You are here

Boundary Layer Control on a Circular Cylindrical Body through Oscillating Lorentz Forcing

Download pdf | Full Screen View

Date Issued:
2007
Summary:
Boundary layer control on a circular cylindrical body through oscillating Lorentz forcing is studied by means of numerical simulation of the vorticity-stream function formulation of the Navier-Stokes equations. The model problem considers axisymmetric seawater flow along an infinite cylinder controlled by an idealized radially directed Lorentz force oscillating spatially and temporally. Under optimum forcing parameters, it is shown that sustainable Lorentz induced vortex rings can travel along the cylinder at a speed equivalent to the phase speed of forcing . Wall stress is shown to locally change sign in the region adjacent to the vortex, considerably decreasing net viscous drag . Adverse flow behaviors are revealed as a result of studying the effects of the Reynolds numbers, strength of the Lorentz force, and phase speed of forcing for boundary layer control. Adverse flow behaviors inc I ude complex vortex configurations found for suboptimal forcing resulting in a considerable increase in wall stress.
Title: Boundary Layer Control on a Circular Cylindrical Body through Oscillating Lorentz Forcing.
64 views
30 downloads
Name(s): Seltzer, Ryan K.
Dhanak, Manhar R., Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2007
Date Issued: 2007
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 123 p.
Language(s): English
Summary: Boundary layer control on a circular cylindrical body through oscillating Lorentz forcing is studied by means of numerical simulation of the vorticity-stream function formulation of the Navier-Stokes equations. The model problem considers axisymmetric seawater flow along an infinite cylinder controlled by an idealized radially directed Lorentz force oscillating spatially and temporally. Under optimum forcing parameters, it is shown that sustainable Lorentz induced vortex rings can travel along the cylinder at a speed equivalent to the phase speed of forcing . Wall stress is shown to locally change sign in the region adjacent to the vortex, considerably decreasing net viscous drag . Adverse flow behaviors are revealed as a result of studying the effects of the Reynolds numbers, strength of the Lorentz force, and phase speed of forcing for boundary layer control. Adverse flow behaviors inc I ude complex vortex configurations found for suboptimal forcing resulting in a considerable increase in wall stress.
Identifier: FA00012549 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2007.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Subject(s): Mathematical physics
Lorentz transformations
Boundary layer control
Fluid dynamics
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00012549
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.