You are here
Peroxiredoxin 3 and Methionine sulfoxide reductase A are Essential for Lens Cell Viability by Preserving Lens Cell Mitochondrial Function through Repair of Cytochrome c
- Date Issued:
- 2008
- Summary:
- The central premise of this dissertation is that mitochondrial antioxidant enzymes are essential to lens cell viability by preserving lens cell mitochondria and protecting and/or repairing lens cell proteins, and two mitochondrial-specific antioxidant enzymes, Peroxiredoxin 3 (PRDX3) and Methionine sulfoxide reductase A (MsrA), are explored. In this dissertation, we will examine the expression ofPRDX3 in the human lens, its colocalization to the lens cell mitochondria, its ability to be induced by H20 2-oxidative stress, and speculate how PRDX3 function/sf could affect the lens. We will also examine the reduced levels of MsrA by targeted gene silencing and its effect on reactive oxygen species production and mitochondrial membrane potential in human lens cells to determine its role in mitochondrial function in the lens. Lastly, we will examine the ability of MsrA to repair and restore function to a critical mitochondrial protein, Cytochrome c. The collective evidence strongly indicates that the loss of mitochondrial-specific enzymes, such as PRDX3 and MsrA, are responsible for increased reactive oxygen species levels, decreased mitochondrial membrane potential, protein aggregation and lens cell death, and further indicates that mitochondrial repair, protective, and reducing systems play key roles in the progression of age-related cataract and other agerelated diseases.
Title: | Peroxiredoxin 3 and Methionine sulfoxide reductase A are Essential for Lens Cell Viability by Preserving Lens Cell Mitochondrial Function through Repair of Cytochrome c. |
100 views
31 downloads |
---|---|---|
Name(s): |
Lee, Wanda Florida Atlantic University, Degree grantor Kantorow, Marc, Thesis advisor Charles E. Schmidt College of Science Department of Biomedical Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2008 | |
Date Issued: | 2008 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 97 p. | |
Language(s): | English | |
Summary: | The central premise of this dissertation is that mitochondrial antioxidant enzymes are essential to lens cell viability by preserving lens cell mitochondria and protecting and/or repairing lens cell proteins, and two mitochondrial-specific antioxidant enzymes, Peroxiredoxin 3 (PRDX3) and Methionine sulfoxide reductase A (MsrA), are explored. In this dissertation, we will examine the expression ofPRDX3 in the human lens, its colocalization to the lens cell mitochondria, its ability to be induced by H20 2-oxidative stress, and speculate how PRDX3 function/sf could affect the lens. We will also examine the reduced levels of MsrA by targeted gene silencing and its effect on reactive oxygen species production and mitochondrial membrane potential in human lens cells to determine its role in mitochondrial function in the lens. Lastly, we will examine the ability of MsrA to repair and restore function to a critical mitochondrial protein, Cytochrome c. The collective evidence strongly indicates that the loss of mitochondrial-specific enzymes, such as PRDX3 and MsrA, are responsible for increased reactive oxygen species levels, decreased mitochondrial membrane potential, protein aggregation and lens cell death, and further indicates that mitochondrial repair, protective, and reducing systems play key roles in the progression of age-related cataract and other agerelated diseases. | |
Identifier: | FA00000868 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2008. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Includes bibliography. Charles E. Schmidt College of Medicine |
|
Subject(s): |
Genetic regulation Proteins--Chemical modification Cellular signal transduction Eye--Physiology Mitochondrial pathology |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00000868 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |