You are here
Development of a Wearable Device to Detect Epilepsy
- Date Issued:
- 2017
- Summary:
- This paper evaluates the effectiveness of a wearable device, developed by the author, to detect different types of epileptic seizures and monitor epileptic patients. The device uses GSR, Pulse, EMG, body temperature and 3-axis accelerometer sensors to detect epilepsy. The device first learns the signal patterns of the epileptic patient in ideal condition. The signal pattern generated during the epileptic seizure, which are distinct from other signal patterns, are detected and analyzed by the algorithms developed by the author. Based on an analysis, the device successfully detected different types of epileptic seizures. The author conducted an experiment on himself to determine the effectiveness of the device and the algorithms. Based on the simulation results, the algorithms are 100 percent accurate in detecting different types of epileptic seizures.
Title: | Development of a Wearable Device to Detect Epilepsy. |
571 views
472 downloads |
---|---|---|
Name(s): |
Khandnor Bakappa, Pradeepkumar, author Agarwal, Ankur, Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2017 | |
Date Issued: | 2017 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 110 p. | |
Language(s): | English | |
Summary: | This paper evaluates the effectiveness of a wearable device, developed by the author, to detect different types of epileptic seizures and monitor epileptic patients. The device uses GSR, Pulse, EMG, body temperature and 3-axis accelerometer sensors to detect epilepsy. The device first learns the signal patterns of the epileptic patient in ideal condition. The signal pattern generated during the epileptic seizure, which are distinct from other signal patterns, are detected and analyzed by the algorithms developed by the author. Based on an analysis, the device successfully detected different types of epileptic seizures. The author conducted an experiment on himself to determine the effectiveness of the device and the algorithms. Based on the simulation results, the algorithms are 100 percent accurate in detecting different types of epileptic seizures. | |
Identifier: | FA00004937 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2017. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Epilepsy--Diagnosis--Technological innovations. Patient monitoring. Signal processing--Digital techniques. Wearable computers--Industrial applications. |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004937 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004937 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |