You are here

Development of a Comprehensive Design Methodology and Fatigue Life Prediction of Composite Turbine Blades under Random Ocean Current Loading

Download pdf | Full Screen View

Date Issued:
2017
Summary:
A comprehensive study was performed to overcome the design issues related to Ocean Current Turbine (OCT) blades. Statistical ocean current models were developed in terms of the probability density function, the vertical profile of mean velocity, and the power spectral density. The models accounted for randomness in ocean currents, tidal effect, and ocean depth. The proposed models gave a good prediction of the velocity variations at the Florida Straits of the Gulf Stream. A novel procedure was developed to couple Fluid-Structure Interaction (FSI) with blade element momentum theory. The FSI effect was included by considering changes in inflow velocity, lift and drag coefficients of blade elements. Geometric non-linearity was also considered to account for large deflection. The proposed FSI analysis predicted a power loss of 3.1 % due to large deflection of the OCT blade. The method contributed to saving extensive computational cost and time compared to a CFD-based FSI analysis. The random ocean current loadings were calculated by considering the ocean current turbulence, the wake flow behind the support structure, and the velocity shear. The random ocean current loadings had large probability of high stress ratio. Fatigue tests of GFRP coupons and composite sandwich panels under such random loading were performed. Fatigue life increased by a power function for GFRP coupons and by a linearlog function for composite sandwich panels as the mean velocity decreased. To accurately predict the fatigue life, a new fatigue model based on the stiffness degradation was proposed. Fatigue life of GFRP coupons was predicted using the proposed model, and a comparison was made with experimental results. As a summary, a set of new design procedures for OCT blades has been introduced and verified with various case studies of experimental turbines.
Title: Development of a Comprehensive Design Methodology and Fatigue Life Prediction of Composite Turbine Blades under Random Ocean Current Loading.
148 views
36 downloads
Name(s): Suzuki, Takuya, author
Mahfuz, Hassan, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 229 p.
Language(s): English
Summary: A comprehensive study was performed to overcome the design issues related to Ocean Current Turbine (OCT) blades. Statistical ocean current models were developed in terms of the probability density function, the vertical profile of mean velocity, and the power spectral density. The models accounted for randomness in ocean currents, tidal effect, and ocean depth. The proposed models gave a good prediction of the velocity variations at the Florida Straits of the Gulf Stream. A novel procedure was developed to couple Fluid-Structure Interaction (FSI) with blade element momentum theory. The FSI effect was included by considering changes in inflow velocity, lift and drag coefficients of blade elements. Geometric non-linearity was also considered to account for large deflection. The proposed FSI analysis predicted a power loss of 3.1 % due to large deflection of the OCT blade. The method contributed to saving extensive computational cost and time compared to a CFD-based FSI analysis. The random ocean current loadings were calculated by considering the ocean current turbulence, the wake flow behind the support structure, and the velocity shear. The random ocean current loadings had large probability of high stress ratio. Fatigue tests of GFRP coupons and composite sandwich panels under such random loading were performed. Fatigue life increased by a power function for GFRP coupons and by a linearlog function for composite sandwich panels as the mean velocity decreased. To accurately predict the fatigue life, a new fatigue model based on the stiffness degradation was proposed. Fatigue life of GFRP coupons was predicted using the proposed model, and a comparison was made with experimental results. As a summary, a set of new design procedures for OCT blades has been introduced and verified with various case studies of experimental turbines.
Identifier: FA00005931 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Dissertations, Academic -- Florida Atlantic University
Turbines--Blades--Design and construction.
Turbines--Blades--Materials.
Composite construction--Fatigue.
Ocean currents--Mathematical models.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00005931
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.