You are here
Experimental Investigation of Skin Friction Drag Reduction on a Flat Plate using Microbubbles
- Date Issued:
- 2007
- Summary:
- A microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles traveled downstream in the boundary layer. The airflow rate and water velocity were found to have the most significant impact on the size of the bubbles created. Skin friction drag measurements were recorded in detail in the velocity and airflow rate ranges. The coefficient of skin friction was determined and relationships were then established between this coefficient and the void ratio.
Title: | Experimental Investigation of Skin Friction Drag Reduction on a Flat Plate using Microbubbles. |
150 views
30 downloads |
---|---|---|
Name(s): |
Grabe, Zachary A. Dhanak, Manhar R., Thesis advisor Florida Atlantic University, Degree grantor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2007 | |
Date Issued: | 2007 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 99 p. | |
Language(s): | English | |
Summary: | A microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles traveled downstream in the boundary layer. The airflow rate and water velocity were found to have the most significant impact on the size of the bubbles created. Skin friction drag measurements were recorded in detail in the velocity and airflow rate ranges. The coefficient of skin friction was determined and relationships were then established between this coefficient and the void ratio. | |
Identifier: | FA00012523 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2007. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | College of Engineering and Computer Science | |
Subject(s): |
Frictional resistance (Hydrodynamics) Drag (Aerodynamics) Skin friction (Aerodynamics) Fluid mechanics |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00012523 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |