You are here

Experimental Investigation of Skin Friction Drag Reduction on a Flat Plate using Microbubbles

Download pdf | Full Screen View

Date Issued:
2007
Summary:
A microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles traveled downstream in the boundary layer. The airflow rate and water velocity were found to have the most significant impact on the size of the bubbles created. Skin friction drag measurements were recorded in detail in the velocity and airflow rate ranges. The coefficient of skin friction was determined and relationships were then established between this coefficient and the void ratio.
Title: Experimental Investigation of Skin Friction Drag Reduction on a Flat Plate using Microbubbles.
130 views
22 downloads
Name(s): Grabe, Zachary A.
Dhanak, Manhar R., Thesis advisor
Florida Atlantic University, Degree grantor
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2007
Date Issued: 2007
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 99 p.
Language(s): English
Summary: A microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles traveled downstream in the boundary layer. The airflow rate and water velocity were found to have the most significant impact on the size of the bubbles created. Skin friction drag measurements were recorded in detail in the velocity and airflow rate ranges. The coefficient of skin friction was determined and relationships were then established between this coefficient and the void ratio.
Identifier: FA00012523 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2007.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Subject(s): Frictional resistance (Hydrodynamics)
Drag (Aerodynamics)
Skin friction (Aerodynamics)
Fluid mechanics
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00012523
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.