You are here

Corrosion Propagation of Rebar Embedded in High Performance Concrete

Download pdf | Full Screen View

Date Issued:
2017
Summary:
The FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix makes the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80% OPC + 20% Fly ash) concrete samples were considered. None of these concretes had any admixed chloride to start with. An accelerated chloride transport process was used to drive chloride ions into the concrete so that chlorides reach and exceed thechloride threshold at the rebar surface and initiate corrosion. Electrochemical measurements were taken at regular intervals (during and after the electro-migration process) to observe the corrosion propagation in each sample.
Title: Corrosion Propagation of Rebar Embedded in High Performance Concrete.
411 views
96 downloads
Name(s): Nazim, Manzurul, author
Presuel-Moreno, Francisco, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 121 p.
Language(s): English
Summary: The FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix makes the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80% OPC + 20% Fly ash) concrete samples were considered. None of these concretes had any admixed chloride to start with. An accelerated chloride transport process was used to drive chloride ions into the concrete so that chlorides reach and exceed thechloride threshold at the rebar surface and initiate corrosion. Electrochemical measurements were taken at regular intervals (during and after the electro-migration process) to observe the corrosion propagation in each sample.
Identifier: FA00004941 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Reinforced concrete--Corrosion.
Reinforced concrete--Chemical resistance.
Reinforced concrete--Deterioration.
Concrete--Corrosion.
Concrete--Mechanical properties.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004941
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004941
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.