You are here
Exploration of Methods to Identify Biosynthetic Genes and the Origin of Biosynthesis in Marine Octocorals
- Date Issued:
- 2006
- Summary:
- The overall goal of this research was to isolate key genes involved in the diterpene biosynthesis from Euniceafusca and Erythropodium caribaeorum using molecular biology techniques. The initial goal was to use fuscol induced cell cultures of Symbiodinium sp. isolated from E. fusca and to develop an approach based on differential display of mRNA-reverse transcription-PeR. Together with inverse PCR, these techniques ultimately provided a full-length farnesyl diphosphate synthase sequence. Functional expression of this enzyme was demonstrated with the addition of appropriate substrates and confirmed by chromatography. From this data, degenerate primer based PCR was used to isolate putative geranylgeranyl diphosphate biosynthetic genes from E. caribaeorum. Both chemical and genetic examinations of Pseudopterogorgia elisabethae eggs and their associated Symbiodinium sp. were employed to identify the biosynthetic origin of their diterpenes. Terpene content and biosynthetic capabilities of azooxanthellae eggs demonstrated the presence of pseudopterosins but also indicated that the eggs were not capable of producing these compounds. Likewise, no correlation could be observed for the phylogenetic relationships inferred for the Symbiodinium sp., with that of the terpene chemistry present in P. elisabethae. This finding leads us to speculate about an additional source of terpene production within this coral. Based on these and other recent findings suggesting symbiotic bacteria as the source of secondary metabolites from marine invertebrates, bacterial assemblages from E. caribaeorum were examined. This study revealed considerable phylogenetic bacterial diversity within this coral and the identification of several bacteria known to produce terpenes in other organisms.
Title: | Exploration of Methods to Identify Biosynthetic Genes and the Origin of Biosynthesis in Marine Octocorals. |
81 views
19 downloads |
---|---|---|
Name(s): |
Ranzer, Llanie Karen Florida Atlantic University, Degree grantor Kerr, Russell G., Thesis advisor Charles E. Schmidt College of Science Department of Chemistry and Biochemistry |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2006 | |
Date Issued: | 2006 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 139 p. | |
Language(s): | English | |
Summary: | The overall goal of this research was to isolate key genes involved in the diterpene biosynthesis from Euniceafusca and Erythropodium caribaeorum using molecular biology techniques. The initial goal was to use fuscol induced cell cultures of Symbiodinium sp. isolated from E. fusca and to develop an approach based on differential display of mRNA-reverse transcription-PeR. Together with inverse PCR, these techniques ultimately provided a full-length farnesyl diphosphate synthase sequence. Functional expression of this enzyme was demonstrated with the addition of appropriate substrates and confirmed by chromatography. From this data, degenerate primer based PCR was used to isolate putative geranylgeranyl diphosphate biosynthetic genes from E. caribaeorum. Both chemical and genetic examinations of Pseudopterogorgia elisabethae eggs and their associated Symbiodinium sp. were employed to identify the biosynthetic origin of their diterpenes. Terpene content and biosynthetic capabilities of azooxanthellae eggs demonstrated the presence of pseudopterosins but also indicated that the eggs were not capable of producing these compounds. Likewise, no correlation could be observed for the phylogenetic relationships inferred for the Symbiodinium sp., with that of the terpene chemistry present in P. elisabethae. This finding leads us to speculate about an additional source of terpene production within this coral. Based on these and other recent findings suggesting symbiotic bacteria as the source of secondary metabolites from marine invertebrates, bacterial assemblages from E. caribaeorum were examined. This study revealed considerable phylogenetic bacterial diversity within this coral and the identification of several bacteria known to produce terpenes in other organisms. | |
Identifier: | FA00000874 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2006. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Includes bibliography. Charles E. Schmidt College of Science |
|
Subject(s): |
Coral reef ecology Diterpenes Biosynthesis Terpenes--Synthesis |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00000874 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |