
THE DISCRETE LOGARITHM PROBLEM

IN NON-ABELIAN GROUPS

by

Ivana Ilić

A Dissertation Submitted to the Faculty of

The Charles E. Schmidt College of Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Florida Atlantic University

Boca Raton, Florida

December 2010

ACKNOWLEDGEMENTS

I would like to thank my dissertation advisor, Dr. Spyros S. Magliveras, for the

academic guidance, teaching and directions in the scientific research during the disser-

tation preparation and my graduate studies. I deeply appreciate what he has taught

me.

I would also like to thank members of my supervisory committee: Dr. Spyros S.

Magliveras, Dr. Rainer Steinwandt, Dr. Ronald C. Mullin and Dr. Hari Kalva for the

dissertation supervision, academic advising and continuous support.

Finally, I would like to acknowledge The Department of Mathematical Sciences,

Charles E. Schmidt College of Science, Florida Atlantic University and its faculty

for the excellent graduate program in Mathematics and outstanding environment for

graduate studies and research.

iii

ABSTRACT

Author: Ivana Ilić

Title: The Discrete Logarithm Problem in Non-abelian Groups

Institution: Florida Atlantic University

Dissertation Advisor: Dr. Spyros S. Magliveras

Degree: Doctor of Philosophy

Year: 2010

This dissertation contains results of the candidate’s research on the generalized di-

screte logarithm problem (GDLP) and its applications to cryptology, in non-abelian

groups. The projective special linear groups PSL(2, p), where p is a prime, repre-

sented by matrices over the field of order p, are investigated as potential candidates

for implementation of the GDLP. Our results show that the GDLP with respect to

specific pairs of PSL(2, p) generators is weak. In such cases the groups PSL(2, p)

are not good candidates for cryptographic applications which rely on the hardness

of the GDLP. Results are presented on generalizing existing cryptographic primi-

tives and protocols based on the hardness of the GDLP in non-abelian groups. A

special instance of a cryptographic primitive defined over the groups SL(2, 2n), the

Tillich-Zémor hash function, has been cryptanalyzed. In particular, an algorithm for

constructing collisions of short length for any input parameter is presented. A series

of mathematical results are developed to support the algorithm and to prove existence

of short collisions.

iv

Contents

1 Introduction . 1

2 Preliminaries . 4

2.1 Group theory . 4

2.1.1 Group Actions . 4

2.1.2 Basis theorem for transitive permutation representations . . . 8

2.1.3 Special linear group and projective special linear group 9

2.2 Cryptography . 14

2.2.1 Traditional discrete logarithm problem 15

2.2.2 Algorithms for computing discrete logarithms 16

2.2.3 Diffie-Hellman problems and key exchange protocol 20

2.2.4 ElGamal cryptosystem . 22

2.2.5 The Conjugacy problem . 23

2.2.6 Cryptographic hash functions 23

2.2.7 Generalized discrete logarithm problem in finite groups 24

3 Weak generalized discrete logarithms 26

3.1 Weak GDLP in PSL(2, p) with respect to two specific generators . . 26

3.2 Weak GDLP in PSL(2, p) with respect to any two generators of order p 33

3.3 Weak GDLP in PSL(2, p) with respect to two generators one of which

is of order p . 37

v

3.4 GDLP in PSL(2, p) with respect to two generators none of which is of

order p . 39

3.4.1 A strategy for attacking GDLP in PSL(2, p) 40

3.4.2 The p-attack and its analysis 41

3.4.3 Analysis of special cases . 45

3.5 Relations in the context of cryptography 47

4 Cryptographic primitives based on the generalized discrete loga-

rithm problem in non-abelian groups 51

4.1 Algebra on the exponents . 52

4.2 Two commuting operations . 56

4.3 Diffie-Hellman problems based on the GDLP in non-abelian groups . 57

4.4 Diffie-Hellman key exchange based on the GDLP in non-abelian groups 58

4.5 ElGamal encryption scheme based on the GDLP in non-abelian groups 60

5 Cryptanalysis of the Tillich-Zémor hash function 63

5.1 Tillich-Zémor hashing scheme . 63

5.1.1 Description of the Tillich-Zémor hashing scheme 64

5.1.2 Challenge parameters . 64

5.1.3 Short relations . 65

5.2 Experimental results . 66

5.3 Finding short palindrome collisions 67

5.3.1 Collision preserving change of generators 68

5.3.2 Palindromic collisions . 69

5.3.3 Maximal length chains in the Euclidean algorithm 74

5.4 Collisions for the challenge parameters 78

vi

Bibliography . 83

A Appendix on group PSL(2, q) actions 91

vii

Chapter 1

Introduction

In modern cryptography many cryptographic primitives are based on the intractabil-

ity of the traditional discrete logarithm problem (DLP) in finite cyclic groups. How-

ever, a recent celebrated result of Peter Shor describes a quantum algorithm which

solves DLP in polynomial time on a quantum computer [44]. Thus, the prospect of

quantum computers becoming a practical reality in the future would render most of

present-day public key cryptography totally obsolete. This motivates our research

which explores the use of mathematical structures other than finite cyclic groups, in

cryptology.

We investigate the hardness of the non-traditional discrete logarithm problem

in certain finite non-abelian groups and possibilities to design secure cryptographic

primitives in such mathematical structures. We develop algorithms which successfully

attack the generalized DLP (GDLP) in the well known groups SL(2, p) and PSL(2, p),

p a prime, with respect to special generators, when these groups are represented by

2 × 2 matrices, over a finite field of p elements. The two basic cases are when: i)

the two generators are both of order p, ii) when one of two generators is of order

p. The above two attacks constitute what we call basic p-attacks for the GDLP. The

consequence is that such a representation of these groups together with the special

1

generators should not be used to design cryptographic primitives whose security relies

on the intractability of the generalized DLP. We define the p-depth of a pair of

generators and consider conditions on the p-depth under which a successful reduction

to a basic p-attack can solve the GDLP.

Based on the assumption that the generalized discrete logarithm problem and

conjugacy search problem are hard when the underlying groups, presentations and re-

presentations are chosen wisely, we generalize some existing cryptographic protocols to

non-abelian groups. We generalize the computational Diffie-Hellman problem and the

decision Diffie-Hellman problem to non-abelian groups and give a possible variant of

the Diffie-Hellman key exchange protocol, and ElGamal encryption scheme based on

the generalized discrete logarithm problem. We discuss the security of such protocols

and cryptographic primitives built on the basis of the non-traditional generalized

discrete logarithm and conjugacy problems.

We investigate the security of the Tillich-Zémor hash function, as a special instance

of a cryptographic primitive defined over a finite, non-abelian group.

At CRYPTO ’94, Tillich and Zémor proposed a cryptographic hash function [55]

based on certain matrix groups. The Tillich-Zémor hash function has attracted con-

siderable cryptanalytic interest, but stayed unbroken for more than fifteen years.

The Tillich-Zémor hash function was considered to have good cryptographic prop-

erties. It allows parallelization in computation, has potentially efficient implemen-

tations, and stayed unbroken for a long time. In [30], the security of the Tillich-

Zémor hash function was compared to SHA-1 and SHA-256 for certain parameters.

Our breaking of the Tillich-Zémor hash function [12], was received as a considerable

cryptographic breakthrough.

Based on extensive experimental results for small parameters, we restricted our

search to collisions of palindromes of length 2n + 2, where n represents the degree

2

of the input irreducible polynomial. We discovered that collisions are preserved if

instead of the original Tillich-Zémor generators we use a different pair of symmetric

generators obtained from the original generators by conjugation. We developed a

series of results about the form of the hash value of the palindromes and connected

our findings to a deep number theoretic result by Mesirov and Sweet about maximal

length chains in the Euclidean algorithm over F2[x], to produce our collisions. For

the computation we used the standard algebra system Magma on a standard PC.

We have constructed an algorithm for finding collisions for the Tillich-Zémor hash

function for any chosen parameters. We have constructed actual collisions for the

challenge parameters claimed to be secure in the scientific publications.

Our cryptanalytic attack shows that the Tillich-Zémor hash function should not

be used in cryptographic applications where collision-resistance is essential.

3

Chapter 2

Preliminaries

2.1 Group theory

We assume familiarity with the standard notions of basic group theory and notation

as one can find in [11, 13, 15, 42]. In particular, if G is a group we write H ≤ G to

denote that H is a subgroup of G, and H �D that H is a normal subgroup of G. If

x ∈ G, we denote by |x| the order of x. For a set A, |A| denotes the cardinality of A.

2.1.1 Group Actions

Let Ω be a set and G a group. A right group action is a map Ω×G→ Ω, (α, g)→ αg,

which satisfies the following properties:

1. α1 = α, for all α ∈ Ω, where 1 ∈ G is the identity of G.

2. (αg)h = αgh, for all g, h ∈ G and all α ∈ Ω.

Similarly, a left group action is defined to be a map G × Ω → Ω, (g, α) → gα,

satisfying:

1. 1α = α, for all α ∈ Ω, where 1 ∈ G is the identity of G.

4

2. g(h(α)) = ghα for all g, h ∈ G and all α ∈ Ω.

We will use right action notation to discuss basic properties of group actions.

Clearly, analogous statements will hold for left actions. We denote a generic group

action by G|Ω and say that “group G acts on Ω”.

Let G|Ω be a group action and suppose that A ⊂ Ω and H ⊂ G. We write

AH := {ah | a ∈ A and h ∈ H}. Moreover, when a ∈ Ω, h ∈ G, we write aH for

{a}H , and Ah for A{h}.

A group action G|Ω induces a relation ∼ on Ω as follows: If α, β ∈ Ω, α ∼ β if

and only if there exists an element g ∈ G such that β = αg. The relation ∼ is an

equivalence relation and decomposes Ω into equivalence classes, called the orbits of Ω

under G. The orbit of a particular element α ∈ Ω is easily seen to be the set αG.

For a given group action G|Ω and α ∈ Ω, the set Gα = {g ∈ G | αg = α} is called

the stabilizer of α in G. It is easily seen that Gα ≤ G, for each α ∈ Ω . The kernel K

of G|Ω is defined by K = {g ∈ G | αg = α, for all α ∈ Ω}. Thus, K =
⋂
α∈Ω Gα. We

say G|Ω is faithful if and only if |Ker(G|Ω)| = 1.

A group action G|Ω gives rise to a homomorphism π : G→ SΩ defined by:

π(g) =

 · · · α · · ·

· · · αg · · ·

 , α ∈ Ω

where SΩ is the symmetric group on Ω. The kernel of π is the kernel of the action

G|Ω. In fact, the action and the homomorphism π are two different ways of viewing

the same mathematical object. We say that the homomorphism π is a permutation

representation of G. If π is faithful, we say that G is a permutation group on Ω.

For any group G, a particular group action of G on itself is centrally important.

This is the action defined by (x, y)→ xy := y−1xy, and is well known as conjugation.

When G acts on G by conjugation, the orbits are the conjugacy classes of G, and

5

a stabilizer Gx is the centralizer in G of x, that is, Gx = {y ∈ G | xy = x} =

{y ∈ G | xy = yx}.

For a group action G|Ω and element g ∈ G, the set Fix(g) = {α ∈ Ω | αg = α}

is called the Fix of g in Ω. The function θ : G → Z defined by θ(g) = |Fix(g)| is

called the character of the group action. A point α ∈ Ω such that αg = α, for all

g ∈ G is called a fixed point under G.

We say that two group actionsG|X andQ|Y are equivalent if there exist bijections

φ : G→ Q and λ : X → Y , such that

(i) φ is an isomorphism of G onto Q

(ii) For all g ∈ G and x ∈ X we have that λ(xg) = λ(x)φ(g)

We present a number of well known results without proof:

Lemma 2.1. Suppose that G|Ω is a group action, A ⊂ Ω, and that x ∈ G. Then

|Ax| = |A|.

Lemma 2.2. Let G|Ω be a group action, and suppose that α ∈ Ω, and x ∈ G. Then

Gαx = (Gα)x.

Lemma 2.3. Let G|Ω be a group action, and suppose that x, y ∈ G. Then (i)

Fix(xy) = (Fix(x))y and consequently (ii) θ(xy) = θ(x).

Theorem 2.1. The orbit-stabilizer theorem. If G|Ω is a group action and α ∈ Ω,

then |G| = |αG||Gα|.

Theorem 2.2. The Cauchy-Frobenius lemma. (Also known as Burnside’s lemma.)

Let G|Ω be a group action. Then, the number of orbits of G on Ω is 1
|G|
∑

g∈G |Fix(g)|.

A group action G|Ω is said to be transitive if for any two elements α, β ∈ Ω,

there exists an element g ∈ G such that αg = β, i.e., there is a single orbit in Ω under

the action of G, Ω itself. If the group action is not transitive it is called intransitive.

6

For a natural number k, a group action G|Ω is said to be k-transitive if for any

two ordered k-tuples (α1, . . . , αk), (β1, . . . , βk) of distinct elements from Ω, there is

an element g ∈ G such that (α1, . . . , αk) = (β1, . . . , βk)
g = (βg1 , . . . , β

g
k).

G|Ω is k-homogeneous or k∗-transitive, if G is trsnsitive on the k-subsets of Ω.

Lemma 2.4. A group action G|Ω is k-transitive if and only if the stabilizer Gα is

(k − 1)-transitive on Ω− {α}.

Recall that when G acts on G by conjugation, the stabilizer Gg of element g ∈ G

is the centralizer of g in G, i.e. set of all elements x ∈ G such that gx = xg. In this

action, the orbit of g ∈ G is the conjugacy class gG. Based on the orbit-stabilizer

Theorem 2.1, we have that |gG| = [G : CG(g)]. Interestingly, this action G|G is in

general not faithful as the kernel is clearly the center of G, Z(G).

Let group G act on the set of its subgroups Ω = {H | H ≤ G} by Hg = g−1Hg,

for g ∈ G. The orbits are called the conjugacy classes of subgroups. The orbit of

subgroup H is the set HG = {Hx | x ∈ G}. Two subgroups H and K are in the

same conjugacy class if there exists a group element g ∈ G such that K = g−1Hg,

we then say that H and K are conjugate. In this action, the stabilizer GH is the

subgroup {g ∈ G | Hg = gH} of G, i.e., the normalizer of H in G, usually denoted

NG(H). Thus, according to the orbit-stabilizer Theorem 2.1, the number of subgroups

conjugate to subgroup H, is [G : NG(H)]. The centralizer of subgroup H in G is

the set CG(H) = {g ∈ G | hg = gh for all h ∈ H} =
⋂
h∈H CG(h). Note that

CG(H) �NG(H).

7

2.1.2 Basis theorem for transitive permutation representa-

tions

Let H be a subgroup of a group G. By a right (left) transversal of H in G we mean

a complete set T = {xi} of distinct right (left) coset representatives of H. The

following theorem characterizes the transitive actions of a group G, and discusses the

corresponding character of such a group action.

Let G be a group, H a subgroup of G and let Ω be the collection of all distinct

right cosets of H in G. Consider the group action G|Ω defined by (Hx, g) → Hxg.

For a discussion of induced representations, induced characters, and proofs or the

various parts of the theorem that follows see [9], [13], [19] .

Theorem 2.3. (a) The action G|Ω defined above is transitive, with kernel the core

N of H, that is, N =
⋂
x∈GH

x,

(b) The character θ of the above action is the induced character θ = [1]H ↑G of

the principal character of H to G,

(c) If g = |G|, h = |H|, x ∈ G, Kx = xG is the conjugacy class of x in G,

gx = |Kx| and hx = |Kx ∩H|, Then

θ(x) =
g · hx
h · gx

(d) Any transitive action G|X is equivalent to a group action G|Ω as above, where

H can be chosen to be the stabilizer Gx for any given x ∈ X.

(e) Two transitive actions G|X and G|Y of a group G are equivalent if and only if,

for x ∈ X, and y ∈ Y the stabilizers Gx and Gy are conjugate in G.

8

2.1.3 Special linear group and projective special linear group

Given a field Fq, of q elements, and a fixed natural number n, the group of all n× n

nonsingular matrices with respect to the operation of matrix multiplication is known

as the general linear group of degree n over Fq and is denoted by GL(n, q). The order

of the group is |GL(n, q)| =
∏n−1

i=0 (qn − qi). The set of all matrices in GL(n, q)

of determinant 1 forms a subgroup of GL(n, q), the special linear group, denoted by

SL(n, q). SL(n, q) is the kernel of the homomorphism det : GL(n, q) → F∗q, and

therefore |SL(n, q)| = |GL(n, q)|/(q − 1). The center Z(GL(n, q)), of GL(n, q),

consists of all scalar matrices {λI | λ ∈ F∗q}, thus the center of SL(n, q) consists of

all matrices {λI | λn = 1}. The projective special linear group of degree n over Fq, is

the quotient group PSL(n, q) = SL(n, q)/Z(SL(n, q)). Here, we deal with the case

n = 2, where q is odd, hence |SL(2, q)| = (q2 − 1)q and |PSL(2, q)| = (q2 − 1)q/2.

For the group PSL(n, q) it is also common to use the following notation: PSLn(q),

PSLn(Fq) or PSL(n,Fq), and similarly for the group SL(n, q) to use the notation:

SLn(q), SLn(Fq) or SL(n,Fq).

In what follows we state without proof some of the properties of the groups

PSL(2, q) as they are the carrier groups in our study of the non-abelian discrete

logarithm problem. The properties discussed below are well known and can be found

in [6].

For q ≥ 4 the groups PSL(2, q) are simple. For q an odd prime power let

F = GF (q) be Galois field of q elements and V the 2-dimensional vector space over F.

Two non-zero vectors u,v ∈ V are defined to be projectively equivalent if u = sv

for some s ∈ F∗. The q + 1 equivalence classes constitute the projective line L, and

G = PSL(2, q) acts doubly transitively on L by left matrix multiplication of the

elements of V by the elements of G, modulo non-zero scalar multiples from F, that is

9

((a bc d) , (xy))→ ((a bc d) , (xy))→ (a bc d) (xy) =
(
x′

y′
)
→ (x

′

y′)

As can be seen from the above line, a convenient way of viewing projectively the

non-zero elements of V is to think of (xy) as the quotient x
y
∈ F ∪ {∞}, where

we assign ∞ to quotients x
0

when x 6= 0, and the element x
y
∈ F otherwise.

It is also the case that there are exactly q+1 Sylow-p subgroups of G on which G

acts doubly-transitively by conjugation. The latter representation of G is equivalent

to the doubly transitive representation of G mentioned earlier. A Sylow-p subgroup

Q of G is isomorphic to the additive group of F, hence it is elementary abelian of

order q = pm. The normalizer in G of Q is of order q(q− 1)/2 and is a split extension

of Q by a cyclic group of order (q − 1)/2.

When q ≡ 3 (mod 4), then in fact G acts as a 3-homogeneous group on the

projective line L. G is 2-transitive on L but fails to be 3-homogeneous when q ≡ 1

(mod 4).

We gain further understanding of the structure of the groups PSL(2, q) when we

examine the following

Proposition 2.1. For q = pm, p an odd prime, consider the group G = PSL(2, q) in

its doubly transitive representation on the q + 1 points of L, and suppose that x ∈ G.

Then x is semiregular on the points of L not fixed by x, i.e. excluding the fixed points,

all cycles of x have the same length. Moreover, exactly one of the following holds:

(a) x fixes 0 points, and belongs to a cyclic subgroup of order (q + 1)/2, or

(b) x fixes 1 point and is or order p, or

(c) x fixes 2 points and belongs to a cyclic subgroup of order (q − 1)/2.

10

We will need some additional well known facts about the groups PSL(2, q),

q = pm, p an odd prime, which we state below without proof, as a proposition. In

what follows φ stands for the Euler φ function.

Proposition 2.2. Suppose that G = PSL(2, q), q = pm, p an odd prime. Then,

(a) The Sylow-p subgroup of G is elementary abelian of order q,

(b) If x ∈ G is of order d, then d divides (q − 1)/2, or d = p, or d divides

(q + 1)/2,

(c) There is a single conjugacy class of cyclic subgroups of order (q − 1)/2. Simi-

larly, there is a single conjugacy class of cyclic subgroups of order (q + 1)/2.

(d) If x ∈ G is of order d 6= 2 dividing (q ± 1)/2 then x belongs to one and only

one cyclic subgroup of G of order (q ± 1)/2.

(e) If d 6= 2 divides (q ± 1)/2 there are φ(d)
2

conjugacy classes of element of order

d in G. If x ∈ G is an element of order d, then x is conjugate to x−1.

(f) If x ∈ G is of order d|(q± 1)/2, d 6= 2, then the centralizer CG(x) is 〈x〉, while

the normalizer NG(〈x〉) is dihedral of order q ± 1.

(g) The centralizer of an element of order 2 has order q − 1 if q ≡ 1 (mod 4)

and q + 1 if q ≡ 3 (mod 4).

The following theorem collects in one place the information about the subgroup

structure of PSL(2, q) that can be found in various places in [6]. In what follows

q = pm, p an odd prime, G = PSL(2, q), M(q) = q(q2 − 1)/2, and d∓ is any divisor

of (q ∓ 1)/2. For convenience Gd denotes a subgroup of order d.

11

Theorem 2.4. Using the notation mentioned above, G has

(1) q + 1 conjugate elementary abelian groups of order q,

(2) q(q±1)
2

conjugate cyclic groups of order q∓1
2

,

(3) q(q±1)
2

conjugate cyclic groups Gd∓ of order d∓ for every divisor d∓ of q∓1
2

,

(4) M(q)
2·d∓ conjugate dihedral groups of order 2d∓ for d∓ odd,

(5) Two systems each of M(q)
4·d∓ conjugate dihedrals G2d∓ for d∓ even, d∓ > 2,

(6) For q ≡ ±3 (mod 8), one set of M(q)
12

conjugate Klein 4-groups,

(7) For q ≡ ±1 (mod 8), two sets each of M(q)
24

conjugate Klein 4-groups,

(8) (pm−1)(pm−p)···(pm−pt−1)
(pt−1)(pt−p)···(pt−pt−1)

sets each of p2m−1

(2,1)(pk−1)
conjugate abelian groups of order

pt, where (2, 1) is read 2 or 1 according as m
k

is an even or odd integer. Here,

k is a divisor of t depending on the particular Gpt,

(9) Certain sets of (p2m−1)pm−t

(2,1)(pk−1)
conjugate Gptd−, where k and d− depend on t,

(10) (2,1) sets each of M(q)
(2,1)M(pk)

conjugate GM(pk)
∼= PSL(2, pk), where k|m,

(11) Two systems each of M(q)
2M(pk)

conjugate groups G2M(pk)
∼= PGL(2, pk) when m

k

is an even integer,

(12) For q ≡ ±1 (mod 8) two sets of M(q)
24

symmetric groups S4,

(13) For q ≡ ±1 (mod 8) two sets of M(q)
24

alternating groups A4,

(14) For q ≡ ±3 (mod 8), or q = 2m, m even, M(q)
12

conjugate A4’s,

(15) For q ≡ ±1 (mod 10), two sets of M(q)
60

conjugate alternating groups A5.

An immediate Corollary of the information in Proposition 2.2 is the following

12

Corollary 2.1. Let G = PSL(2, p), p prime number. Suppose that k 6= 2 is a divisor

of (p± 1)/2, then any conjugacy class of elements of order k has size p(p∓ 1).

We are now able to prove the following

Theorem 2.5. Let G = PSL(2, p), where p is a prime, and let H and K be any two

cyclic subgroups of order (p+ 1)/2 in G. Then, H and K are conjugate in G.

Proof. Our goal is to show that the number of cyclic subgroups of order (p + 1)/2

in G is equal to the number of subgroups of G conjugate to H. As an immediate

consequence we have that every two cyclic subgroups of order (p + 1)/2 in G are

conjugate.

First, we count how many cyclic subgroups of order (p + 1)/2 there are in G.

Let ν be the number of elements of order (p + 1)/2 in G, µ the number of elements

of order (p+ 1)/2 in any one conjugacy class of elements of order (p+1)/2, and ρ the

number of conjugacy classes in G of elements of order (p+1)/2. Then, from Corollary

2.1 we have that

ν = µ · ρ = p(p− 1) · 1

2
φ(
p+ 1

2
).

But every φ(p+1
2

) elements of order (p + 1)/2 belong to the same cyclic subgroup

of order (p+ 1)/2 and determine the subgroup. Thus, there are in all

ν/φ(
p+ 1

2
) =

p(p− 1)

2

cyclic subgroups of order (p+ 1)/2.

On the other hand, the class of subgroups conjugate to H in G has size

[G : NG(H)] =
p(p2 − 1)/2

(p+ 1)
=
p(p− 1)

2

Thus, there is a single conjugacy class of cyclic subgroups of order (p+1)/2 in G.

13

A very similar argument establishes that any two cyclic subgroups of order

(p−1)/2 are conjugate in G = PSL(2, p). However, we give here an alternative proof

of this fact.

Theorem 2.6. Let G = PSL(2, p), where p > 3 is an odd prime, and let A and B

be elements of G, both of order (p− 1)/2. Then, 〈A〉 and 〈B〉 are conjugate in G.

Proof. Let X be the collection of all Sylow-p subgroups of G. Then |X| = p+1, and G

acts doubly transitively on X by conjugation. Thus, if K = {(a, b) ∈ X×X | a 6= b},

then G|K is transitive, and K is a single orbit under this action. There are (p + 1)

ways to choose a and p ways to choose b such that a 6= b and a, b ∈ X. Therefore,

the cardinality of the set K is (p+ 1)p. It follows that for any x, y ∈ K, x 6= y,

|G(x,y)| = |Gx,y| = |G| / |K| =
p(p2 − 1)/2

p(p+ 1)
= (p− 1)/2.

Thus, the stabilizer of two points Gx,y is of order (p − 1)/2, and by Proposition 2.1

cyclic. The stabilizers of two points are of course conjugate as G is doubly transitive

on X.

Interestingly, we can compute the number of orbits of G acting by conjugation on

pairs of cyclic subgroups in the slightly more general case where we are working with

G = PSL(2, q), q an odd prime power. More on these group actions can be found in

the Appendix A.

2.2 Cryptography

The security of many present-day cryptosystems relies on the assumption of in-

tractability of certain computational problems. Among these are the discrete log-

arithm problem, integer factorization problem, Diffie-Hellman problem, etc. We focus

14

our attention on the discrete logarithm problem.

2.2.1 Traditional discrete logarithm problem

Let G be a finite cyclic group generated by element α, and let β be an element of G.

The traditional discrete logarithm problem (DLP) is to find a non-negative integer x

such that αx = β.

When cryptographic primitives are built based on the discrete logarithm problem,

it is required that the DLP be computationally intractable. Groups widely used in

cryptographic applications in which the discrete logarithm problem is considered to

be intractable are: the multiplicative group F∗q of the finite field Fq, of order q, and a

large cyclic subgroup of an appropriate elliptic curve E over a finite field Fq.

The intractability of the discrete logarithm problem depends on the group represent-

ation. For example, in the additive group Zn of integers modulo n, the discrete loga-

rithm problem is easy to solve. Namely, for a given element β in Zn and generator α of

Zn, it is easy to find the non-negative integer x such that xα = β. Since gcd(n, α) = 1,

the multiplicative inverse of α can be computed by means of the Extended Euclidean

algorithm and hence the discrete logarithm revealed.

The difficulty of the traditional discrete logarithm problem is independent of the

choice of the generator. Assume that α and γ are two generators of the cyclic group G

of order n, and that there exist an algorithm which efficiently computes the discrete

logarithm with respect to the generator α in G. Assume that αx = β and that

αy = γ. Then we can compute the discrete logarithm z of element β with respect

to the generator γ. From αx = β = γz = (αy)z it follows x = yz mod n and hence

z = xy−1 mod n.

Algorithms which attack the discrete logarithm problem can be divided into three

classes: (i) Algorithms which work in arbitrary groups: Exhaustive search, Baby-step

15

giant-step algorithm, Pollard’s rho algorithm; (ii) Algorithms which work in arbitrary

groups but are very efficient in groups whose order has only small prime factors:

Pohlig-Hellman algorithm; (iii) Algorithms which work only in specific groups: Index-

calculus algorithms.

2.2.2 Algorithms for computing discrete logarithms

To find the discrete logarithm of β with respect to base α, in a finite cyclic group

of order n, generated by α, one could preform an exhaustive search and compute αx

for x ∈ {0, 1, . . . , n− 1} until an integer x is found such that αx = β. The expected

running time for the exhaustive search is O(n).

Baby-step giant-step algorithm

The Baby-step giant-step algorithm is a deterministic algorithm for solving the dis-

crete logarithm problem in finite cyclic groups. The estimated running time of the

algorithm is O(
√
n log

√
n) group operations, where n is the order of the generator.

Given generator α for the cyclic group G and an element β ∈ G, we want to find the

least positive integer x such that αx = β. The Baby-step giant-step algorithm exploits

the following property: for every non-negative integer x ∈ {0, 1, . . . , n−1}, there exist

integers i, j ∈ {0, 1, . . . ,m− 1} such that x = im+ j , where m = d
√
n e, n being the

order of the generator. Then, αx = (αmi)αj and consequently βα−j = αmi. To execute

the algorithm we proceed as follows: first, the elements βα−j, j = 0, 1, . . . , (m − 1)

are computed. For each j it is checked whether βα−j = 1. If this is the case, the

solution of the discrete logarithm problem is j, otherwise (j, βα−j) is stored in a table,

and we proceed with the next j. The table is then sorted according to the second

component. Next, the elements αim, i = 0, . . . , (m− 1) are computed. For each i in

this range a binary search is conducted to determine whether αim is in the table. If

16

the result is found in the table, say, αsm = βα−t, then, the discrete logarithm can be

computed as x = sm + t, otherwise we continue with the next i. Clearly, the binary

search will succeed for a unique i ∈ {0, 1, . . . ,m− 1}. It takes
√
nlog
√
n steps to sort

the list {βα−j}, and for each i it takes log
√
n steps to search for αim in the above

list. Therefore, there are
√
n log

√
n+
√
n log

√
n steps in total which gives the worst

case time complexity of the algorithm O(
√
n log

√
n).

Pollard rho discrete logarithm algorithm

The Pollard rho algorithm is a randomized algorithm for computing discrete loga-

rithms in finite cyclic groups. It requires negligible storage and has the same expected

running time as the Baby-step giant-step algorithm. Since the Pollard rho algorithm

does not require large storage it is considered more practical than the Baby-step

giant-step algorithm.

Suppose that group G is cyclic of order n, generated by element α. For a given

group element β, we want to compute the discrete logarithm logα β.

The algorithm starts with partitioning the group G, based on some property that

can be easily tested, into three sets: S1, S2, S3, all of approximately equal size,

such that 1 /∈ S2. Then, the sequence x0, x1, x2, . . . is formed by iteratively applying

function f :

xi+1 = f(xi) =


β · xi, if xi ∈ S1,

x2
i , if xi ∈ S2,

α · xi, if xi ∈ S3

Sequences of numbers a1, a2, . . . and b1, b2, . . . such that xi = αaiβbi are generated,

17

so that: a0 = 0, b0 = 0, and

ai+1 =


ai, if xi ∈ S1,

2ai, if xi ∈ S2,

ai + 1, if xi ∈ S3

bi+1 =


bi + 1, if xi ∈ S1,

2bi, if xi ∈ S2,

bi, if xi ∈ S3

We compute (xi, ai, bi) and (x2i, a2i, b2i) until for some i ≥ 1, we reach xi = x2i. Then,

αaiβbi = αa2iβb2i . It follows that αa2i−ai = βbi−b2i . By taking logarithms with respect

to base α of both sides of the equality, we obtain: (bi − b2i) logα β ≡ a2i − ai mod n.

If gcd(bi − b2i, n) = 1, then logα β = (a2i − ai)(bi − b2i)
−1 mod n.

Index calculus algorithm

The previously mentioned algorithms for computing discrete logarithms: exhaustive

search, Baby-step giant-step and the Pollard rho algorithm, work in every cyclic group,

regardless of its mode of representation. The Index calculus algorithm we are about to

discuss, works only in cyclic groups exhibited in an appropriate representation mode.

For example, the algorithm works in Z∗p, the multiplicative group of the integers

modulo a prime p, and in F∗pm , the multiplicative group of the finite field Fpm , where

p is a prime. We assume that the group G is cyclic, generated by element α of order

n, that the index calculus algorithm can be efficiently implemented in G and that

an element β ∈ G is given. The goal is to find an integer x such that β = αx, i.e.,

to find x = logα β. In the precomputation phase of the algorithm, a factor base

{p1, . . . , pr} ⊂ G is selected, such that a significant number of elements from the

18

group G can be expressed as products of the elements of the factor base.

Then, relations of the form

αsi =
r∏
j=1

p
kij
j

are generated for a collection of random integers s ∈ {0, . . . , n−1}. If for a particular

s, αs can not be expressed in terms of the factor base, then another random integer

s is selected. The process stops when there are enough relations to solve for logα pj,

j ∈ {1, . . . , r}, from the system of linear equations:

si =
r∑
j=1

kij logα pj mod n.

In the computational phase of the algorithm, a random integer k ∈ {0, . . . , n−1}

is repeatedly selected until βαk is expressible as a product of elements of the factor

pase. For such a choice of k we then have

βαk =
r∏
i=1

peii .

By taking logarithms of both sides of the previous equality, we obtain

logα β + k =
r∑
i=1

ei logα pi.

Then, the discrete logarithm x is:

x = (
r∑
i=1

ei logα pi − k) mod n.

19

2.2.3 Diffie-Hellman problems and key exchange protocol

The Diffie-Hellman key exchange protocol enables two parties to establish a secret

key over an insecure channel, without prior exchange of any secret information be-

tween them. The security of this cryptographic protocol relies on the assumption

of hardness of the following problems: (i) the discrete logarithm problem, (ii) the

computational Diffie-Hellman problem and (iii) the decision Diffie-Hellman problem.

We have already discussed the discrete logarithm problem, we now present the other

two problems: computational Diffie-Hellman problem and the decision Diffie-Hellman

problem.

Computational Diffie-Hellman problem. Given a finite cyclic group gener-

ated by element α, and given αx and αy find αxy.

Decision Diffie-Hellman problem. Given a finite cyclic group generated by

element α of order n, and given αx, αy and αz, determine whether z ≡ xy mod (n).

If we can solve the discrete logarithm problem, then we can solve both the com-

putational Diffie-Hellman problem and the decision Diffie-Hellman problem. If we

can solve the computational Diffie-Hellman problem, then we can solve the decision

Diffie-Hellman problem.

Assumptions that there do not exist polynomial time algorithms in the size of the

order of the group which solve the computational Diffie-Hellman problem, and the

decision Diffie-Hellman problem are referred to as the computational Diffie-Hellman

assumption and the decision Diffie-Hellman assumption, respectively.

Diffie-Hellman key exchange protocol. This protocol enables two parties,

Alice and Bob, to exchange a secret key without prior knowledge of each other. The

protocol was originally invented by Whitfield Diffie and Martin Hellman and was

published in [7]. The original implementation of the protocol used the multiplicative

20

group of integers modulo a prime p, however, we give here the description of the

general Diffie-Hellman protocol where the underlying group is any finite cyclic group

generated by element α.

Before starting the protocol, Alice and Bob agree on the finite cyclic group G and

a generator α. These information items are publically known. To start the protocol,

Alice selects a random positive integer a and sends αa to Bob. Similarly, Bob selects

a random positive integer b and sends αb to Alice. Both, Alice and Bob, are able to

compute the common secret key κ = αab. Alice takes αb she has received from Bob

and computes (αb)a. Bob takes αa he has received from Alice and computes (αa)b.

Since, (αa)b = (αb)a, Alice and Bob hold the common secret key κ = αab.

The original protocol is vulnerable to the man-in-the-middle attack. Namely, if a

third party, named Oscar, intercepts the communication channel and obtain αa, he

may impersonate Bob by selecting a random positive integer c and by sending αc to

Alice. Alice, who thinks that she is communicating with Bob, establishes a secret key

with Oscar, by computing (αc)a. Since Oscar has obtained αa from Alice, he computes

(αa)c. Oscar establishes a secret key with Alice and similarly, he establishes a secret

key with Bob by impersonating the Alice. The original Diffie-Hellman protocol did

not provide method or the authentication of the parties involved in the protocol. To

prevent the man-in-the-middle attack, a method for authentication is needed such

as digital signatures.

The secure protocol assumes that a method for authentication is used, that the

discrete logarithm problem is hard in the underlying group, and that the decision

Diffie-Hellman and the computational Diffie-Hellman problems are infeasible.

21

2.2.4 ElGamal cryptosystem

The ElGamal cryptosystem is a public key cryptosystem whose security is based on

the computational infeasibility of the discrete logarithm problem and the compu-

tational Diffie-Hellman problem in the underlying group. Groups most commonly

used for the ElGamal cryptosystem are: subgroups of the multiplicative group Z∗p of

integers modulo a prime p, subgroups of the multiplicative group F∗pn of the finite

field Fpn , where p is a prime, including the special case p = 2, the subgroup of points

on an elliptic curve over a finite field, etc.

Suppose that Alice and Bob want to communicate via an insecure channel. We

will assume that the cyclic group G of order n and generator α have been selected

for this protocol by all entities and that it is commonly known how to multiply

elements in the chosen group. It could also be the case that each entity selects the

cyclic group G and the generator in the key generation phase. Prior to establishing

communication, each party generates a (secret key, public key) pair by selecting a

secret integer exponent x ∈ {0, . . . , n− 1} and computing αx. The secret key, public

key pair is (x, (α, αx)).

Suppose that Bob wants to send a message to Alice. To encrypt the message, Bob

obtains Alice’s public key pair (α, αa), represents the message as a group element m,

selects a random integer b ∈ {0, . . . , n − 1}, computes ω = αb, ν = m · (αa)b and

sends (ω, ν) to Alice.

To decrypt the message and recover m from the cipher text she received from Bob,

Alice computes ωa and ω−a and recovers the message as m = ν ·ω−a = m·(αa)b·(αb)−a.

22

2.2.5 The Conjugacy problem

The Conjugacy problem is defined as follows: Given a group G and elements x, y ∈ G

decide whether there exists an element g ∈ G such that xg = y, i.e., g−1xg = y.

The Conjugacy search problem is defined as follows: Given a group G and elements

x, y ∈ G, which are known to be conjugate in G, find any element g ∈ G such that

xg = y, i.e., g−1xg = y.

The conjugacy search problem is considered to be computationally difficult in some

groups, and as such, it has been used in cryptographic applications.

2.2.6 Cryptographic hash functions

Cryptographic hash functions play an important role in data integrity and message

authentication. A hash function takes a bit string of arbitrary input length and

outputs a short binary string of a particular fixed length, say 160 bits. The hash

function should be easily computable. Denote by h the hash function. For message

bit string x, the value y = h(x) is called the hash value, message digest, digital

fingerprint or hash. If the hash value y is kept in a secure place, and the message x

is transmitted through an insecure channel, by using the hash value h(x) it could be

checked whether the original message x has been altered. The receiver of message x′

computes y′ = h(x′) and checks whether y = y′. If y = y′, the receiver accepts the

message x′ as the original one, i.e., x = x′. If the original message x has been altered,

then with extremely high probability, y 6= y′.

To be considered secure, the hash function h has to satisfy the following three

properties:

Preimage resistance. For a given hash value y it is computationally infeasible to find

input x which hashes to y, i.e., such that y = h(x).

23

Second Preimage resistance. For a given x, it is computationally infeasible to find x′

such that x 6= x′ and that h(x) = h(x′).

Collision resistance. It is computationally infeasible to find any two different inputs

x, x′ which hash to the same output, i.e., such that h(x) = h(x′).

2.2.7 Generalized discrete logarithm problem in finite groups

The authors of [20] generalize the discrete logarithm problem from finite cyclic groups

to arbitrary finite groups. We restate the definition.

Let G be a finite group generated by α1, . . . , αt, i.e., G = 〈α1, . . . , αt〉. Denote

by α = (α1, . . . , αt), the ordered tuple of generators of the group G. As defined in

[20], for a given β ∈ G, the generalized discrete logarithm problem (GDLP) of β

with respect to α is to determine a positive integer k and a (kt)-tuple of non-negative

integers x = (x11, . . . , x1t, . . . , xk1, . . . , xkt) such that

β =
k∏
i=1

(αxi11 . . . αxitt) .

We can write this formally as β = αx. The (kt)-tuples (x11, . . . , x1t, . . . , xk1, . . . , xkt)

are called the generalized discrete logarithms of β with the respect to α = (α1, . . . , αt).

Denote by

Sk =
{ k∏
i=1

(αxi11 . . . αxitt) | xij ∈ Znj

}
where nj denotes the order of element αj. Then, the smallest positive integer k0 such

that for all k ≥ k0 G ⊆ Sk is called the depth of group G with respect to (α1, . . . , αt).

There could be more than one generalized discrete logarithm of β with respect

to α. Actually, there will be infinitely many generalized discrete logarithms: if x

24

is a generalized discrete logarithm of β with respect to α and if αx
′

= 1, then, the

catenations x||x′ and x
′||x are also generalized discrete logarithms of β with respect

to α.

25

Chapter 3

Weak generalized discrete

logarithms

In [20], the authors generalize the discrete logarithm from cyclic to any finite group.

We assume that the generalized DLP is defined as in [20] and examine its tractability

in the projective special linear group PSL(2, p), where p is an odd prime. We show

that in PSL(2, p) = 〈α, β〉 the generalized DLP with respect to (α, β) is easy to solve

for a specific group representation and specific choice of generators α and β.

As a consequence we have that such group representation of PSL(2, p) together

with particular generators should not be used in the design of cryptographic primitives

whose security relies on the intractability of the GDLP.

3.1 Weak GDLP in PSL(2, p) with respect to two

specific generators

Consider the group G = PSL(2, p) where p is an odd prime. Let α and β be any two

non-commuting elements of order p in G, and let H and K be the subgroups of group

G generated by α and β, respectively. In [20] the authors show that G is generated

26

by α and β and that G = HKHK. Thus, the depth of G with respect to generators

α and β is two.

For the purpose of further analysis we assume that the group G is represented by

matrices of SL(2, p), up to a factor of ±I, where I is the 2× 2 identity matrix.

The matrices

A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
are both of order p, non-commuting and therefore generate G, i.e., G = 〈A,B〉. We

show that the generalized discrete logarithm problem in G with respect to (A,B) can

be solved efficiently.

Suppose that M =

(
a b

c d

)
∈ G, with a, b, c, d ∈ Fp. Since the depth of

G with respect to two generators of order p is two, M can be represented as M =

AiBjAkB` for some non-negative integers i, j, k, `. Solving the generalized discrete

logarithm problem means to find a tuple of non-negative integers (i, j, k, `) such that

M = AiBjAkB`.

Note that

Ai =

(
1 i

0 1

)
and Bj =

(
1 0

j 1

)
.

Then,

AiBjAkB` =

(
1 i

0 1

)(
1 0

j 1

)(
1 k

0 1

)(
1 0

` 1

)
.

Hence,

 a b

c d

 =

 1 + ij + ` ((1 + ij) k + i) (1 + ij) k + i

j + ` (jk + 1) jk + 1

 .

By equating corresponding entries of the matrices, we obtain the following system

27

of four equations with four unknowns i, j, k, ` in Fp = Zp:

1 + ij + ` ((1 + ij) k + i) = a

(1 + ij) k + i = b

j + ` (jk + 1) = c

jk + 1 = d

Indeed, the system of equations can be solved for i, j, k, ` using Gröbner basis com-

putation. Let I be the ideal

I = 〈 1 + `k + ij + ijk`+ i`− a,

k + ijk + i− b,

j + jk`+ `− c,

jk + 1− d 〉 .

A Gröbner basis GB for the ideal I is computed over the set of rational numbers:

GB = [`− jic+ ja− c,

k + id− b,

jibc+ ji− jab− a+ bc+ 1,

jid− jb+ d− 1,

ad− bc− 1] .

Therefore, solving the generalized discrete logarithm problem in the group PSL(2, p)

with respect to (A,B) is equivalent to solving the following system of equations in

28

i, j, k, ` ∈ Zp.

`− jic+ ja− c = 0

k + id− b = 0

jid− jb+ d− 1 = 0

Generally, the system of equations has more than one solution. The following propo-

sition provides a method for obtaining a solution when M ∈ G.

For the next proposition we continue to have A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
and

M =

(
a b

c d

)
, elements of PSL(2, p).

Proposition 3.1. Let A,B and M be as above. Then, there exists a non-negative

integer n < p such that nd− b 6= 0 over Zp, and such that the 4-tuple (i, j, k, `) with

i = n, j = (1− d)(nd− b)−1, k = b− nd, ` = (1− d)(nc− a)(nd− b)−1 + c provides

a solution to M = AiBjAkB`.

Proof. The proof consists of directly verifying that the given values for i, j, k, ` satisfy

the above system of equations. The existence of n is ensured since M ∈ PSL(2, p)

and hence b and d can not simultaneously be equal to zero.

The example that follows illustrates the described method.

Example 3.1. Consider the group G = PSL(2, 7) represented by means of matrices

of SL(2, 7) modulo {±I}. Suppose M, A, B ∈ G are as follows:

M =

(
5 2

6 4

)
, A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
.

Computing the generalized discrete logarithm of matrix M with respect to the

generators A and B corresponds to determining the tuple of non-negative integers

(i, j, k, `) such that AiBjAkB` = M .

29

The system we encountered earlier becomes:

1 + ij + ` ((1 + ij) k + i) = 5

(1 + ij) k + i = 2

j + ` (jk + 1) = 6

jk + 1 = 4

Proposition 3.1 yields (i, j, k, `) = (0, 5, 2, 2) for the choice i = n = 0. Simple matrix

multiplication in Z7 shows that indeed A0B5A2B2 = M. For a different choice of i,

we could obtain different GDLP since the GDLP is not unique.

From the fact that the depth of PSL(2, p) with respect to generating tuple (A,B)

where |A| = |B| = p, is two, it follows that the depth of the same group with respect

to generating tuple (B,A) is two as well. Therefore, every element M ∈ PSL(2, p)

can be written as M = BiAjBkAl. We show that this type of factorization of group

elements can be obtained efficiently in this setup and therefore we obtain two different

factorizations of the same group element:

Ai1Bj1Ak1B`1 = Bi2Aj2Bk2A`2 .

Assume that as before that A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
and M =

(
a b

c d

)
,

elements of PSL(2, p).

Non-negative integers i, j, k and ` such that M = BiAjBkAl can be found effi-

ciently by the method which is similar to one described for solving the GDLP with

30

respect to (A,B). We give the outline of major steps.

BiAjBkA` =

(
1 0

i 1

)(
1 j

0 1

)(
1 0

k 1

)(
1 `

0 1

)
.

Hence, (
a b

c d

)
=

 1 + jk `(1 + jk) + j

i+ k(ij + 1) `(i+ k(ij + 1)) + ij + 1

 .

By equating corresponding entries of the matrices, we obtain the following system of

four equations with four unknowns i, j, k, ` in Fp = Zp:

1 + jk = a

`(1 + jk) + j = b

i+ k(ij + 1) = c

`(i+ k(ij + 1)) + ij + 1 = d

Denote by I ideal generated by the previous equations:

I = 〈 1 + jk − a,

`(1 + jk) + j − b,

i+ k(ij + 1)− c,

`(i+ k(ij + 1)) + ij + 1− d 〉 .

31

A Gröbner basis GB for the ideal I is computed over the set of rational numbers:

GB = [`− jib+ jd− b,

k + ia− c,

jia− jc+ a− 1,

jibc+ ji− jcd+ bc− d+ 1,

ad− bc− 1] .

Therefore, solving the generalized discrete logarithm problem in the group PSL(2, p)

with respect to (B,A) is equivalent to solving the following system of equations in

i, j, k, ` ∈ Zp.

`− jib+ jd− b = 0

k + ia− c = 0

jia− jc+ a− 1 = 0

Therefore, we are able to state the following proposition. We continue to have

A =

(
1 1

0 1

)
, B =

(
1 0

1 1

)
and M =

(
a b

c d

)
, elements of PSL(2, p).

Proposition 3.2. Let A,B and M be as above. Then, there exists a non-negative

integer n < p such that na− c 6= 0 over Zp, and such that the 4-tuple (i, j, k, `) with

i = n, j = (1− a)(na− c)−1, k = c− na, ` = (1− a)(nb− d)(na− c)−1 + b provides

a solution to M = BiAjBkA`.

Proof. Again, the proof consists of directly verifying that the given values for i, j, k, `

satisfy the above system of equations. The existence of n is ensured since M ∈

PSL(2, p) and hence a and c can not simultaneously be equal to zero.

32

3.2 Weak GDLP in PSL(2, p) with respect to any

two generators of order p

Suppose now that C and D are any two non-commuting elements of order p in G =

PSL(2, p), and that A and B are the matrices defined in the previous section. We have

that G = 〈C,D〉, moreover, by exploiting the fact that G acts doubly transitively

by conjugation on the (p + 1) p−Sylow subgroups of G, we can efficiently solve the

generalized discrete logarithm problem with respect to the generating tuple (C,D).

Thus, for any given M ∈ G our goal is to determine non-negative integers i, j, k, `

such that:

M = CiDjCkD`.

Let Ω be the collection of all p-Sylow subgroups of G. Then |Ω| = p + 1 and if

P ∈ Ω, then |P | = p. G has a doubly transitive representation on Ω by conjugation.

Thus, the normalizer of P ∈ Ω, NG(P), is of order p(p − 1)/2 and acts transitively

on Ω \ {P}.

Let P,Q ∈ Ω and let g ∈ G such that P g = Q, where P g = g−1Pg. There are

in all p(p − 1)/2 elements g ∈ G carrying P to Q by conjugation, for which holds

NG(P)g = gNG(Q). For any two pairs of p-Sylow subgroups, and hence for the

particular pairs (〈A〉, 〈B〉) and (〈C〉, 〈D〉), there exists an element g ∈ G such that

(〈C〉, 〈D〉) = (〈A〉g, 〈B〉g) .

Then, C and D may be expressed as follows:

C = g−1Asg D = g−1Btg

33

for some positive integers s, t < p .

To determine an element g ∈ G such that 〈A〉g = 〈C〉 and 〈B〉g = 〈D〉, we

proceed as follows. We determine an element g1 ∈ G such that 〈A〉g1 = 〈C〉. Then

〈B〉g1 = 〈B1〉. Now, NG(〈C〉), acts transitively on Ω \ {〈C〉}. Therefore, there exists

an element g2 ∈ NG(〈C〉), such that 〈B1〉g2 = 〈D〉. Then, for g = g1g2

〈A〉g = (〈A〉g1)g2 = 〈C〉g2 = 〈C〉, and

〈B〉g = (〈B〉g1)g2 = 〈B1〉g2 = 〈D〉.

Note that the element g2 can be chosen among the p elements of 〈C〉, i.e., from the

centralizer of 〈C〉, as Ω \ {〈C〉} is a single orbit of length p.

If we assume that the element g ∈ G such that gCg−1 ∈ 〈A〉 and gDg−1 ∈ 〈B〉 has

been found, then for some positive integers s and t, As = gCg−1 and Bt = gDg−1.

On the other hand As =

(
1 s

0 1

)
and Bt =

(
1 0

t 1

)
. Therefore, s is the (1, 2)

entry of the matrix gCg−1 and t is the (2, 1) entry of the matrix gDg−1.

Assume that we have computed element g. We may write:

M = CiDjCkD`

= (g−1Asg)i(g−1Btg)j(g−1Asg)k(g−1Btg)`

= (g−1Asig)(g−1Btjg)(g−1Askg)(g−1Bt`g)

= g−1AsiBtjAskBt`g

Let x = si, y = tj, v = sk and w = t`. Then, M = g−1AxByAvBwg and hence

gMg−1 = AxByAvBw. Let M1 = gMg−1. Obviously M1 ∈ G and M1 = AxByAvBw.

Thus, we have transformed the generalized discrete logarithm problem of PSL(2, p)

34

with respect to C and D to the generalized discrete logarithm problem of PSL(2, p)

with respect toA andB which we were able to solve in the previous section. Therefore,

since every nonzero element in Zp has an inverse, we are able to compute integers i,

j, k and ` from i = xs−1, j = yt−1, k = vs−1, ` = wt−1 where all operations are

performed modulo p.

Note that it can not happen that s or t is equal to zero, due to the fact that

C = g−1Asg and D = g−1Btg. If, say, s = 0, then As is the identity matrix and

therefore C would also be the identity matrix, which leads to the contradiction that

C is matrix of order p. Similarly, t 6= 0.

The following example illustrates the algorithm we just described. Computations

are performed using the Magma algebra system [3].

Example 3.2. Suppose that group G = PSL(2, 7) is represented by matrices in

SL(2, 7) up to a factor of ±I. Non-commuting matrices C, D of order p = 7 in G

are given, as well as M ∈ G:

M =

(
3 5

2 6

)
C =

(
5 1

5 4

)
D =

(
2 5

4 0

)
.

Our goal is to compute the generalized discrete logarithm of M with respect to (C,D)

i.e., to find no-negative integers i, j, k, ` such that M = CiDjCkD`.

We use the matrices A,B ∈ G which were defined in the previous section. First we

find element g1 ∈ G such that 〈A〉g1 = 〈C〉. Note that there are in all p(p− 1)/2 =

21 elements g1 ∈ G such that 〈A〉g1 = 〈C〉. These are the elements for which

holds: NG(〈A〉)g1 = g1NG(〈C〉). One of them is g1 =

(
6 1

2 4

)
. Next, we compute

B1 = g−1
1 Bg1 =

(
2 6

1 0

)
. Element g2 =

(
2 5

5 6

)
from NG(〈C〉) is such that

〈B1〉g2 = 〈D〉. Then, for g = g1g2 =

(
3 1

3 6

)
the following holds: 〈A〉g = 〈C〉 and

35

〈B〉g = 〈D〉. Integer s corresponds to the (1,2) entry in matrix gCg−1 =

(
1 1

0 1

)

while integer t corresponds to the (2,1) entry in the matrix gDg−1 =

(
1 0

2 1

)
.

Therefore, s = 1 and t = 2. So s−1 = 1 and t−1 = 4 in Z7. Finally, M1 = gMg−1 =(
3 3

1 6

)
.

We have transformed the given generalized discrete logarithm problem to the

GDLP problem with respect to the canonical generators A and B for which

PSL(2, 7) = 〈A〉 〈B〉 〈A〉 〈B〉 .

Namely, now we look for integers x, y, v, w such that M1 = AxByAvBw. By using

Proposition 3.1 we obtain (x, y, v, w) ∈ {(0, 4, 3, 3), (1, 3, 4, 2), (2, 1, 5, 0), (3, 2, 6, 1),

(5, 5, 1, 4), (6, 6, 2, 5)} and the corresponding generalized discrete logarithms of M

with respect to (C,D) are elements of the set {(0, 2, 3, 5), (1, 5, 4, 1), (2, 4, 5, 0),

(3, 1, 6, 4), (5, 6, 1, 2), (6, 3, 2, 6)}.

An element g ∈ G = PSL(2, p) such that 〈C〉 = 〈A〉g and 〈D〉 = 〈B〉g can also

be computed by another method. We look for an element g ∈ G which satisfies

C = g−1Asg and D = g−1Btg, for some non-negative integers s, t < p. Equivalently,

we require that g ∈ G satisfies the following equations: gC = Asg and gD = Btg, for

some non-negative integers s, t < p. Since g =

(
g1 g2

g3 g4

)
∈ G, we obtain a system

of equations in g1, . . . , g4 and s and t from which an element g is determined.

36

3.3 Weak GDLP in PSL(2, p) with respect to two

generators one of which is of order p

Suppose now that G = PSL(2, p) = 〈A,B〉 where |A| = p and we wish to write a

given element M ∈ G as a word in the generators A and B. Before we describe the

method, we observe the following.

Proposition 3.3. If G = PSL(2, p) = 〈A,B〉 where |A| = p, then PSL(2, p) =

〈A,AB〉, where AB = B−1AB.

Proof. Every two non-commuting elements of order p from PSL(2, p) generate the

whole group. So we prove that elements A and AB are non-commuting of order p.

Conjugate elements have the same order, so |AB| = |A| = p. Now, suppose that

elements A and AB commute. Then, AB is in the centralizer of element A, i.e.,

AB ∈ CG(A) = 〈A〉. So, AB = Ai for some i ∈ {0, . . . , p−1}. But then, B normalizes

〈A〉, i.e., B ∈ NG(〈A〉), hence, 〈A〉 is a proper normal subgroup of 〈A,B〉. But

PSL(2, p) is simple, thus 〈A,B〉 can not be all of PSL(2, p), a contradiction to the

fact that A and B generate G.

We are now able to state the following proposition:

Proposition 3.4. Suppose that G = PSL(2, p) = 〈A,B〉, where |A| = p, with no

further assumptions on |B| = m. Then, the depth of G with respect to the generating

tuple (A,B) is less than or equal to four.

Proof. Let C = AB = B−1AB. By the Proposition 3.3 the group PSL(2, p) is

generated by elements A and C, both of order p. The GDLP can be solved efficiently

in PSL(2, p) represented by matrices, with respect to two generators of order p. By

the method described earlier, the generalized discrete logarithm (i, j, k, `) can be found

37

such that M = AiCjAkC`. To represent the element M in terms of the generators A

and B we write the following sequence of equalities.

M = AiCjAkC`

= Ai(B−1AB)jAk(B−1AB)`

= AiB−1AjBAkB−1A`B

= AiBm−1AjBAkBm−1A`B

Therefore, the GDL of M ∈ PSL(2, p) with respect to generating tuple (A,B),

where |A| = p and |B| = m is (i,m − 1, j, 1, k,m − 1, `, 1). It follows that every

element M from PSL(2, p) = 〈A,B〉, where |A| = p and |B| = m can be

represented as M = Ax1By1Ax2By2Ax3By3Ax4By4 for some integers x1, x2, x3, x4 ∈

{0, ..., p− 1} and y1, y2, y3, y4 ∈ {0, ...,m− 1}. The proposition follows.

The described method for writing an element M as a word in the generators A

and B does not assure obtaining the shortest possible word that represent the given

element as a word in the generators.

We illustrate the described procedure for solving the GDLP in PSL(2, p) by means

of the following example.

Example 3.3. Given M =

(
9 1

1 10

)
∈ SL(2, 11) = 〈C, T 〉 where C =

(
8 3

2 5

)
,

T =

(
2 9

0 6

)
. Write M as a word in C and T .

Note that |C| = 11 and |T | = 5, i.e., |C| = p and |T | = (p − 1)/2, where

p = 11. Denote D = CT = T−1CT =

(
5 9

8 8

)
, |D| = 11. Group PSL(2, p) is

generated by elements C and D, both of order p, i.e., PSL(2, 11) = 〈C,D〉. We

have transfered GDLP from PSL(2, p) = 〈C, T 〉 to PSL(2, p) = 〈C,D〉. Since C

38

and D are both of order p and generate whole group, we find non-negative integers

(i, j, k, `) such that M = CiDjCkD`. Denote by A =

(
1 1

0 1

)
and B =

(
1 0

1 1

)
.

Element g =

(
1 5

7 13

)
∈ SL(2, 11) is such that (〈A〉g, 〈B〉g) = (〈C〉, 〈D〉). Then,

C = g−1A4g, D = g−1B8g. M1 = g−1Mg =

(
4 3

5 4

)
∈ SL(2, 11). We have

transfered GDLP from PSL(2, p) = 〈C,D〉 to PSL(2, p) = 〈A,B〉. Generalized

discrete logarithms in SL(2, 11) = 〈A,B〉 with respect to (A,B) for a given M1

are: (0, 1, 3, 1), (1, 8, 10, 2), (2, 6, 6, 8), (3, 7, 2, 5), (4, 4, 9, 3), (5, 5, 5, 0), (6, 3, 1, 6),

(7, 10, 8, 7), (8, 9, 4, 10), (10, 2, 7, 9). Corresponding generalized discrete logarithms of

M in SL(2, 11) = 〈C,D〉 with respect to (C,D) are: (0, 7, 9, 7), (3, 1, 8, 3), (6, 9, 7, 1),

(9, 5, 6, 2), (1, 6, 5, 10), (4, 2, 4, 0), (7, 10, 3, 9), (10, 4, 2, 5), (2, 8, 1, 4), (8, 3, 10, 8). In

particular,

M =

(
9 1

1 10

)
= C9D5C6D2.

We use the fact that D = T−1CT to obtain

M = C9(T−1CT)5C6(T−1CT)2 = C9T−1C5TC6T−1C2T.

Written with non-negative exponents: M = C9T 4C5TC6T 4C2T . Thus, the GDL of

M with respect to (C, T) is (9, 4, 5, 1, 6, 4, 2, 1).

3.4 GDLP in PSL(2, p) with respect to two gener-

ators none of which is of order p

We have seen that the GDLP for the groups PSL(2, p), p prime number, in their

matrix representation, with two generators, is easily solvable if at least one of the

39

generators is of order p. We examine the case when none of the generators is of

order p. The problem is still quite open as the number of G-orbits by conjugation on

generating pairs is very large. The hope is that one can eventually show that strong

generating pairs do exist, or that the contrary is true, and there exist strategies for

solving the GDLP for all cases of generating pairs. In what follows we examine some

strategies which lead to a solution of the GDLP in a limited number of cases, with

significant but rather small probabilities.

3.4.1 A strategy for attacking GDLP in PSL(2, p)

Unlike the case where at least one of the two generators of G = PSL(2, p) is an

element of order p, solving the GDLP is much more complex when neither of the two

generators is of order p. The following proposition allows a cryptanalyst to reduce the

GDL problem for PSL(2, p) with any two generators to the earlier cases examined

where at least one generator is of order p.

Proposition 3.5. Suppose that G = PSL(2, p) = 〈A,B〉 where the orders of A

and B are relatively prime to p, and suppose that P = wp(A,B), is a word in A

and B which has order p as an element of G. Then, G = 〈A,P 〉 or G = 〈B,P 〉.

Proof. Let N = NG(〈P 〉). Then, at least one of the elements A, B is not in N .

Otherwise if A, B were both in N , then 〈A,B〉 would be a subgroup of N . With-

out loss of generality, suppose that A /∈ N . Then 〈A,P 〉 = G, because the only

proper subgroups of PSL(2, p) containing 〈P 〉 are subgroups of the normalizer of

〈P 〉. Similarly, if B /∈ N , it follows that G = 〈B,P 〉.

Suppose that G = 〈A,B〉 with neither A,B of order p. Using Proposition 3.5, we

may proceed to solve the GDLP for M ∈ G = 〈A,B〉, as follows. First construct an

element P ∈ G of order p as a word in the generators A and B, i.e., P = wp(A,B).

40

By Proposition 3.5, G = 〈A,P 〉 or G = 〈B,P 〉. Without loss of generality, assume

that G = 〈A,P 〉. Since |P | = p, we can solve the GDLP of M with respect to (A,P).

M = w(A,P), i.e., M is written as a word in A and P . Then,

M = w(A,P) = w(A,wp(A,B)) = w(A,B).

Note that the word w(A,B) is not necessarily the shortest one that represents M in

terms of the generators A and B. However, it does reveal the generalized discrete

logarithm of M with respect to (A,B).

3.4.2 The p-attack and its analysis

Succesful cryptanalysis of the GDLP in G = PSL(2, p) = 〈A,B〉, when at least one

of the two generators is of order p, rests on reduction to the basic case where the

generators are the canonical elements (1 1
0 1), (1 0

1 1). We call a cryptanalytic attack

of this type a basic p-attack.

Fundamentally, a basic p-attack is possible because i) G acts 2-transitively by

conjugation on its p-Sylow subgroups, and ii) the depth with respect to the canonical

generators is 2. It turns out that for an arbitrary pair (A,B) which generates G, a

direct approach, such as the one used for the canonical generators of order p, will not

be feasible because the number of orbits of G on G×G (by conjugation) is very large.

Additionally, for each arbitrary generating pair (A,B), the GDLP is of much higher

complexity then for the canonical generators of order p. We show that even in the

case where G acts by conjugation on X×X, where X is the collection of all elements

of order (p−1)/2 in G, the number of orbits is large, and reduction to a basic p-attack

by means of Proposition 3.5 is generally not feasible. For arbitrary generators (A,B),

an attack based on the use of Proposition 3.5, will be called a p-attack.

41

Definition 3.1. Suppose that G = PSL(2, p) = 〈A,B〉. The p-depth of (A,B),

denoted by pd(A,B), is the length of the shortest possible word in A and B which is

of order p as an element of G.

For the rest of this section, let d = (p−1)/2 and X = {x ∈ G : |x| = d}. Since

X is the union of φ(d)/2 conjugacy classes of elements of order d, and for x ∈ X

the centralizer of x is 〈x〉, we have that

|X| = φ(d)p(p+ 1)

2

Now, the action G|X is intransitive and the number of orbits is φ(d)/2. Consider

now the induced action of G by conjugation on X ×X. That is, for (x, y) ∈ X ×X

and g ∈ G, (x, y)g = (xg, yg). Initially, we are interested in the number of orbits of

G|(X ×X).

Proposition 3.6. For G, X, and G|(X ×X) as defined above, the number of orbits

of the action G|(X ×X) is

η =
φ(d)2(p+ 3)

2

Proof. Let H be any particular fixed subgroup of G of order d. If t = φ(d)/2

the elements of order d in H can be arranged in conjugate pairs as {(x1, x
−1
1), . . . ,

. . . , (xi, x
−1
i), . . . , (xt, x

−1
t)} with xi conjugate to xj if and only if i = j. Let Y =

{x1, . . . , xt}. Let Z be a collection of orbit representatives of H acting on X by

conjugation. By elementary group theory, we can show that the pairs in Y × Z

constitute a complete set of distict representatives of the G-orbits on X×X. Looking

at the action H|X by conjugation, we see that H commutes with the φ(d) elements of

order d in H, thus these elements are fixed under conjugation by H. The remaining

|X| − φ(d) elements of X fall into orbits of length d under H, because no element of

42

H fixes under conjugation (i.e. commutes with) any element of order d besides the

elements of order d in H. This yields

φ(d) +
|X| − φ(d)

d

H-orbits on X. Thus η = |Y × Z| = |Y | · |Z| and we have

η = φ(d)
2

(
φ(d) + |X|−φ(d)

d

)
= φ(d)

2

(
φ(d) +

φ(d)p(p+1)
2

−φ(d)

d

)
= φ(d)2

2

(
1 +

p(p+1)
2
−1

d

)
= φ(d)2

4d
(2d+ p(p+ 1)− 2) = φ(d)2

4d
((p− 1) + p(p+ 1)− 2) = φ(d)2

2(p−1)
(p2 + 2p− 3)

= φ(d)2

2(p−1)
(p− 1)(p+ 3) = φ(d)2(p+3)

2

It is clear that for (x, y) ∈ X ×X and g ∈ G, the pairs (x, y) and (x, y)g = (xg, yg)

have the same p-depth, that is, p-depth is an orbit invariant. For the cryptanalyst

it would be highly desirable if the p-depth was bounded as a function of p, or if the

distribution of p-depths over orbit representatives had a small mean.

Figure 3.1: Distribution of p-depths for p = 37

43

max mean max mean

p η p-depth p-depth p η p-depth p-depth

7 20 6 3.67 41 1408 15 6.80

11 112 8 4.61 43 3312 16 6.81

13 32 9 5.64 47 12100 16 6.92

17 160 12 5.92 53 4032 15 7.10

19 396 13 5.92 59 24304 18 7.22

23 1300 13 6.06 61 2048 14 7.43

29 576 13 6.37 67 14000 17 7.45

31 1088 14 6.57 71 21312 19 7.46

37 720 12 6.77 73 5472 17 7.62

Table 3.4.1

However, experimental evidence indicates this is not the case. On the Figure

3.1, the distribution of p-depths for p = 37 is presented. On the graph, the x-axis

represents p-depth and the y-axis number of pair representatives in PSL(2, 37). In

the Table 3.4.1 we present experimental data for primes p ≤ 73. The minimum p-

depth is provably 2, and we investigate this case in a later section. The maximum

p-depth generally increases with p, although it is not a strictly increasing function of p.

The mean p-depth is indeed a slowly increasing function, for 7 ≤ p ≤ 73. We further

observe that the mean is always above log2 p, from which an interesting conclusion can

be drawn. Indeed, for a given generating pair (A,B), whether an oracle is available

to provide k = pd(A,B) or one finds pd(A,B) by brute force, the time complexity for

finding a shortest word wp(A,B) of order p is O(2k). Since mean pd(A,B) > log2 p,

the worst case complexity of finding a wp(A,B) for an average (A,B) is at least

2log2 p = p. Since the system designer would choose large p, say of the order of 2100,

finding wp(A,B) by brute force would be infeasible, thus, a p-attack is generally

infeasible if brute force method is used to construct wp(A,B).

44

3.4.3 Analysis of special cases

In cryptographic applications we can clearly assume that p > 3. Hence, one of the

following conditions must hold for the prime p: (i) p ≡ 1 (mod 12), (ii) p ≡ 5

(mod 12), (iii) p ≡ 7 (mod 12), (iv) p ≡ 11 (mod 12).

As a consequence of Proposition 3.6, even if we restrict the generators A and B

to have order (p− 1)/2, the number of conjugacy classes on pairs of generators is too

large to analyze. We presently restrict our attention to the case p ≡ 1 (mod 12) with

|A| = |B| = (p− 1)/2.

The following proposition holds for any odd prime power q > 3.

Proposition 3.7. The probability that two elements generate G = PSL(2, q) when

selected randomly among all possible pairs of elements of order (q − 1)/2 of G is

(q−1)(q−2)
(q+1)q

.

Proof. G is doubly transitive on the q+1 points of the projective line L = {1, . . . , q+

1}, with stabilizer Gx,y a cyclic subgroup of order (q − 1)/2. Moreover, the ordered

pairs (x, y) characterize the subgroups Gx,y. Let Gx,y = 〈A〉 and Gu,v = 〈B〉, then

〈A,B〉 = G if and only if {x, y} ∩ {u, v} = ∅. Moreover, if |{x, y} ∩ {u, v}| = 1

A and B lie in the stabilizer of the point in the intersection of {x, y} ∩ {u, v}, thus

〈A,B〉 6= G. Further, if {x, y} = {u, v} then A ∈ 〈B〉 and 〈A,B〉 = 〈B〉 6= G. Since

G is doubly transitive on the q+1 points, we can fix one pair of points, say (1,2) from

X = L×L and count the number of pairs in X intersecting {1, 2} in at least one point.

These pairs are Y = {(1, 2)}∪{(1, x) : x 6∈ {1, 2}}∪{(x, 2) : x 6∈ {1, 2}}, and their

symmetric flips. Thus, the total number of “short” pairs is 2(1 + 2(q− 1)) = 4q− 2,

and the number of pairs corresponding to elements generating all of G is

q(q + 1)− (4q − 2) = q2 − 3q + 2 = (q − 1)(q − 2)

45

Hence, the required probability is (q−1)(q−2)
q(q+1)

as claimed.

Remark 3.1. As q →∞ the probability that two random elements of order (q−1)/2,

generate G approaches 1.

Recall now that in PSL(2, q), q odd, there is a single conjugacy class of involutions

and a single class of elements of order 3. Assume now that q = p is a prime and p ≡ 1

(mod 12). Note that in this case 6 divides (p − 1)/2. Suppose now that A and B

are any two elements of order (p − 1)/2, and let z = A(p−1)/4 and t = B(p−1)/6.

Then, |z| = 2 and |t| = 3. We have already discussed that if p is large, with high

probability A and B will generate G. The extremely interesting experimental fact

is that if G = 〈A,B〉 then with probability at least 0.90 we will also have that

G = 〈z, t〉. Although we have not established yet precisely this probability in terms

of the parameters of the group, it can be easily shown that if |zt| = p then we certainly

have that G = 〈z, t〉. We have the following

Proposition 3.8. Suppose that p ≡ 1 (mod 12), G = PSL(2, p), A and B elements

of order (p − 1)/2 such that FixA ∩ FixB = ∅. Let z = A(p−1)/4 and t = B(p−1)/6.

Then, the order of zt is p with probability 2(p−1)
p(p+1)

, and in this case G = 〈z, t〉.

Proof. Since there is a single conjugacy class of involutions, it suffices to count the

pairs (z, t) where z is a particular fixed involution, t is an element of order 3, and zt

is of order p. The centralizer CG(z) has order (p− 1) and acts by conjugation on the

G-conjugacy class of p(p + 1) elements of order 3 in G. The class calculus shows

that there are exactly two orbits of CG(z), each of length |CG(z)| = p− 1 of elements

t such that zt has order p. Thus the required probability is 2(p−1)
p(p+1)

.

46

3.5 Relations in the context of cryptography

By solving the generalized discrete logarithm problem for a finite group with respect to

a given set of generators we are factorizing group elements in terms of the generators.

By equating two different factorizations of the same group element, we obtain a

relation. This observation holds in any finite group.

Let G be a finite group generated by α1, . . . , αt, i.e., G = 〈α1, . . . , αt〉. Denote by

α = (α1, . . . , αt) the ordered tuple of generators of the group G. For a given β ∈ G,

assume that

β =
k∏
i=1

(αxi11 . . . αxitt)

i.e., β = αx, where x = (x11, . . . , x1t, . . . , xk1, . . . , xkt).

Recall that x = (x11, . . . , x1t, . . . , xk1, . . . , xkt), the generalized discrete logarithm

with respect to the generators α = (α1, . . . , αt), is not unique. In fact there will

exist infinitely many distinct y = (y11, . . . , y1t, . . . , ys1, . . . , yst) such that β = αy =∏s
i=1 α

yi1
1 . . . αyitt . For any such y we have:

k∏
i=1

αxi11 . . . αxitt =
s∏
i=1

αyi11 . . . αyitt .

In this way we obtain non-trivial relations among the generators. Further, by

collecting different relations we may obtain a presentation of the group: G = 〈X|R〉,

where X is the set of generators, and R a set of relations of the above type, sufficiently

many to completely determine the group.

Relations of particular interest in cryptography are those which represent the

identity element of the group, that is of the form 1G = a word in the generators.

Moreover, in a finite group G we can always convert a presentation of the form

G = 〈X|R〉, into one of the form G = 〈X|R′〉, where R′ is a set of relations of the

47

type:
∏k

i=1 α
xi1
1 . . . αxitt = 1G with non-negative xij.

The length of word w =
∏k

i=1 α
xi1
1 . . . αxitt in the symbols α1, . . . , αt, where the xij

are non-negative integers, is defined to be the integer |w| =
∑k

i=1

∑t
j=1 xij. Moreover,

if w1 and w2 are words in the symbols α1, . . . , αt and ρ : w1 = w2 is a relation, the

length of the relation is defined to be the integer |ρ| := |w1|+ |w2|.

If G is a finite group generated by α1, . . . , αt, a relation ρ in the α1, . . . , αt is

said to be short if |ρ| = O(log (|G|)), otherwise ρ is said to be long. Relations of

importance to cryptographic hash functions designed in finite groups are those which

are short.

We turn to our group of interest, PSL(2, p), and examine the length of some

relations there.

Let G = PSL(2, p), and consider the elements A =
(1 1

0 1
)
, B =

(1 0
1 1
)

in G. The

matrices A and B are both of order p, non-commuting and thus generate PSL(2, p).

As we have seen earlier, the depth of PSL(2, p) with respect to the generating tuple

(A,B) is two. Therefore, the identity matrix I ∈ PSL(2, p) can be written as I =

AiBjAkB` for some non-negative integers i, j, k and `. In the next proposition we

establish that for any large prime p, any relation of the form I = AiBjAkB` in

PSL(2, p) is long.

Proposition 3.9. Let A, B and I be matrices in PSL(2, p) as above. Then, a

solution (i, j, k, `) to the generalized discrete logarithm problem I = AiBjAkB` is

such that either i+ j + k + ` ≥ p or i = j = k = ` = 0.

Proof.

AiBjAkB` =

(
1 i

0 1

)(
1 0

j 1

)(
1 k

0 1

)(
1 0

` 1

)
.

48

Therefore,

(
1 0

0 1

)
=

 1 + ij + `((1 + ij)k + i) (1 + ij)k + i

j + `(jk + 1) jk + 1

 .

Then, jk + 1 = 1 (mod p) and hence jk = 0 (mod p). By using jk = 0 (mod p),

we obtain (
1 0

0 1

)
=

 1 + ij + `k + `i k + i

j + ` 1


So, j + ` = 0 (mod p) and k + i = 0 (mod p), i.e., j + ` = s1p, s1 ∈ Z0 and

k + i = s2p, s2 ∈ Z0. If s1 ≥ 1, then j + ` ≥ p. Hence, i + j + k + ` ≥ p. If s1 = 0,

i.e., j + ` = 0, then j = ` = 0. Similarly, s2 ≥ 1 leads to i+ j + k+ ` ≥ p, and s2 = 0

leads to k = i = 0. The length of the word 1G = AiBjAkB`, is i + j + k + ` ≥ p or

i = j = k = ` = 0. Thus, i+ j + k + ` ≥ p > 3 log p > log(|PSL(2, p)|)

Although relations of the form I = AiBjAkB` in PSL(2, p) are long for a large

prime p, short relations of a different form do exist inside the group.

In the proposition that follows we prove the existence of short relations in any

finite group G generated by two elements.

Proposition 3.10. Let G be a finite group generated by two elements A and B.

Then, there exist a relation ρ : w1 = w2 where w1 and w2 are two different words in

A and B, such that |w1|+ |w2| ≤ O(log2|G|).

Proof. We construct the blocks of all words of successive lengths in A and B. Let

B0 = {I}, where I is the identity of the group G. Let Bk be the collection of all

words in A and B of length k. Then |Bk| = 2k.

49

Let n be the positive integer such that
∑n+1

k=0 |Bk| > |G| and such that
∑n

k=0 |Bk| ≤

|G|. Since
∑n

k=0 |Bk| = 2n+1−1 we can write 2n+1−1 ≤ |G|, i.e., 2n+1 ≤ |G|+1. By

taking logarithms of both sides of the inequality, we obtain that n+1 ≤ log2(|G|+1).

By the pigeon-hole principle, two distinct words, say w1 and w2 belonging to

{B0∪B1∪· · ·∪Bn+1} must correspond to the same element of G. Then, |w1|+ |w2| ≤

2(n+ 1) ≤ 2log2(|G|+ 1) = O(log2(|G|)).

Of course the proof can be generalized to any finite group G generated by k

generators. A direct consequence of Proposition 3.10 is that short relations in two

generators do exist in SL(2, q). In particular, for G = SL2(F2n), |G| = 2n(22n − 1),

and there are short relations of length at most 6n.

50

Chapter 4

Cryptographic primitives based on

the generalized discrete logarithm

problem in non-abelian groups

In this chapter we discuss possible cryptographic applications of the generalized dis-

crete logarithm problem in finite non-abelian groups. Assuming the hardness of the

GDLP in the underlying finite non-abelian group, we give a possible generalization

of the Diffie-Hellman key exchange protocol and the ElGamal encryption scheme.

Earlier proposals have been made involving generalizations of the Diffie-Hellman

key exchange protocol to finite non-abelian groups, see for example [49]. These

schemes, however, have been cryptanalyzed in [46, 48]. Proposals for the construction

of ElGamal-like schemes are given in [18, 24]. Ways of generalizing the DLP, the Diffie-

Hellman key exchange protocol and the ElGamal cryptosystem to non-abelian groups

are given in [25, 26, 27]. As related work we also mention the cryptosystem described

in [37] which was later cryptanalyzed. Combinatorial group theory problems and, as

a special case, the conjugacy search problem have been investigated in [45].

51

4.1 Algebra on the exponents

For the purpose of constructing cryptographic primitives and cryptosystems we present

a way of defining exponentiation of a generating tuple of a finite group to a given

integer.

If G is a multiplicative group, α ∈ G and x a non-negative integer, the meaning

of αx is well established. Presently, we wish to extend the notion of αx to the case

where α is an ordered set of elements (α1, . . . , αt) of group G, where αi has finite

order ni.

Definition 4.1. Let x be a non-negative integer, and α = (α1, . . . , αt) an ordered set

of elements of group G, where, for i ∈ {1, . . . , t}, ni is the order of element αi, Let

n = n1n2 · · ·nt. Denote by (x1, x2, . . . , xk) the digits of x with respect to radix n, i.e.,

x = x1n
k−1 + x2n

k−2 + · · ·+ xk−1n+ xk .

For each xi, let (xi1, xi2, . . . , xit) be the digits of xi with respect to the mixed radix

(n1, n2, . . . , nt), thus, 0 ≤ xij < nj. Then, by αx we mean the group element

αx =
k∏
i=1

(αxi11 · · ·α
xit
t)

We also use the notation of exponentiation and product to write

αx =
k∏
i=1

[α1, . . . , αt]
xi ,

where [α1, . . . , αt]
xi = αxi11 · · ·α

xit
t and (xi1, xi2, . . . , xit) are the digits of xi with respect

to the mixed radix (n1, n2, . . . , nt).

52

Example 4.1. Let α be a root of generating polynomial f(x) = x5 + x2 + 1 of the

field F25. Consider special linear group SL2 (F25) generated by elements

A =

(
α 1

1 0

)
B =

(
α α+ 1

1 1

)

We compute [A,B]1000. The order nA of matrix A in SL2 (F25) is 31 and the order

nB of matrix B in the same group is 11. First, we write 1000 in base nAnB = 314:

1000 = 2× 341 + 318. Therefore,

(A,B)1000 = [A,B]2 [A,B]318 = A0B2A28B10

When computed, (A,B)1000 =

(
α29 α8

α17 α23

)

Next, we define the operation of exponentiating an ordered t-tuple to a negative

integer in a finite (non-abelian) group.

Definition 4.2. Suppose x is non-negative integer. If

(α1, . . . , αt)
x =

k∏
i=1

(αxi11 · · ·α
xit
t) (4.1.1)

is given as in definition 4.1, then

(α1, . . . , αt)
−x = (

k∏
i=1

αxi11 . . . αxitt)−1

For applications it is useful to write (α1, . . . , αt)
−x as a t-tuple of generators raised

to a non-negative exponent. This can be done by applying the following facts. Every

αj, j ∈ {1, . . . , t} generate a cyclic subgroup of G of order nj. If y ≤ nj and y

is a non-negative integer, then, α−yj = α
nj−y
j and nj − y ≥ 0. Using the fact that

53

(ab)−1 = b−1a−1, we see that α−x can be written in the form 4.1.1 as βz where β is

the reversal of tuple α and integer z is non-negative.

Definition 4.3. Let G be a finite group generated by elements α1, . . . , αt. For x, y ∈ Z

(α1, . . . , αt)
x⊕y def= (α1, . . . , αt)

x (α1, . . . , αt)
y .

We define the relation v among the elements of the set of integers Z as follows:

Definition 4.4. Let G be the group generated by elements α1, . . . , αt. For x, y ∈ Z

x v y if and only if (α1, . . . , αt)
x = (α1, . . . , αt)

y in G.

Since v is an equivalence relation, it partitions the set Z into equivalence classes.

Let S be a complete set of representatives of equivalence classes of v. Then,

Theorem 4.1. (S,⊕) is a group isomorphic to the (G, ·).

As an immediate consequence of theorem 4.1, it follows that if the underlying

group G is non-abelian, then the group (S,⊕) is non-abelian.

The next example shows two elements in Z which do not commute with respect

to the operation ⊕ when the underlying group is SL2 (F2n).

Example 4.2. Let A and B be as in example 4.1. Recall that n = nAnB = 341.

353 = 1 · 3411 + 12 · 3410

695 = 2 · 3411 + 13 · 3410

54

(A,B)353(A,B)695 = [A,B]1[A,B]12[A,B]2[A,B]13

= A0B1A1B1A0B2A1B2

= BAB3AB2

=

(
α4 α8

α30 α18

)

On the other side,

(A,B)695(A,B)353 = [A,B]2[A,B]13[A,B]1[A,B]12

= A0B2A1B2A0B1A1B1

= B2AB3AB

=

(
α29 α2

α20 α9

)

So, (A,B)353⊕695 = (A,B)353(A,B)695 6= (A,B)695(A,B)353 = (A,B)695⊕353.

Remark 4.1. There are some difficulties with our definition of αx for α = (α1, . . . , αt)

and x ∈ Z. We enumerate some of these here:

1. The representation does not reduce to the usual definition for αx when t = 1, i.e.

when α = (α1). Suppose for example that t = 1, n = n1 = 10 and α = (α1).

Then for x = 73 = 7 · 101 + 3 · 1 our definition would yield α73 = α7
1 · α3

1 = 1

which is not compatible with the normal representation for which α73 = α3
1 6= 1.

2. A second incompatibility is that for integers x and y, (αx)y 6= α(xy). When

z = αx ∈ G is computed using our definition, then (αx)y is computed as zy in

the natural meaning of raising group element z to the integer power y.

3. It follows that (αx)y 6= (αy)x, for α = (α1, . . . , αt), t > 1 and x, y ∈ Z. Thus a

straight-forward application of a Diffie-Hellman protocol is not possible (using

55

products of exponents in Z.)

4. A consequence of 2. is that for x, y, z ∈ Z,

(x⊕ y)z 6= xz ⊕ yz. Thus the new operation ⊕ is not compatible with ordinary

multiplication in Z, and certainly (Z,⊕, ·) is not a ring.

4.2 Two commuting operations

The authors of [20] notice that the operation of conjugation by group elements com-

mutes with exponentiation by integers as given in the definition of the generalized

discrete logarithm. Consequently, the operation of conjugation commutes also with

the exponentiation by an integer as defined in the previous section. Before we use

this fact in building cryptographic primitives, we give a formal proof of the claim.

Theorem 4.2. Let G = 〈α1, . . . , αn〉 be a finite non-abelian group. Let (α1, . . . , αn)x

denote the operation of exponentiation by integer x and for g ∈ G let (α1, . . . , αn)g

denote the operation of conjugation:

(α1, . . . , αn)g = (αg1, . . . , α
g
n) = (g−1α1g, . . . , g

−1αng).

Then,

((α1, . . . , αn)x)g = ((α1, . . . , αn)g)x.

56

Proof.

((α1, . . . , αn)g)
x

= (αg1, . . . , α
g
n)x

=
k∏
i=1

((αg1)xi1 . . . (αgn)xin)

=
k∏
i=1

(
(g−1α1g)xi1 . . . (g−1αng)xin

)
=

k∏
i=1

(
g−1αxi11 . . . αxinn g

)
= g−1(

k∏
i=1

(αxi11 . . . αxinn))g

= (
k∏
i=1

(αxi11 . . . αxinn))g

= ((α1, . . . , αn)x)g

4.3 Diffie-Hellman problems based on the GDLP

in non-abelian groups

A possible direct generalization of the computational and decision Diffie-Hellman

problems to finite non-abelian groups is as follows.

Computational Diffie-Hellman Problem

Given a finite non-abelian group G = 〈α1, . . . , αn〉 and (α1, . . . , αn)x and

(α1, . . . , αn)y where x, y are integers, find ((α1, . . . , αn)x)y.

Decision Diffie-Hellman Problem

Given a finite non-abelian group G = 〈α1, . . . , αn〉 and (α1, . . . , αn)x, (α1, . . . , αn)y

and (α1, . . . , αn)z where x, y, z are integers, determine whether ((α1, . . . , αn)x)y =

57

(α1, . . . , αn)z.

As we have mentioned in Remark 4.1, in finite non-abelian groups, the equality

((α1, . . . , αn)x)y = ((α1, . . . , αn)y)x does not generally hold (actually, almost never

holds). However, in the traditional Diffie-Hellman key exchange protocol, integer

exponents commute. This commutativity property of exponents is the fundamental

reason why two parties can obtain a common secret key in the key exchange protocol.

In order to have commutativity of the exponents, we generalize the computational

and decision Diffie-Hellman problems as follows.

Computational Diffie-Hellman Problem

Given a finite non-abelian group G = 〈α1, . . . , αn〉, (α1, . . . , αn)x and (α1, . . . , αn)g

where x is an integer and g ∈ G, find ((α1, . . . , αn)g)x.

Decision Diffie-Hellman Problem

Given a finite non-abelian group G = 〈α1, . . . , αn〉 and (α1, . . . , αn)x, (α1, . . . , αn)g

and (α1, . . . , αn)z where x, z are integers and g ∈ G, determine whether

((α1, . . . , αn)g)x = (α1, . . . , αn)z.

Based on the Theorem 4.2, ((α1, . . . , αn)x)g = ((α1, . . . , αn)g)x, x ∈ Z and g ∈ G.

4.4 Diffie-Hellman key exchange based on the GDLP

in non-abelian groups

Two parties, Alice and Bob, want to establish a secret key over an insecure channel.

Alice and Bob have not exchanged any secret information in the past, and possibly

have no prior knowledge of each other. They agree on the group G = 〈α1, . . . , αn〉

they will use. Therefore, the group and the generators are publicly known. To begin

the protocol, Alice selects a random positive integer x, computes ga = (α1, . . . , αn)x

58

and sends it to the Bob. Bob selects a random group element g ∈ G, computes

gb = (α1, . . . , αn)g and sends it to Alice. Both parties are now able to compute the

common secret key. Alice receives gb from Bob, she takes her secret integer x and

computes:

gxb = ((α1, . . . , αn)g)
x

= kA.

Bob receives ga from Alice and computes

gga = ((α1, . . . , αn)x)
g

= kB.

Based on the Theorem 4.2, kA = kB. The common secret key is k = kA = kB.

The security of the Diffie-Hellman key exchange protocol just described depends

on the assumption of intractability of the generalized discrete logarithm problem and

also on the assumption of intractability of the conjugacy problem in the underlying

group.

If a third party, named Oscar, is listening to the communication through the

channel, he is able to obtain ga and gb. Recall that G = 〈α1, . . . , αn〉 is publicly known.

If Oscar is able to solve the GDLP of ga in G with respect to (α1, . . . , αn), he obtains

k-tuples (xi1, . . . , xin) and positive integer k. Since Oscar knows gb = (αg1, . . . , α
g
n),

he is able to compute
∏k

i=1 ((αg1)xi1 · · · (αgn)xin).

k∏
i=1

((αg1)xi1 · · · (αgn)xin) =
k∏
i=1

(g−1αxi11 . . . αxinn g)

= g−1(
k∏
i=1

(αxi11 . . . αxinn))g

= (
k∏
i=1

(αxi11 . . . αxinn))g

= ((α1, . . . , αn)x)g

59

Note that there are more than one solutions to the generalized discrete logarithm

problem. Oscar can use any of these solutions to produce the common key.

If Oscar is able to solve the simultaneous conjugacy search problems, he may

use the value gb that he strips from the insecure channel to find g∗ ∈ G such that

gb = (α1, . . . , αn)g
∗
. Note that g∗ ∈ G must satisfy (g∗)−1αig

∗ = g−1αig for all

i ∈ {1, . . . , n}. There could be more than one element in the group G that satisfy

this property. Oscar does not have to know the exact secret g that Bob used to

construct gb, to be able to discover the common secret key of Bob and Alice. Once

he knows g∗, he computes the secret key gg
∗
a . Next, we show that gg

∗
a = gga:

gg
∗

a = ((α1, . . . , αn)x)g
∗

= ((α1, . . . , αn)g
∗
)x

= (αg
∗

1 , . . . , α
g∗

n)x

= (αg1, . . . , α
g
n)x

= ((α1, . . . , αn)g)x

= ((α1, . . . , αn)x)g

= gga

4.5 ElGamal encryption scheme based on the GDLP

in non-abelian groups

By using the fact that the operation of exponentiating a generating tuple by an integer

in finite non-abelian groups commutes with conjugation, the ElGamal encryption

scheme can be generalized to non-abelian groups.

60

The security of the afforementioned generalized ElGamal encryption scheme de-

pends on the assumption that the GDLP and conjugacy search problems are in-

tractable in the underlying group.

Key generation

Each entity ε creates a private key and the corresponding public key pair as follows.

Entity ε selects non-abelian group G = 〈α1, . . . , αn〉, a randomly selects positive

integer xε, computes gε = (α1, . . . , αn)xε and publishes gε and (α1, . . . , αn), but keeps

xε secret. In particular Alice’ secret key is xa, and public key (ga, (α1, . . . , αn)), where

ga = (α1, . . . , αn)xa .

Encryption

To send a message to Alice, Bob obtains Alice’s public key pair (ga, (α1, ..., αn)),

and writes the message m as an element of the group G = 〈α1, ..., αn〉. Then, he selects

his secret key, a random element g ∈ G, computes (β1, . . . , βn) = (α1, . . . , αn)g, and

sends ((β1, . . . , βn),mgga) to Alice.

Decryption

To decrypt the message from Bob, Alice uses her secret key xa to compute

((β1, . . . , βn)xa)−1 and multiplies on the right the mgga she received from Bob.

mgga((β1, . . . , βn)xa)−1 =

mgga(((α1, . . . , αn)g)xa)−1 =

m((α1, . . . , αn)xa)g(((α1, . . . , αn)xa)g)−1 = m.

If Oscar, who listens to the communications channel, could solve the simultaneous

conjugacy search problem, he could find an element g∗ ∈ G such that αg
∗

i = βi, for

all i ∈ {1, . . . , n}, and he would be able to compute (gg∗a)−1 which would enable him

61

to decrypt the message.

If Oscar is able to solve GDLP for ga with respect to (α1, . . . , αn), he can find

x such that ga = (α1, . . . , αn)x and can compute (((α1, . . . , αn)g)x)−1 and therefore

decrypt the message.

Therefore, potential implementation of this generalization of the ElGamal en-

cryption scheme would require hard generalized discrete logarithm problem and hard

conjugacy search problem in the underlying group.

62

Chapter 5

Cryptanalysis of the Tillich-Zémor

hash function

5.1 Tillich-Zémor hashing scheme

At CRYPTO’94, Jean-Pierre Tillich and Gilles Zémor, [55] proposed a new family of

cryptographic hash functions. Their work attracted significant cryptanalytic interest

[10, 4, 1, 50, 40], but, for carefully chosen parameters, the hashing scheme remained

unbroken for more than fifteen years.

In this dissertation we show that the Tillich-Zémor hash function is not collision

resistant by showing how to construct collisions efficiently for any choice of the input

parameters. More specifically, we construct collisions of palindromic bit strings of

length 2n+ 2, where n is the degree of the irreducible polynomial used to define the

field F2n . For each irreducible polynomial of degree n, we construct two palindromic

collisions from which we deduce two more collisions of non-palindromic bit strings.

63

5.1.1 Description of the Tillich-Zémor hashing scheme

Denote by V collection of all bitstrings of arbitrary finite length, i. e., V := {0, 1}∗. If

v = b1 . . . bm ∈ V is a bitstring, then vr := bm . . . b1 denotes the reversal of bitstring

v. A palindrome is a bitstring v ∈ V satisfying v = vr. We denote by |v| the length

of v ∈ V .

Assume that the finite field F2n is represented as F2n := F2[x]/(q(x)) where q(x)

is a given irreducible polynomial of degree n. Let α be a root of q(x) and denote by

G the group SL2(F2n) of 2 × 2 matrices of determinant 1 over F2n . Define matrices

s0 and s1 of group G by:

s0 :=

(
α 1

1 0

)
, s1 :=

(
α α+ 1

1 1

)
∈ G.

According to the Tillich-Zémor proposal in [55], a bitstring v = b1 . . . bm ∈ V is

hashed by applying the function h̆ : V −→ G:

h̆(b1 . . . bm) := sb1 · · · sbm ∈ G

Remark 5.1. At ICECS ’08 [41] and CT-RSA ’09 [40] vectorial and projective vari-

ants of the Tillich-Zémor hash function were proposed and in [30] these ideas were

combined. By construction, any collision for the original Tillich-Zémor proposal also

yields a collision for these more recent proposals. Hence, throughout, we restrict our

attention to constructing collisions for the original proposal from CRYPTO ’94.

5.1.2 Challenge parameters

The Tillich and Zémor hash function uses an irreducible polynomial of degree n as an

input parameter. Once the irreducible polynomial is fixed, the function is completely

determined. Originally, Tillich and Zémor suggested values for n ∈ {130, . . . , 170}.

64

After cryptanalytic attack [50], which is effective for composite n, the suggested input

parameters were reduced to n being a prime number from the set {131, . . . , 167}. A

prime number n close to 1024 was suggested in [39].

The most recent proposal for input parameters is given in [41], where the following

choices of the irreducible polynomial q(x) are proposed to define the underlying F2n =

F2[x]/(q(x)):

x127 + x+ 1

x251 + x7 + x4 + x2 + 1

x509 + x8 + x7 + x3 + 1

x1021 + x5 + x2 + x+ 1

x2039 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + 1

In [30] de Meulenaer et al. suggest to use polynomial x127+x+1 in order to provide

collision resistance comparable to SHA-1, and to use polynomial x251 +x7 +x4 +x2 +1

to provide collision resistance comparable to SHA-256. According to [30] all of the

above five polynomials are safe with respect to the attacks in [10, 1, 50].

To demonstrate the applicability of our cryptanalytic attack, we construct colli-

sions for all of the aforementioned polynomials.

5.1.3 Short relations

We note that the problem is specific to the representation of F as well as to the

generators. The respective orders k, ` of s0 and s1 could be very large, for example

any divisors of 2n + 1 or 2n − 1, and can be efficiently calculated. If k or ` is small,

then the system can be effectively attacked because one can write a short relation,

such as sk0 = I, or s`1 = I, where I is the identity of G. Thus a successful attack must

assume nothing about the orders k and `. We have proved in Proposition 3.10 the

existence of short relations in a finite group generated by two elements and concluded

65

the existence of short relations in two generators in SL(F2n).

5.2 Experimental results

Our early experiments were restricted to cases in which the defining irreducible poly-

nomial q(x) is of degree n, small enough to enable us to preform a brute force attack in

searching for collisions. Data analysis of experimental results showed that for every n

we obtain collisions of words of length 2n+2. We observed that among those collisions

there exist colliding palindromes. We preformed all computation on a standard PC,

using the computer algebra system Magma [3].

Example 5.1. When irreducible polynomial q(x) = x5 + x4 + x3 + x + 1 is used

to define the field F25 = F2[x]/(q(x)) and with Tillich-Zémor generators s0, s1, the

following collisions of palindromes of length 2 · 5 + 2 = 12 occur:

h̆(0

palindrome︷ ︸︸ ︷
00110︸ ︷︷ ︸
v1

01100︸ ︷︷ ︸
vr1

0) = h̆(1

the same palindrome︷ ︸︸ ︷
00110︸ ︷︷ ︸
v1

01100︸ ︷︷ ︸
vr1

1)

h̆(0
︷ ︸︸ ︷
11101︸ ︷︷ ︸
v2

10111︸ ︷︷ ︸
vr2

0) = h̆(1
︷ ︸︸ ︷
11101︸ ︷︷ ︸
v2

10111︸ ︷︷ ︸
vr2

1)

We observe that the bitstring v2 can be obtained by reversing bitstring v1 followed by

inverting the first and the last bit.

For n small enough to be able to list all irreducible polynomials of degree n,

we checked for the existence of the collisions of palindromes of length 2n + 2 for

each irreducible polynomial of the degree n. The next example shows the list of of all

irreducible polynomials over F2 of degree 5 and corresponding collisions of palindromes

of length 12.

66

Example 5.2. For each irreducible polynomial q(x) of degree 5 used to define the

field F25 = F2[x]/(q(x)) and with Tillich-Zémor generators s0, s1, there are exactly

two collisions of palindromes of length 12.

Irreducible polynomial q(x) Collisions of palindromes of length 2n+ 2

x5 + x2 + 1 h̆(001110011100) = h̆(101110011101)

h̆(011111111110) = h̆(111111111111)

x5 + x4 + x2 + x+ 1 h̆(000000000000) = h̆(100000000001)

h̆(010001100010) = h̆(110001100011)

x5 + x3 + x2 + x+ 1 h̆(000010010000) = h̆(100010010001)

h̆(011001100110) = h̆(111001100111)

x5 + x3 + 1 h̆(000111111000) = h̆(100111111001)

h̆(001101101100) = h̆(101101101101)

x5 + x4 + x3 + x+ 1 h̆(011101101110) = h̆(111101101111)

h̆(000110011000) = h̆(100110011001)

x5 + x4 + x3 + x2 + 1 h̆(011000000110) = h̆(111000000111)

h̆(010010010010) = h̆(110010010011)

Experimental results showed that for each tested choice of F2n = F2[x]/(q(x))

there are exactly two bitstrings v1, v2 ∈ {0, 1}n, |v1| = n, |v2| = n, such that

h(0viv
r
i0) = h(1viv

r
i1) (i = 1, 2).

5.3 Finding short palindrome collisions

Based on our experimental results we restrict our search for collisions to a search for

palindromic collisions of bitstrings of length 2n+ 2. We proceed in three steps. First,

67

we change the original generators, while preserving collisions, secondly, we develop

results characteristic for palindromic collisions but work inside the group SL2(F2[x])

of unimodular matrices over the polynomial ring F2[x] rather than over a field F2n .

Thirdly, we establish a connection between the Tillich-Zémor proposal and maximal

length chains in the Euclidean algorithm for polynomials over the field of two elements

and connect the underlying problem to a crucial result of Mesirov and Sweet [29].

5.3.1 Collision preserving change of generators

Recall that the original Tillich-Zémor generators are elements of SL2(F2n):

s0 :=

(
α 1

1 0

)
, s1 :=

(
α α+ 1

1 1

)
,

where α is a root of the irreducible polynomial used to define the field F2n .

We define new generators c0 and c1 and show that the search for collisions for the

Tillich-Zémor hashing scheme can be translated to a search for collisions when the

new generators are used for hashing.

Set c0 = s0 and obtain c1 by conjugating s1 by s0:

c1 := s−1
0 s1s0.

After performing the computations, the new generators are:

c0 :=

(
α 1

1 0

)
, c1 =

(
α+ 1 1

1 0

)
.

The new generators differ in exactly one entry and both matrices are symmetric. We

now define a new hash function: h : V −→ G by:

h(b1b2 . . . bm) := cb1 · · · cbm ∈ G.

68

The next proposition shows that the collisions in the original Tillich-Zémor generators

occur for exactly the same bitstrings as collisions in the generators c0 and c1.

Proposition 5.1. Let v1, v2 ∈ V . Then, h̆(v1) = h̆(v2) if and only if h(v1) = h(v2).

Proof. Let v1 = b1b2 . . . bn and v2 = b′1b
′
2 . . . b

′
m be two bitstrings from V . Then h̆(v1) =

h̆(v2), written in terms of bitstrings h̆(b1b2 . . . bn) = h̆(b′1b
′
2 . . . b

′
m), is equivalent to

sb1 · · · sbn = sb′1 · · · sb′m . Conjugate both sides of the equality by s0 to obtain:

s−1
0 (sb1 · · · sbn)s0 = s−1

0 (sb′1 · · · sb′m)s0.

The last equality is equivalent to

n∏
i=1

(s−1
0 sbis0) =

m∏
i=1

(s−1
0 sb′is0).

Since, s−1
0 s0s0 = s0 = c0 and s−1

0 s1s0 = c1, the last equality is equivalent to
∏n

i=1 cbi =∏m
i=1 cb′i , or equivalently h(v1) = h(v2).

5.3.2 Palindromic collisions

We define matrices C0, C1 ∈ SL2(F2[x]), with polynomial entries, as follows:

C0 :=

(
x 1

1 0

)
, C1 :=

(
x+ 1 1

1 0

)
∈ SL2(F2[x]),

and define H : V −→ SL2(F2[x]) by:

H(b1b2 . . . bm) := Cb1 · · ·Cbm ∈ SL2(F2[x])

Notice that the function H is defined in an analogous way to function h except that

when H is applied to a bitstring, it gives a product of matrices in SL2(F2[x]) and the

result in SL2(F2[x]) rather than in the field F2n .

69

When applied to palindromes, function H has some interesting properties which

we list in the next lemma.

Lemma 5.1. Let v ∈ V be a palindrome, and write H(v) = (a bc d). Then, b =

c, i. e., H(v) is symmetric. Moreover, a has degree deg(a) = |v|, and we have

max(deg(b), deg(d)) ≤ |v|.

Proof. We prove the lemma by induction on the length |v| of v.

If |v| ≤ 1, then v is either empty word or the one bit word 1 or 0. Then H(v) is

either the identity matrix, or else C0 or C1, all of which satisfy the claimed properties.

Assume that palindromes of length n− 2 satisfy the claimed properties and let ω

be a palindrome of length n. Then, H(ω) = C0H(v)C0 or H(ω) = C1H(v)C1, where

v is a palindrome of length n− 2 and where H(v) = (a bc d). In the first case,

C0H(v)C0 =

 ax2 + (b+ c)x+ d ax+ c

ax+ b a

 .

In the second case,

C1H(v)C1 =

 ax2 + (b+ c)x+ a+ b+ c+ d a(x+ 1) + c

a(x+ 1) + b a

 .

By the induction hypothesis, b = c, and the first part of the statement follows directly.

The statement about the degrees can be verified directly.

The following proposition states that if v ∈ V is palindrome of even length, then

the diagonal entries of H(v) are squares.

Proposition 5.2. If v ∈ V is a palindrome of even length, then H(v) =
(
a2 b
b d2

)
for

some a, b, d ∈ F2[x].

70

Proof. Suppose that v ∈ V is a palindrome of even length. Then, we can write

v = wwr for some w ∈ V . The proof is by induction on |w|.

If |w| = 0, H(v) is identity matrix and the statement follows.

Suppose that w is extended by a single bit β, β ∈ {0, 1}. Then the form of the

palindrome is βvβ = (βw)(wrβ). By the induction hypothesis,

H(v) = H(wwr) =

(
a2 b

b d2

)
,

and hence

H(βvβ) = Cβ

(
a2 b

b d2

)
Cβ =

 (x+ β)2a2 + d2 (x+ β)a2 + b

(x+ β)a2 + b a2



Our goal is to construct collisions in SL2(F2[x]/(q(x))) of the form h(0v0) =

h(1v1), where v is a palindrome of length 2n. Now, h(0v0) = h(1v1) if and only if

h(0v0) + h(1v1) is the zero matrix in SL2(F2[x]/(q(x))). This motivates us to define

the function ρ : V −→ F2[x]2×2 by

ρ(v) := H(0v0) +H(1v1).

h(0v0) = h(1v1) is a collision in SL2(F2[x]/(q(x)) if and only if ρ(v) is equal to zero

matrix modulo irreducible polynomial q(x), i.e., ρ(v) ≡ (0 0
0 0) mod q(x).

The next proposition concerns the form of the matrix entries in ρ(v), when v is a

palindrome.

Proposition 5.3. Let v ∈ V be a palindrome of length |v|. Then, ρ(v) = (a aa 0)

where a ∈ F2[x] has degree |v| and a is the upper left entry of H(v).

71

Proof. If v ∈ V is a palindrome, then by the Lemma 5.1, H(v) is matrix with entries

(1,2) and (2,1) equal. We can write: H(v) := (a bb d). With C0 = (x 1
1 0) and C1 =

(x+1 1
1 0), direct computation yields:

ρ(v) = H(0v0) +H(1v1) = C0H(v)C0 + C1H(v)C1 = (a aa 0)

From Lemma 5.1, the degree of upper left entry of H(v), for v ∈ V being a palindrome,

is equal to |v|. Therefore, deg(a) = |v|.

A direct consequence of Propositions 5.3 and 5.2 is the following corollary:

Corollary 5.1. Let v ∈ V be a palindrome of even length. Then ρ(v) =
(
a2 a2

a2 0

)
for

some a ∈ F2[x] with deg(a) = |v|/2 and where a2 is the upper left entry of H(v).

Example 5.3. With C0 and C1 as above and with palindrome v = 0011001100, we

have ρ(v) = H(000110011000) +H(100110011001). When computed:

ρ(v) =

 x10 + x8 + x6 + x2 + 1 x10 + x8 + x6 + x2 + 1

x10 + x8 + x6 + x2 + 1 0


We notice that the nonzero polynomial entries in matrix ρ(v) are squares of the poly-

nomial a(x) = x5 + x4 + x3 + x + 1. Moreover, deg(a) = 5, i.e, exactly half of the

length of the given palindrome and a2 is the upper left entry of H(v):

H(v) =

 x10 + x8 + x6 + x2 + 1 x9 + x4 + x3 + x2 + x+ 1

x9 + x4 + x3 + x2 + x+ 1 x8 + x6 + x2


Further, from the proof of Proposition 5.2 we are able to deduce the following

recurrence relation:

72

Corollary 5.2. Let bn . . . b1b1 . . . bn ∈ V be a palindrome of length 2n. Then, for

0 ≤ i ≤ n, the square root pi of the upper left entry of H(bi . . . b1b1 . . . bi) is given by

pi =


1, if i = 0;

x+ b1 + 1, if i = 1;

(x+ bi)pi−1 + pi−2, if 1 < i ≤ n.

Based on our experimental results, we observed that besides palindromic collisions,

for every input parameter q(x), we obtain also non-palinbromic collisions of bitstrings

of the same length. The following proposition confirms the observation.

Proposition 5.4. Let v ∈ V be a palindrome. Then h(0v0) = h(1v1) if and only if

h(0v1) = h(1v0).

Proof. From Lemma 5.1, if v ∈ V is a palindrome, then H(v) = (a bb d) for a, b, d ∈ F[x],

i.e., H(v) is symmetric. From Proposition 5.3, it follows that

H(0v0) +H(1v1) = C0H(v)C0 + C1H(v)C1 = (a aa 0) = a(1 1
1 0).

Similar computation yields:

H(0v1) +H(1v0) = C0H(v)C1 + C1H(v)C0 = (0 a
a 0) = a(0 1

1 0).

Therefore,

h(0v0) = h(1v1) ⇐⇒ a = 0 mod q ⇐⇒ h(0v1) = h(1v0)

where q is input irreducible polynomial.

73

5.3.3 Maximal length chains in the Euclidean algorithm

A palindrome v of length 2n for which ρ(v) = 0 modulo the irreducible polynomial

q(x), produces a collision h(0v0) = h(1v1) in SL2(F2[x]/(q(x)). From Corollary 5.1,

it follows that ρ(v) =
(
a2 a2

a2 0

)
for some a ∈ F2[x]. However, since we require that

ρ(v) = 0 modulo q(x), it must be that the polynomial q(x) is a divisor of polynomial

a(x). Based on the same Corollary, deg(a) = |v|/2 = n. Since q(x) is irreducible

polynomial which divides a(x) and since deg(a) = deg(q) = n, it must be that

a(x) = q(x). Finally, we are able to conclude that for a given irreducible polynomial

as an input parameter, ρ(v) =
(
q2 q2

q2 0

)
and that q2 is the upper left entry of H(v).

Example 5.4. Palindrome v = 0011001100 from Example 5.3, has ρ(v) =
(
q2 q2

q2 0

)
where q(x) = x5 + x4 + x3 + x + 1, i.e., ρ(v) = 0 mod q(x), and produces collision:

h(0v0) = h(1v1), i.e., h(000110011000) = h(100110011001).

Corollary 5.2 gives the recurrence relation which connects the square root pi of the

upper left entry of H(v), i.e., q(x) and bits of the palindrome v = bi . . . b1b1 . . . bi ∈ V .

To be able to deduce bits bi . . . b1b1 . . . bi, it is sufficient to know the second polynomial,

namely pi−1. The second polynomial pi−1(x) ∈ F2[x] must be of degree n − 1 and

such that gcd(q(x), pi−1(x)) = 1 and such that in the Euclidean algorithm with input

(q(x), pi−1(x)), the successive quotients are all of degree 1, and the degree of each

remainder is one less than the degree of the respective divisor. The second polynomial

produces a ”Euclidean chain” of maximal length. The existence of polynomial pi−1

is assured by the following Proposition by Mesirov and Sweet:

Proposition 5.5 (Mesirov and Sweet [29]). Given any irreducible polynomial q of

degree n over F2, there is a sequence of polynomials pn, pn−1, . . . , p0 with pn = q and

p0 = 1, and additionally, the degree of pi is equal to i and pi ≡ pi−2 mod pi−1.

74

Once the second polynomial is known, the Euclidean algorithm will uniquely com-

plete the sequence pn = q, pn−1, . . . , p1, p0 = 1 and also provide the linear quotients

x + βi (i = 1, . . . , n) which allow us to derive the bits bi of the palindrome in Corol-

lary 5.2. The bits can be computed as b1 = β1 +1, since p1 = x+ b1 +1 and as bi = βi

for i > 1, i. e., the bit β1 has to be inverted. This yields the collision

h(0βn . . . β1 β1 . . . βn0) = h(1βn . . . β1 β1 . . . βn1),

where β1 indicates the inversion of β1.

Mesirov and Sweet [29], prove the Proposition 5.5 and the proof contains an

actual algorithm for constructing the second polynomial pi−1. The algorithm produces

exactly two polynomials with the above described properties and they induce two

collisions.

We give the algorithm as it is described in [29]:

1) Construct a matrix A ∈ F(n+1)×n
2 from the n+ 1 polynomials

g0 = x0 mod q(x),

gi = xi−1 + x2i−1 + x2i mod q(x), for i = 1, 2, . . . , n,

placing in the ith row of A the coefficients ai,0, ai,1, . . . , ai,n−1 of the polynomial

gi = ai,0 + ai,1x+ · · ·+ ai,n−1x
n−1.

2) Solve the linear system Aut = (1, 0, . . . , 0, 1)t where u = (u1, u2, . . . , un).

3) Compute p(x) by multiplying q(x) by
∑n

i=1 uix
−i and taking only the non-

negative powers of x.

Before giving collisions for the challenge parameters, we illustrate the algorithm

75

for an input irreducible polynomial of small degree n. The algorithm will provide

palindrome collisions of length 2n + 2 for the Tillich-Zémor hash function. Small n

will result in a system of small number of equations and short Euclidean maximal

chains. Note that when n is small, we could also preform a brute force to discover

collisions.

Example 5.5. With irreducible polynomial q(x) = x5 +x3 +x2 +x+ 1 used to define

the field F25 = F2[x]/(q(x)) and with Tillich-Zémor generators s0, s1 we discover

palindromic collisions of words of length 2n+2 by applying above described procedures.

Given a polynomial q(x) we first form polynomials gi, i ∈ {0, . . . , 5}:

g0 = 1 mod q(x) = 1

g1 = 1 + x+ x2 mod q(x) = 1 + x+ x2,

g2 = x+ x3 + x4 mod q(x) = x+ x3 + x4,

g3 = x2 + x5 + x6 mod q(x) = x+ x2 + x4,

g4 = x3 + x7 + x8 mod q(x) = x+ x4,

g5 = x4 + x9 + x10 mod q(x) = 1 + x3.

We place in the ith row of matrix A the coefficients ai,0, ai,1, ai,2, ai,3, ai,4 of the poly-

nomial gi = ai,0 + ai,1x + ai,2x
2 + ai,3x

3 + ai,4x
4. The linear system of equations

Aut = (1, 0, . . . , 0, 1)t is given by:



1 0 0 0 0

1 1 1 0 0

0 1 0 1 1

0 1 1 0 1

0 1 0 0 1

1 0 0 1 0





u1

u2

u3

u4

u5


=



1

0

0

0

0

1


.

76

By solving the above system of linear equations in u1, . . . , u5, we obtain two solu-

tions: (u1, . . . , u5) ∈ {(1, 0, 1, 0, 0), (1, 1, 0, 0, 1)}.

First, assume that (u1, . . . , u5) = (1, 0, 1, 0, 0) and compute p(x) by multiplying q(x)

by
∑5

i=1 uix
−i and taking only the non-negative powers of x:

(x−1 + x−3)(x5 + x3 + x2 + x+ 1) = x4 + x+ x−2 + x−3

Thus, p(x) = x4 + x.

The Euclidean algorithm with q(x) = x5 + x3 + x2 + x + 1 and p(x) = x4 + x

produces the following sequence of equalities:

x5 + x3 + x2 + x+ 1 = (x+ 0)(x4 + x) + x3 + x+ 1,

x4 + x = (x+ 0)(x3 + x+ 1) + x2,

x3 + x+ 1 = (x+ 0)(x2) + x+ 1,

x2 = (x+ 1)(x+ 1) + 1,

x+ 1 = (x+ 1)(1) + 0.

The sequence yields the following sequence of linear quotients: x + 0, x + 0, x + 0,

x+ 1, x+ 1 and reveals bits (β1, β2, β3, β4, β5) = (1, 1, 0, 0, 0). This yields the collision

h(0β5β4β3β2β1 β1β2β3β4β50) = h(1β5β4β3β2β1 β1β2β3β4β51),

i.e., h(000010010000) = h(100010010001).

We derive the second palindromic collision by taking (u1, . . . , u5) = (1, 1, 0, 0, 1).

Then, q(x)
∑5

i=1 uix
−i becomes:

(x−1 + x−2 + x−5)(x5 + x3 + x2 + x+ 1) = x4 + x3 + x2 + 1 + x−2 + x−3 + x−4 + x−5.

77

It follows that p(x) = x4 + x3 + x2 + 1. The Euclidean algorithm with q(x) =

x5 + x3 + x2 + x + 1 and p(x) = x4 + x3 + x2 + 1 produces the following list of

equalities:

x5 + x3 + x2 + x+ 1 = (x+ 1)(x4 + x3 + x2 + 1) + x3,

x4 + x3 + x2 + 1 = (x+ 1)(x3) + x2 + 1,

x3 = (x+ 0)(x2 + 1) + x,

x2 + 1 = (x+ 0)(x) + 1,

x = (x+ 0)(1) + 0.

From the linear quotients we derive bits (β1, . . . , β5) = (0, 0, 0, 1, 1) which yields the

second palindromic collision: h(011001100110) = h(111001100111).

From these two collisions of palindromes of length 2n+2 and based on Proposition

5.4, we derive two more collisions of words of length 2n+ 2 by inverting appropriate

bits:

h(000010010001) = h(100010010000)

h(011001100111) = h(111001100110)

5.4 Collisions for the challenge parameters

Our final task was to derive collisions for the challenge parameters. We implemented

our attack in the computer algebra system Magma [3] on a standard PC. For each

choice of F2n = F2[x]/(p(x)) we obtain two bitstrings v1, v2 ∈ {0, 1}n with

h(0viv
r
i0) = h(1viv

r
i1) (i = 1, 2),

78

i. e., we obtain two collisions of bitstrings of length 2n + 2. For simplicity, below we

restrict to listing one bitstring v1 for each challenge parameter—the value v2 can be

obtained by reversing v1 followed by inverting the first and last bits. To specify our

solutions v1, we use hexadecimal notation where each hexadecimal digit represents

4 bits (0 – 0000, 1 – 0001, . . . , E – 1110, F – 1111). Spaces are for readability only.

A collision for SL2(F2[x]/(x127 + x+ 1))

Here we may choose

v1 = 8000 0000 0000 0003 0000 0000 0000 000

followed by the three bit sequence 000.

A collision for SL2(F2[x]/(x251 + x7 + x4 + x2 + 1))

Here we may choose

v1 = 4451 04E5 4DAB 26EB 91D3 5201 0EBD E579 54F7 AE10

0959 713A EC9A B654 E411 44

followed by the three bit sequence 011.

A collision for SL2(F2[x]/(x509 + x8 + x7 + x3 + 1))

Here we may choose

v1 = 10BB E68D B808 2B84 9A1C 569C 9043 7170 8D98 E3EB

C923 4CF8 44F4 552C 8B49 1D45 25C4 9689 A551 7910

F996 249E BE38 CD88 7476 1049 CB51 C2C9 0EA0 80ED

8B3E E84

followed by the single bit 1.

79

A collision for SL2(F2[x]/(x1021 + x5 + x2 + x+ 1))

Here we may choose

v1 = 7EDE B9C6 F43F 3707 050D 36F7 0DA4 C665 CD36 41ED

101D F09A 258F 8C09 1176 82FF 42A1 6475 21B2 8901

143D DB01 10FE FD61 C4A9 C498 4005 0C28 F705 C7DA

6449 1D97 CDC4 9132 DF1D 0778 A185 0010 C91C A91C

35FB F844 06DD E144 048A 6C25 7134 2A17 FA0B 7444

818F 8D22 C87D C045 BC13 659D 3319 2D87 7B65 8507

0767 E17B 1CEB DBF

followed by the single bit 1.

A collision for

SL2(F2[x]/(x2039 + x10 + x9 + x8 + x7 + x5 + x4 + x2 + 1))

Here we may choose

80

v1 = 5DB1 31E2 BFD6 5D34 A98C 7FEF 8049 6043 1918 8835

7F23 1BEF CF42 391A E5AF A211 BACE 74DF F1B3 4B0D

372F 1A17 4D0C FE33 6064 292E 790A 57C7 DF43 5E17

E424 49EA 3BE4 C978 3D58 1F53 ECDA DE3A 6B60 06DC

5EDD 8E80 E201 B9C8 23A7 0998 3521 A78D 8D49 1239

8700 9071 2D47 943F A369 C3C9 ABF7 7E05 FC66 FA4E

607C 0D22 433E 8368 42F9 8489 607C 0CE4 BECC 7F40

FDDF AB27 872D 8BF8 53C5 691C 1201 C338 9125 6363

CB09 5833 21CB 8827 3B00 8E02 E376 F476 C00D ACB8

F6B6 6F95 F035 783D 264F B8AF 2448 4FD0 F585 F7C7

D4A1 3CE9 284C 0D98 FE61 65D0 B1E9 D961 A59B 1FF6

5CE6 BB10 8BEB 4EB1 3885 E7EF B189 FD58 2231 3184

0D24 03EF FC63 2A59 74D7 FA8F 191B 7

followed by the three bit sequence 011.

Based on the previous results we conclude that neither the Tillich-Zémor hash

function from CRYPTO ’94 nor its variants from ICECS ’08 and CRT-RSA ’09 should

be used in applications where collision resistance is essential.

81

Conclusions

We analyzed possible applications of the generalizied discrete logartihm problem in

non-abelian groups in cryptography and drew several conclusions.

Special care must be taken to ensure that the GDLP is hard in the carier group, its

representation and particular generators. We have seen that for the group PSL(2, p),

p prime number, generated by two elements and its representation on matrices SL(2, p),

GDLP can be solved efficiently provided that at least one of the generators is of order

p or that we are able to write efficiently a word of order p in terms of the given

generators. As such, group PSL(2, p) in the mentioned representation, generated by

special generating pairs is not suitable for cryptographic applications whose security

relies on the intractability of the GDLP.

Under the assumption that the GDLP and conjugacy search problems are hard

in the underlying group, Computational Diffie-Hellman Problem and Decision Diffie-

Hellman Problem can be generalzied and a Diffie-Hellman like key exchange protocol

and ElGamal like encryption scheme constructed.

Finally, after our cryptanalytic attack on the Tillich-Zémor hash function which

is defined in non-abelian group, we conclude that it is not collision resistant and as

such should not be used in the cryptographic applications where collision resistance

of hash function is essential.

82

Bibliography

[1] Kanat S. Abdukhalikov, and Chul Kim. On the Security of the Hashing Scheme

Based on SL2. In S. Vaudenay, editor, Fast Software Encryption – FSE ’98, vol-

ume 1372 of Lecture Notes in Computer Science, pages 93-102. Springer-Verlag,

1998.

[2] I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S.A. Vanstone). Computing loga-

rithms in finite fields of characteristic two, SlAM J. Discrete Math. and Appl., 5

(1984), 276-285.

[3] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra sys-

tem. I. The user language. Journal of Symbolic Computation, 24(3-4):235-265,

1997.

[4] Chris Charnes and Josef Pieprzyk. Attacking the SL2 hashing scheme. In J.

Pieperzyk and R. Safavi-Naini, editors, Advancesin Cryptology-ASIACRYPT

’94, volume 917 of LectureNotes in Computer Science, pages 322-330. Springer-

Verlag, 1995.

[5] Leo G. Chouinard II, Robert Jajcay and Spyros S. Magliveras. Finite Groups and

Designs, Handbook of Combinatorial Designs, C.J. Colbourn and J. H. Dinitz

editors, Chapman & Hall / CRC ISBN 1-58488-506-8, (2007), pp. 819-847.

83

[6] Leonard Eugene Dickson with an introduction by Wilhelm Magnus. Linear

Groups with an exposition of the Galois field theory. Dover Publications, Inc.,

New York, 1958.

[7] Whitfield Diffie, Martin Hellman. New directions in cryptography. IEEE Trans-

actions on Information Theory, IT-22, 1976, pp. 644-654.

[8] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(1985), 469-

472.

[9] Walter Feit, Characters of Finite groups, W.A. Benjamin, Inc., New York, 1967.

[10] Willi Geiselmann. A Note on the Hash Fucntion of Tillich and Zémor. In C. Boyd,

editor, Cryptography and Coding, volume 1025 of Lecture Notes in Computer

Science, pages 257-263. Springer-Verlag, 1995.

[11] D. Gorenstein, Finite groups. Harper & Row, New York, 1968.

[12] Markus Grassl, Ivana Ilić, Spyros Magliveras, Rainer Steinwandt. Crypt-

analysis of the Tillich-Zémor hash function. Journal of Cryptology,

2010. Cryptology ePrint Archive: Report 2009/376, 2009. Available at:

http://eprint.iacr.org/2009/376

[13] M. Hall, Jr.. The theory of groups. Macmillan, New York, 1959.

[14] Derek Holt, Bettina Eick, Eamonn A. O’Brien. Handbook of computational

group theory. Chapman & Hall / CRC Press, Boca Raton, 2005.

[15] B. Huppert. Endliche Gruppen. Springer, 1967.

84

[16] Ivana Ilić, Spyros S. Magliveras. Weak discrete logarithms in non-abelian groups.

Journal of Combinatorial Math. and Comb. Computing (JCMCC), 74 (2010), pp.

3-11.

[17] Ivana Ilić, Spyros S. Magliveras. Crypto applications of combinatorial group

theory. To appear in: Information security and related combinatorics. IOS Press,

Amsterdam, 2010.

[18] Wolfgang Lempken, Spyros S. Magliveras, Tran van Trung and Wandi Wei. A

public key cryptosystem based on non-abelian fnite groups. J. Cryptology, 22,

(2009) pp. 62-74.

[19] D. E. Littlewood. The Theory of Group Characters. 2nd edition, Clarendon

Press, Oxford, 1958.

[20] Lee C. Klingler, Spyros S. Magliveras, Fred Richman, Michal Sramka. Discrete

logarithms for finite groups. Computing, (2009) 85 pp. 3-19.

[21] N. Koblitz. A Course in Number Theory and Cryptography. Second Edition.

Springer-Verlag, 1994.

[22] S. S. Magliveras and N. D. Memon. The Algebraic Properties of Cryptosystem

PGM. J. of Cryptology, 5 (1992), pp. 167-183.

[23] S. S. Magliveras, P. Svaba, Tran van Trung and P. Zajac. On the security of a

realization of cryptosystem MST3. Tatra Mt. Publ. 41 (2008), pp. 1-13.

[24] S. S. Magliveras, Tran van Trung and D.R. Stinson. New approaches to designing

public key cryptosystems using one-way functions and trap-doors in fnite groups.

J. Cryptology, 15, (2002), pp. 285-297.

85

[25] Ayan Mahalanobis. Diffie-Hellman key exchange protocol, its generalizations and

nilpotent groups, Ph.D. dissertation, Florida Atlantic University, Boca Raton,

FL, 2005.

[26] Ayan Mahalanobis. A simple generalization ofthe ElGamal cryptosystem to non-

abelian groups. Comm Algebra 36(10):3878-3889, 2008.

[27] Ayan Mahalanobis. The Diffie-Hellman key exchange protocol, and non-abelian

nilpotent groups. Isr. Jr. Math 165:161-187, 2008.

[28] Alfred Menezes, Paul C. van Oorschot, Scott A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[29] Jill P. Mesirov and Melvin M. Sweet. Continued Fraction Expansions of Ratio-

nal Expressions with Irreducible Denominators in Characteristic 2. Journal of

Number Theory, 27:144-148, 1987.

[30] Giacomo de Meulenaer, Christophe Petit, and Jean-Jacques Quisquater. Hard-

ware Implementations of a Variant of the Zémor-Tillich Hash Function: Can

a Provable Secure Hash Function be very efficient?, May 2009. Available at

http://eprint.iacr.org/2009/229.

[31] R. C. Mullin, J. L. Yucas , and G. L. Mullen. A generalized counting and factoring

method for polynomials over finite fields. Proc. Fortieth Southeastern Interna-

tional Conference, Submitted March 2009.

[32] R. C. Mullin and A. Mahalanobis. An alternative representation of finite fields.

Utilitas Math 67 (2005), 305-318.

86

[33] R. C. Mullin. A combinatorial proof of the existence of finite fields. Amer. Math.

Monthly 71 (1964), 901-902. Reprinted in Selected Papers on Algebra Math.

Ass’n of America (1977), 231-233.

[34] Special Volume: Contemporary Mathematics 225, Finite Fields: Theory Appli-

cations, and Algorithms, Proc. Fourth International Conference on Finite Fields,

Aug. 12- 15, 1997 Ronald C. Mullin and Gary L. Mullen eds.

[35] Andrew Odlyzko. Discrete logarithms in finite fields and their cryptographic

significance. In Advances in Cryptology-EUROCRYPT’84, LNCS 219, pp. 224-

314, Springer Verlag, 1985.

[36] Andrew Odlyzko. Discrete logarithms: The past and the future. Designs, Codes,

and Cryptography, 19:129-145, 2000.

[37] Seong-Hun Paeng, Kil-Chan Ha, Jae Heon Kim, Seongtaek Chee, and Choonsik

Park. New public key cryptosystem using finite non-abelian groups. Crypto 2001

(J. Kilian, ed.), LNCS, vol. 2139, Springer-Verlag, 2001, pp. 470485.

[38] D. S. Passman. Permutation Groups. W.A. Benjamin, Inc., New York, 1968.

[39] Christophe Petit and Kristin Lauter and Jean-Jacques Quisquater. Cayley

Hashes: A Class of Efficient Graph-based Hash Functions. Preprint, 2007. Avail-

able at: http://www.dice.ucl.ac.be/ petit/files/Cayley.pdf

[40] Christophe Petit and Jean-Jacques Quisquater and Jean-Pierre Tillich and Gilles

Zémor. Hard and Easy Components of Collision Search in the Zémor-Tillich Hash

Function: New Attacks and Reduced Variants with Equivalent Security. In M.

Fischlin, editor, Topics in Cryptology-CT-RSA 2009, volume 5473 of Lecture

Notes in Computer Scinece, pages 182-194. Springer-Verlag, 2009.

87

[41] Christophe Petit and Nicolas Veyrat-Charvillon and Jean-Jacques Quisquater.

Efficiency and Pseudo-Randomness of a Variant of Zémor-Tillich Hash Function.

In IEEE International Conference on Electronics, Circuits, and Systems ICECS

2008, 2008.

[42] Joseph J. Rotman. An Introduction to the Theory of Groups. Springer-Verlag

New York, Berlin, Heidelberg, 4th ed., 1995.

[43] Joseph J. Rotman. Advanced Modern Algebra. Prentice Hall, Upper Saddle

River, NJ, 2002.

[44] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. on Computing, 26(5), pp. 1484-

1509 (1997).

[45] V. Shpilrain and G. Zapata. Combinatorial group theory and public key cryp-

tography. Applicable Algebra in Engineering, Communication and Computing 17

(2006), 291-302.

[46] V. Shpilrain. Cryptanalysis of Stickel’s key exchange scheme, in: Computer Sci-

ence in Russia 2008, Lecture Notes Comp. Sc. 5010 (2008), 283288.

[47] Michal Sramka. New Results in Group Theoretic Cryptology, Ph.D. Thesis,

Florida Atlantic University, Boca Raton, FL 2006.

[48] Michal Sramka. On the Security of Stickel’s Key Exchange Scheme. Journal of

Combinatorial Mathematics and Combinatorial Computing 66 (2008), pp. 151-

159.

88

[49] E. Stickel. A New Method for Exchanging Secret Keys. In. Proc. of the Third In-

ternational Conference on Information Technology and Applications (ICITA05)

2(2005), 426-430.

[50] Rainer Steinwandt, Markus Grassl, Willi Geiselmann, Thomas Beth. Weaknesses

in the SL(F2n) Hashing Scheme. In Bellare, editor, Advances in Cryptology-

CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 287-

299. Springer-Verlag, 2000.

[51] Douglas R. Stinson. Cryptography: Theory and Practice, 2nd ed, CRC Press,

New York, NY, 2002.

[52] Michio Suzuki. Group Theory I. Springer-Verlag, New York, 1982.

[53] Edlyn Teske. Square-Root Algorithms for the Discrete Logarithm Problem (A

Survey). Public-Key Cryptography and Computational Number Theory, Walter

de Gruyter, Berlin-New York, 2001, pp. 283-301.

[54] Jean-Pierre Tillich and Gilles Zémor. Group-theoretic hash functions. In G. D.

Cohen and S. Litsyn and A. Lobstein and G. Zémor, editors, Lecture Notes in

Computer Science, pages 90-110. Springer-Verlag, 1994.

[55] Jean Pierre Tillich, Gilles Zémor. Hashing with SL2. In Y. Desmedt, editor,

Advances in Cryptology–CRYPTO’94, volume 839 of Lecture Notes in Computer

Science, pages 40-49, 1994.

[56] M. I. Gonzlez Vasco, M. Rotteler, and R. Steinwandt. On Minimal Length Fac-

torizations of Finite Groups. Experimental Mathematics, 12(1): 1-12, 2003.

89

[57] M. I. Gonzlez Vasco and R. Steinwandt. Chosen ciphertext attacks as common

vulnerability of some group- and polynomial-based encryption schemes. Tatra

Mountains Mathematical Publications, vol. 33, pp. 149-157, 2006.

[58] M. I. Gonzlez Vasco, C. Martnez, and R. Steinwandt. Towards a Uniform De-

scription of Several Group Based Cryptographic Primitives. Designs, Codes and

Cryptography, vol. 33, pp. 215-226, 2004.

[59] H. Wielandt. Finite Permutation Groups. Academic Press, 1964.

[60] Gilles Zémor. Hash Functions and Graphs With Large Girths. In D. W. Davies,

editor, Advances in Cryptology – EUROCRYPT ’91, volume 547 of Lecture Notes

in Computer Science, pages 508–511. Springer-Verlag, 1991.

[61] Gilles Zémor. Hash Functions and Cayley Graphs. Designs, Codes and Cryptog-

raphy, 4(4):381–394, October 1994.

90

Appendix A

Appendix on group PSL(2, q)

actions

Assume that q is a prime power. We consider two cases, namely q ≡ 1 (mod 4), and

q ≡ 3 (mod 4). In either case, the normalizers of cyclic subgroups of order (q − 1)/2

and (q + 1)/2 are dihedral Dq−1 and Dq+1 of orders (q − 1) and (q + 1) respectively.

The distribution and frequencies within conjugacy classes of the elements of Dq−1

and Dq+1 are easy to determine, so an application of Theorem 2.3, item (c) yields the

induced characters θ = 1 ↑GDq−1
and φ = 1 ↑GDq+1

.

Note that columns 4, 5 and 6 of tables in the Appendix correspond to several

conjugacy classes of elements of G, and the number of such classes is given in row 5

of the tables. The first row describes canonical representatives of the classes, row 2

the orders of elements in the classes, row 3 the orders of centralizers of elements in

classes and row 4 the class sizes. Rows 7 and 9 give the values of the characters θ and

φ of the action of G on the conjugacy classes of cyclic subgroups of order (q − 1)/2

and (q + 1)/2 respectively. These are computed from rows 6 and 8 respectively and

the formula given in Theorem 2.3, (c).

91

x (1 0
0 1)

(
1 0
0 −1

)
(1 0

0 λ)
(

0 1
−1 λ

)
(1 0

1 1)

|x| 1 2
all divisors d 6= 2

of (q-1)/2
all divisors d 6= 2

of (q+1)/2 p

σx q(q2 − 1)/2 (q − 1) (q − 1)/2 (q + 1)/2 q
κx 1 q(q + 1)/2 q(q + 1) q(q − 1) (q2 − 1)/2

Ki 1 1 (q − 5)/4 (q − 1)/4 2
hx 1 (q + 1)/2 2 0 0
θ q(q + 1)/2 (q + 1)/2 1 0 0
h′x 1 (q + 1)/2 0 2 0
φ q(q − 1)/2 (q − 1)/2 0 1 0

Table A.1: PSL(2, q) for q ≡ 1 mod (4)

Proposition A.1. Suppose that q is a prime power, q ≡ 1 (mod 4), and let G =

PSL(2, q). Let X be the collection of all cyclic subgroups of order (q− 1)/2 of G, Y

the collection of all cyclic subgroups of order (q + 1)/2 of G, and let G act on X and

Y by conjugation. Then,

(i) Each of X and Y constitute of a single conjugacy class of subgroups,

(ii) There are exactly 3(q + 3)/4 G-orbits on X ×X,

(iii) There are exactly 3(q − 1)/4 G-orbits on Y × Y , and

(iv) There are (3q + 1)/4 G-orbits on X × Y .

Proof. The number of G-orbits on X is (θ, [1]), and the number of G-orbits on Y is

(φ, [1]). Since (θ, [1]) = (φ, [1]) = 1 we have an independent proof that there is just

one conjugacy class of cyclic subgroups of order (q− 1)/2 and one conjugacy class of

cyclic subgroups of order (q + 1)/2. Moreover, (θ · θ, [1]) = (θ, θ) gives the number

of G-orbits on X × X. Similarly, (φ, φ) gives the number of conjugacy classes on

pairs of cyclic subgroups of order (q + 1)/2, and (θ, φ) the number of G-orbits on

X × Y . Direct computation yields that (θ, θ) = 3(q + 3)/4 (φ, φ) = 3(q − 1)/4 and

(θ, φ) = (3q + 1)/4. Hence, the result.

92

We proceed to study the case q ≡ 3 (mod 4).

x (1 0
0 1)

(
1 0
0 −1

)
(1 0

0 λ)
(

0 1
−1 λ

)
(1 0

1 1)

|x| 1 2
all divisors d 6= 2

of (q-1)/2
all divisors d 6= 2

of (q+1)/2 p

σx q(q2 − 1)/2 (q + 1) (q − 1)/2 (q + 1)/2 q
κx 1 q(q − 1)/2 q(q + 1) q(q − 1) (q2 − 1)/2

Ki 1 1 (q − 3)/4 (q − 3)/4 2
hx 1 (q − 1)/2 2 0 0
θ q(q + 1)/2 (q + 1)/2 1 0 0
h′x 1 (q + 3)/2 0 2 0
φ q(q − 1)/2 (q + 3)/2 0 1 0

Table A.2: PSL(2, q) for q ≡ 3 mod (4)

For q ≡ 3 (mod 4) a proposition analogous to Proposition A.1 takes the following

form:

Proposition A.2. Suppose that q is a prime power, q ≡ 3 (mod 4), and let G =

PSL(2, q). Let X be the collection of all cyclic subgroups of order (q− 1)/2 of G, Y

the collection of all cyclic subgroups of order (q + 1)/2 of G, and let G act on X and

Y by conjugation. Then,

(i) Each of X and Y constitute of a single conjugacy class of subgroups,

(ii) There are exactly (3q + 7)/4 G-orbits on X ×X,

(iii) There are exactly 3(q + 1)/4 G-orbits on Y × Y , and

(iv) There are 3(q + 1)/4 G-orbits on X × Y .

Proof. The number of G-orbits on X is (θ, [1]), and the number of G-orbits on Y is

(φ, [1]). Since (θ, [1]) = (φ, [1]) = 1 we again have that there is just one conjugacy

class of cyclic subgroups of order (q−1)/2 and one conjugacy class of cyclic subgroups

93

of order (q+1)/2. Moreover, (θ ·θ, [1]) = (θ, θ) gives the number of G-orbits on X×X.

Similarly, (φ, φ) gives the number of conjugacy classes on pairs of cyclic subgroups

of order (q + 1)/2, and (θ, φ) the number of G-orbits on X × Y . Direct computation

yields that (θ, θ) = (3q + 7)/4 (φ, φ) = 3(q + 1)/4 and (θ, φ) = 3(q + 1)/4.

94

