You are here

A Hybrid System for Simulation of Athletic Activities Related to Lower Extremity Biomechanics

Download pdf | Full Screen View

Date Issued:
2017
Summary:
In this dissertation, the design and development of a hybrid robotic system that simulates dynamic biomechanical tasks of the lower extremity with emphasis on knee and hip joints are presented. The hybrid system utilizes a mechanical hip and a cadaveric knee/ankle component and can accelerate the whole complex towards the ground. This system is used to simulate complex athletic movements such as landing from a jump at various anatomical orientations of the lower extremity with muscle action. The dynamic response of the lower extremity is monitored and analyzed during impulsive contact between the ground and the cadaveric leg. The cadaveric knee is instrumented to measure strain of the Anterior Cruciate Ligament (ACL) during simulated high impact sports activities. The mechanical hip allows various kinematics of the hip including flexion as well as abduction. In addition to the flexion and abduction of the mechanical hip, the controlled flexion and extension of the cadaveric knee allows for simulation of complex tasks such as landing from a jump. A large number of tests were performed at various anatomical positions utilizing this device to simulate landing from a jump. ACL strain was measured during these tasks using a Differential Variance Resistance Transducer (DVRT). Ground Reaction Force and muscle forces were measured and monitored using AmCell load cells recorded using the LabView software. one-inch and 6-inch jump landing heights were used for all the simulations. The tests were performed at differing angles of hip flexion (0°, 30°, 45°, 60°) and at two different ankle positions. Plantar flexion and flat-footed landing conditions were simulated and compared in all degrees of hip flexion. These tests were repeated with and without hip abduction in order to study the effects of these landing positions on ACL strain. Hip flexion was found to effect ACL strain: as angle of hip flexion increases, ACL strain decreases. This occurred in both abducted and non-abducted hip positions. Ankle landing position had an effect only in small drop heights, while hip abduction had an effect in large drops. Future tests must be completed to further study these effects. These studies showed that the robotic system can simulate dynamic tasks, apply muscle forces, and move the cadaveric tissue in three dimensional biomechanical positions.
Title: A Hybrid System for Simulation of Athletic Activities Related to Lower Extremity Biomechanics.
136 views
94 downloads
Name(s): Trepeck, Cameron, author
Hashemi, Javad, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 153 p.
Language(s): English
Summary: In this dissertation, the design and development of a hybrid robotic system that simulates dynamic biomechanical tasks of the lower extremity with emphasis on knee and hip joints are presented. The hybrid system utilizes a mechanical hip and a cadaveric knee/ankle component and can accelerate the whole complex towards the ground. This system is used to simulate complex athletic movements such as landing from a jump at various anatomical orientations of the lower extremity with muscle action. The dynamic response of the lower extremity is monitored and analyzed during impulsive contact between the ground and the cadaveric leg. The cadaveric knee is instrumented to measure strain of the Anterior Cruciate Ligament (ACL) during simulated high impact sports activities. The mechanical hip allows various kinematics of the hip including flexion as well as abduction. In addition to the flexion and abduction of the mechanical hip, the controlled flexion and extension of the cadaveric knee allows for simulation of complex tasks such as landing from a jump. A large number of tests were performed at various anatomical positions utilizing this device to simulate landing from a jump. ACL strain was measured during these tasks using a Differential Variance Resistance Transducer (DVRT). Ground Reaction Force and muscle forces were measured and monitored using AmCell load cells recorded using the LabView software. one-inch and 6-inch jump landing heights were used for all the simulations. The tests were performed at differing angles of hip flexion (0°, 30°, 45°, 60°) and at two different ankle positions. Plantar flexion and flat-footed landing conditions were simulated and compared in all degrees of hip flexion. These tests were repeated with and without hip abduction in order to study the effects of these landing positions on ACL strain. Hip flexion was found to effect ACL strain: as angle of hip flexion increases, ACL strain decreases. This occurred in both abducted and non-abducted hip positions. Ankle landing position had an effect only in small drop heights, while hip abduction had an effect in large drops. Future tests must be completed to further study these effects. These studies showed that the robotic system can simulate dynamic tasks, apply muscle forces, and move the cadaveric tissue in three dimensional biomechanical positions.
Identifier: FA00004898 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Musculoskeletal system--Wounds and injuries.
Musculoskeletal system--Mechanical properties.
Biomechanics--Computer simulation.
Human mechanics.
Artificial joints.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004898
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004898
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.