You are here

study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester compounds

Download pdf | Full Screen View

Date Issued:
2012
Summary:
Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons : high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered : nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11-35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties.
Title: A study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester compounds.
129 views
54 downloads
Name(s): Powell, Felicia M.
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Issued: 2012
Publisher: Florida Atlantic University
Physical Form: electronic
Extent: xix, 124 p. : ill. (some col.)
Language(s): English
Summary: Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons : high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered : nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11-35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties.
Identifier: 806964830 (oclc), 3352286 (digitool), FADT3352286 (IID), fau:3901 (fedora)
Note(s): by Felicia M. Powell.
Thesis (Ph.D.)--Florida Atlantic University, 2012.
Includes bibliography.
Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
Subject(s): Composite materials -- Mechanical properties
Nanostructured materials -- Testing
Carbon compounds -- Testing
Fibrous composites -- Testing
Surface chemistry
Persistent Link to This Record: http://purl.flvc.org/FAU/3352286
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU