You are here

Flexible Filler Corrosion Protection of Unbonded Post-Tension Tendons

Download pdf | Full Screen View

Date Issued:
2017
Summary:
Flexible fillers has recently been implemented as corrosion protection for post-tensioning tendons used in bridge structures in Florida. There are two different explanations why corrosion could take place: 1. water is able to reach the steel 2. Microbiologica l ly Influenced Corrosion. The aim of this research is to evaluate corrosion protection effectiveness of five differe nt microcrystalline waxes under different environmental conditions. Specimens tested ranged from 7-wire steel strands to single wires (12-16 cm). Another aim is the appraisal of wax degradation by fungi species. Single wires coated with each of the investigated protection materials, were sprayed with suspensions of three different fungi species and a mix of them. For single wires, independent of the environmental condition the specimen with more corrosion was Nontribos, as well as the filler coated wires contaminated with Fungi. Fungi species investigated were able to utilize the waxes as carbon source and caused differe nt extents of MIC.
Title: Flexible Filler Corrosion Protection of Unbonded Post-Tension Tendons.
212 views
100 downloads
Name(s): Castaneda, Carlos F., author
Presuel-Moreno, Francisco, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 105 p.
Language(s): English
Summary: Flexible fillers has recently been implemented as corrosion protection for post-tensioning tendons used in bridge structures in Florida. There are two different explanations why corrosion could take place: 1. water is able to reach the steel 2. Microbiologica l ly Influenced Corrosion. The aim of this research is to evaluate corrosion protection effectiveness of five differe nt microcrystalline waxes under different environmental conditions. Specimens tested ranged from 7-wire steel strands to single wires (12-16 cm). Another aim is the appraisal of wax degradation by fungi species. Single wires coated with each of the investigated protection materials, were sprayed with suspensions of three different fungi species and a mix of them. For single wires, independent of the environmental condition the specimen with more corrosion was Nontribos, as well as the filler coated wires contaminated with Fungi. Fungi species investigated were able to utilize the waxes as carbon source and caused differe nt extents of MIC.
Identifier: FA00004924 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Nanocomposites (Materials)
Polymeric composites.
Post-tensioned prestressed concrete.
Tendons (Prestressed concrete)
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004924
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004924
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.