165236164 0.611075555 

0.15 0.138888889 0.245229642 0.794589965 

0.2 0.277777778 0.32221168 0.900311618 

0.25 0.472222222 0.395394673 0.954604819 

0.3 0.666666667 0.464150716 0.980270632 

0.35 0.805555556 0.528024066 0.991712426 

0.4 0.894444444 0.586731228 0.996605124 

0.45 0.944444444 0.640150506 0.998635398 

0.5 0.966666667 0.688303608 0.999459404 

0.55 0.977777778 0.73133226 0.99978827 

0.6 0.988888889 0.769472596 0.999917828 

0.65 0.994444444 0.803029662 0.999968346 

0.7 1 0.832353792 0.999987881 

0.75 1 0.85781997 0.999995384 

0.8 1 0.879810754 0.999998249 

0.85 1 0.898702874 0.999999338 

0.9 1 0.914857315 0.999999751 

0.95 1 0.928612491 0.999999906 

1 1 0.940280028 0.999999965 

 

The values obtained for cancer growth function are plotted in Figure 5.6 (a).  
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Figure 5.6 (b) Decay function:  

Normalized 

time 

Reference 

[5.20] q = 0.5 q = 0.1 

0 1 0.999833331 0.9993 

0.05 0.979899497 0.916846783 0.66239964 

0.1 0.949748744 0.834763836 0.388924445 

0.15 0.874371859 0.754770358 0.205410035 

0.2 0.728643216 0.67778832 0.099688382 

0.25 0.552763819 0.604605327 0.045395181 

0.3 0.40201005 0.535849284 0.019729368 

0.35 0.261306533 0.471975934 0.008287574 

0.4 0.180904523 0.413268772 0.003394876 

0.45 0.150753769 0.359849494 0.001364602 

0.5 0.130653266 0.311696392 0.000540596 

0.55 0.125628141 0.26866774 0.00021173 

0.6 0.120603015 0.230527404 8.21717E-05 

0.65 0.115577889 0.196970338 3.16544E-05 

0.7 0.110552764 0.167646208 1.21194E-05 

0.75 0.110552764 0.14218003 4.61642E-06 

0.8 0.110552764 0.120189246 1.75085E-06 

0.85 0.110552764 0.101297126 6.61602E-07 

0.9 0.110552764 0.085142685 2.49215E-07 

0.95 0.110552764 0.071387509 9.36199E-08 

1 0.110552764 0.059719972 3.50862E-08 

 

The values obtained for cancer decay function are plotted in Figure 5.6 (b).  
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Figure 5.7 (a) Growth function: 

Normalized 

time 

Reference 

[5.20] q = 0.5 q = 0.1 

0 0.013888889 0.000166669 0.0007 

0.05 0.222222222 0.083153217 0.33760036 

0.1 0.777777778 0.165236164 0.611075555 

0.15 1.055555556 0.245229642 0.794589965 

0.2 1.083333333 0.32221168 0.900311618 

0.25 1.1 0.395394673 0.954604819 

0.3 1.105555556 0.464150716 0.980270632 

0.35 1.111111111 0.528024066 0.991712426 

0.4 1.111111111 0.586731228 0.996605124 

0.45 1.111111111 0.640150506 0.998635398 

0.5 1.111111111 0.688303608 0.999459404 

0.55 1.111111111 0.73133226 0.99978827 

0.6 1.111111111 0.769472596 0.999917828 

0.65 1.111111111 0.803029662 0.999968346 

0.7 1.111111111 0.832353792 0.999987881 

0.75 1.111111111 0.85781997 0.999995384 

0.8 1.111111111 0.879810754 0.999998249 

0.85 1.111111111 0.898702874 0.999999338 

0.9 1.111111111 0.914857315 0.999999751 

0.95 1.111111111 0.928612491 0.999999906 

1 1.111111111 0.940280028 0.999999965 

 

The values obtained for cancer growth function are plotted in Figure 5.7 (a).  
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Figure 5.7 (b) Decay function:  

Normalized 

time 

Reference 

[5.20] q = 0.5 q = 0.1 

0 1 0.999833331 0.9993 

0.05 0.753768844 0.916846783 0.66239964 

0.1 0.226130653 0.834763836 0.388924445 

0.15 0.040201005 0.754770358 0.205410035 

0.2 0.012562814 0.67778832 0.099688382 

0.25 0.008040201 0.604605327 0.045395181 

0.3 0.002512563 0.535849284 0.019729368 

0.35 0.00201005 0.471975934 0.008287574 

0.4 0.001507538 0.413268772 0.003394876 

0.45 0 0.359849494 0.001364602 

0.5 0 0.311696392 0.000540596 

0.55 0 0.26866774 0.00021173 

0.6 0 0.230527404 8.21717E-05 

0.65 0 0.196970338 3.16544E-05 

0.7 0 0.167646208 1.21194E-05 

0.75 0 0.14218003 4.61642E-06 

0.8 0 0.120189246 1.75085E-06 

0.85 0 0.101297126 6.61602E-07 

0.9 0 0.085142685 2.49215E-07 

0.95 0 0.071387509 9.36199E-08 

1 0 0.059719972 3.50862E-08 

 

The values obtained for cancer decay function are plotted in Figure 5.7 (b).  
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