You are here
Real-Time Data Analytics and Optimization for Computational Advertising
- Date Issued:
- 2017
- Summary:
- Online advertising has built a market of hundreds of billions of dollars and still continues to grow. With well developed techniques in big data storage, data mining and analytics, online advertising is able to reach targeted audiences e ctively. Real- time bidding refers to the buying and selling of online ad impressions through ad inventory auctions which occur in the time it takes a webpage to load. How to de- termine the bidding price and how to allocate the budget of advertising is the key to successful ad campaigns. Both of these aspects are fundamental to most campaign optimizations and we will introduce both of them in this thesis. For bidding price determination, we improved the estimation of CTR (Click Through Rate) (one of the most important factors of determining the bidding price) by using a re ned hierar- chical tree structure for the estimation. The result of the experiment and the A/B test showed our proposal can provide stable improvement. For budget allocation, we introduce SCO (Single Campaign Optimization) and CCO (Cross Campaign Opti- mization). SCO has been applied by our commercial partner while CCO needs more research. We will rst introduce the methods of SCO and then give our proposal about CCO. We modeled CCO as a LP (Linear Programming) problem as well as designed an e ective procedure to implement optimal impressions distribution. Our simulation showed our proposal can signi cantly increase global Gross Pro t (GP).
Title: | Real-Time Data Analytics and Optimization for Computational Advertising. |
190 views
31 downloads |
---|---|---|
Name(s): |
Liu, Hui, author Zhu, Xingquan, Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2017 | |
Date Issued: | 2017 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 71 p. | |
Language(s): | English | |
Summary: | Online advertising has built a market of hundreds of billions of dollars and still continues to grow. With well developed techniques in big data storage, data mining and analytics, online advertising is able to reach targeted audiences e ctively. Real- time bidding refers to the buying and selling of online ad impressions through ad inventory auctions which occur in the time it takes a webpage to load. How to de- termine the bidding price and how to allocate the budget of advertising is the key to successful ad campaigns. Both of these aspects are fundamental to most campaign optimizations and we will introduce both of them in this thesis. For bidding price determination, we improved the estimation of CTR (Click Through Rate) (one of the most important factors of determining the bidding price) by using a re ned hierar- chical tree structure for the estimation. The result of the experiment and the A/B test showed our proposal can provide stable improvement. For budget allocation, we introduce SCO (Single Campaign Optimization) and CCO (Cross Campaign Opti- mization). SCO has been applied by our commercial partner while CCO needs more research. We will rst introduce the methods of SCO and then give our proposal about CCO. We modeled CCO as a LP (Linear Programming) problem as well as designed an e ective procedure to implement optimal impressions distribution. Our simulation showed our proposal can signi cantly increase global Gross Pro t (GP). | |
Identifier: | FA00004940 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2017. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Internet marketing--Technological innovations. Internet advertising--Technological innovations. Data mining. Web usage mining. Business--Data processing. |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004940 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004940 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |