You are here
Accelerated Testing Protocol for Durability of Roller Compacted Recycled Aggregate Concrete (RCRAC)
- Date Issued:
- 2008
- Summary:
- With the growing environmental concerns related to the ever increasing waste disposal problem in the US, the utilizing of recycled materials in Civil Engineering construction has become an attractive option, which not only supports the concept of green buildings, but can also bring about economic savings by conserving natural resources and landfill spaces. However, the questionable long-term performance of recycled materials often hinders the widespread use in structural applications. The primary focus of this study was to develop accelerated aging/testing protocols for predicting the durability of recycled aggregate concrete (RAC), Type I Portland Cement, and up to 50% fly ash replacement. Accelerated aging was accomplished by curing the specimens at elevated temperatures regimes for specific durations. Stiffness-time master curves were constructed using Time-Temperature Superposition (TTS) and Stepped Isothermal Method (SIM) based on the Arrhenius Equation. All the methods demonstrated that the stiffness decreased with time regardless of the amount of fly ash. The Arrhenius method allowed stiffness prediction up to an equivalent age of 14,000 hours developed from short-term tests lasting up to 144 hours. It was also found that SIM and TTS provide equitable results, potentially reducing the number of specimens and testing time for durability prediction.
Title: | Accelerated Testing Protocol for Durability of Roller Compacted Recycled Aggregate Concrete (RCRAC). |
![]() ![]() |
---|---|---|
Name(s): |
Fraser, Jamie Barbara Sobhan, Khaled Dr., Thesis advisor Florida Atlantic University, Degree grantor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2008 | |
Date Issued: | 2008 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 129 p. | |
Language(s): | English | |
Summary: | With the growing environmental concerns related to the ever increasing waste disposal problem in the US, the utilizing of recycled materials in Civil Engineering construction has become an attractive option, which not only supports the concept of green buildings, but can also bring about economic savings by conserving natural resources and landfill spaces. However, the questionable long-term performance of recycled materials often hinders the widespread use in structural applications. The primary focus of this study was to develop accelerated aging/testing protocols for predicting the durability of recycled aggregate concrete (RAC), Type I Portland Cement, and up to 50% fly ash replacement. Accelerated aging was accomplished by curing the specimens at elevated temperatures regimes for specific durations. Stiffness-time master curves were constructed using Time-Temperature Superposition (TTS) and Stepped Isothermal Method (SIM) based on the Arrhenius Equation. All the methods demonstrated that the stiffness decreased with time regardless of the amount of fly ash. The Arrhenius method allowed stiffness prediction up to an equivalent age of 14,000 hours developed from short-term tests lasting up to 144 hours. It was also found that SIM and TTS provide equitable results, potentially reducing the number of specimens and testing time for durability prediction. | |
Identifier: | FA00012517 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2008. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | College of Engineering and Computer Science | |
Subject(s): |
Joints (Engineering)--Testing High strength concrete--Testing Concrete--Mechanical properties--Testing Concrete construction Cement composites--Testing |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00012517 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |