

OBJECT RECOGNITION ON ANDROID MOBILE PLATFORM USING

SPEEDED UP ROBUST FEATURES

by

Vivek Kumar Tyagi

A Thesis Submitted to the Faculty of

The College of Computer Science and Engineering

in Partial Fulfillment of the requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

August 2010

 ii

 © Copyright by Vivek Kumar Tyagi 2010

 iv

ACKNOWLEDGEMENTS

 It is a pleasure to thank all who made this thesis a success. I am indebted to my

supervisors Dr. Abhijit Pandya and Dr. Ankur Agarwal for giving me this wonderful

opportunity to work under their guidance throughout my Master’s thesis. Their

enthusiasm, inspiration and great efforts to explain things clearly and in a simple way

helped me to achieve my goals in this study. I would like to thank Dr. Abhijit Pandya and

Dr. Sam Hsu for giving me the opportunity to work as Research Assistant on the

Motorola Test Vector grant. The grant supported me in achieving my academic goals.

 I would like to thank to Dr. Imad Mahgoub for providing support and offering the

right direction. I would also like to thank Dr. Borko Furht for pointing me in the right

direction and Jean Mangiaracina for her guidance through administrative hurdles.

 I want to thank my family for believing in me. To my brother, Ritesh Tyagi, for

supporting me.My mother Smt Mithlesh Tyagi for her love and blessing. My father Late

Shri Dhrampal Singh Tyagi for his love and blessings. I offer my regards and blessings to

all of those who supported me in any respect during the completion of my thesis,

especially my friends. But above of all, Thank you God.

 v

ABSTRACT

Author: Vivek Kumar Tyagi

Title: Object Recognition on Android Mobile Platform Using Speeded
Up Robust Features

Institution: Florida Atlantic University

Thesis Advisors: Dr. Abhijit Pandya
 Dr. Ankur Agarwal

Degree: Master of Science

Year: 2010

 In recent years there has been great interest in implementing object recognition

frame work on mobile phones. This has stemmed from the fact the advances in object

recognition algorithm and mobile phone capabilities have built a congenial ecosystem.

Application developers on mobile platforms are trying to utilize the object recognition

technology to build better human computer interfaces. This approach is in the nascent

phase and proper application framework is required. In this thesis, we propose a

framework to overcome design challenges and provide an evaluation methodology to

assess the system performance. We use the emerging Android mobile platform to

implement and test the framework. We performed a case study using the proposal and

reported the test result. This assessment will help developers make wise decisions about

their application design. Furthermore, the Android API developers could use this

 vi

information to provide better interfaces to the third party developers. The design and

evaluation methodology could be extended to other mobile platforms for a wider

consumer base.

 vii

OBJECT RECOGNITION ON ANDROID MOBILE PLATFORM USING

SPEEDED UP ROBUST FEATURES

List of Tables .. x

List of Figures .. xi

Chapter - 1 Introduction .. 1

1.1 Background ... 1

1.2 Motivation ... 3

1.3 Problem Statement .. 4

1.4 Contribution .. 5

1.5 Thesis Overview ... 6

Chapter - 2 Background .. 7

2.1 Background ... 7

2.2 Object Recognition Framework .. 10

2.3 Speeded Up Robust Features .. 12

2.4 Related Work .. 13

Chapter - 3 Matching Algorithm ... 16

3.1 Classification Theory .. 16

3.2 Matching Algorithm .. 17

3.3 Receiver Operating Curve (ROC) ... 19

Chapter - 4 System Architecture ... 22

 viii

4.1 Overview ... 22

4.2 System Architecture .. 22

4.3 Mobile Component ... 23

4.4 Server Component .. 28

Chapter - 5 Case Study ... 34

5.1 Overview ... 34

5.2 Client Test Platform .. 34

5.3 Android Application Development Setup ... 35

5.4 Server Side Implementation .. 36

5.5 Application Flow Chart ... 37

5.6 Data Flow .. 39

5.7 Test Methodology ... 41

5.8 Latency .. 42

5.9 Effect of Field Condition .. 42

Chapter - 6 Results and Conclusion .. 45

6.1 Threshold Selection .. 45

6.2 Latency .. 47

6.3 Rotation Effect .. 48

6.4 Light Intensity ... 50

6.5 Perspective Transformation .. 51

6.6 Scale .. 52

Chapter - 7 Conclusion and Future Direction ... 54

7.1 Conclusion .. 54

 ix

7.2 Future Work .. 55

Appendix A Source Code ... 57

References ... 63

 x

LIST OF TABLES

Table 1 Confusion Matrix ... 19

Table 2 ROC values .. 46

 xi

LIST OF FIGURES

Figure 2-1 Object Recognition Framework .. 10

Figure 3-1 Receiver Operating Curve ... 20

Figure 4-1 System Architecture ... 23

Figure 4-2 Android Application Framework .. 24

Figure 4-3 Client Interface Application .. 26

Figure 4-4 Object Recognition Application .. 27

Figure 4-5 Step One for Populating Database -- Image Set Acquisition 29

Figure 4-6 Step Two for Populating Database – Converting Image to Feature Vector 29

Figure 4-7 Step Three for Populating Database – Transfer of Data to MySQL 30

Figure 4-8 Sample Database Schema for Server .. 32

Figure 4-9 Matching Algorithm Application .. 33

Figure 5-1 Application Flow Chart ... 39

Figure 5-2 Data Flow Diagram ... 41

Figure 5-3 Response Curve ... 43

Figure 6-1 ROC Curve for Case Study ... 47

Figure 6-2 Processing Time Distribution .. 48

Figure 6-3 Affine Transformation Legend ... 48

Figure 6-4 Rotation Response Curve .. 49

Figure 6-5 Light Intensity Legend ... 50

 xii

Figure 6-6 Light Intensity Response ... 50

Figure 6-7 Perspective Transformation Legend ... 51

Figure 6-8 Perspective Transformation Response Curve ... 51

Figure 6-9 Scaling Legend .. 52

Figure 6-10 Scaling Response Curve .. 52

Figure 6-11 Consolidated Test Results ... 53

 1

CHAPTER - 1 INTRODUCTION

1.1 Background

 In recent years, there have been great advances in the field of computer vision. On

the theoretical front, the emergence of robust feature vectors, such as the Scale-invariant

feature, transform (SIFT) [1], and speeded up robust features (SURF) [2], have increased

the accuracy of object recognition algorithms. The central idea of feature-based object

recognition algorithms lies in finding interest points, often occurring at intensity

discontinuity, that are invariant to change due to scale, illumination, and affine

transformation. Technologically, there has been rapid improvement of image acquisition

devices. This has resulted in an increase in camera resolution and a decrease in camera

price. Due to these factors, computer vision applications moved out of laboratories and

entered the main stream. Face recognition, automatic photo tagging, and image search

systems now are widely used applications.

 Another area of new development is the mobile/handheld devices. Mobile phones

are no longer small, resource restrictive, isolated devices. They now are equipped with

the computing power equivalent of desktops from five years ago. They have high

resolution screens and are equipped with good quality cameras. There have been great

strides in the data connectivity of these devices. This has resulted in a client server

architecture application ecosystem for mobile phones. With dramatic improvement in

these areas, efforts are now underway to put object recognition technology on

 2

mobile phones. Developers have started experimenting with this new technology to

expand the scope of human computer interaction. Initial application of this technology

has been in the area of barcode readers. Barcode reader applications implement the

software version of barcode readers. They use the camera on mobile phones as the input

device. The software decodes the barcode and sends the information over the wireless

network to the application server. The server then responds back to the client with

relevant information. This concept is further extended to use the raw image captured from

a camera as the input variable, instead of a barcode. Although the overall processing steps

are similar in both cases, the complexity of the problem is increased many times.

Information in images is not as explicit as in barcodes. So, much more complex

algorithms are required to extract the relevant information. This results in higher demand

on the computing resources. The quantity of information to be transferred over the data

network also greatly increases and has to be optimized to keep the cost and load on the

network low. The algorithm for matching the information from the database on the server

side has greater increased latency as the number and the dimension of the search vector

increase. This area is still relatively new and the proper framework and design

methodology is required to fully utilize its potential. In this thesis we propose a

framework to implement object recognition technology on the mobile phones with an

Android platform. We analyze the stages of processing to get optimized performance and

low cost. This will help third party developers to write better computer vision

applications. This analysis could be used by Android developers to improve the API to

enhance the performance of the system. Finally researchers could use this framework to

further extend the work to other mobile platforms.

 3

1.2 Motivation

 Studies have shown that among the computing devices owned by individuals, a

mobile phone is the one that is most likely to be carried. With the omnipresent coverage

of data connectivity on mobile phones, these devices also act as the end point of

information exchange over the Internet. In the past, most of the information access has

been in terms of textual interaction between the device and source. For example, a search

on the Internet would be done by entering a key string in the search box. However, with

new innovations in object recognition technology and increasing computational power of

mobile phones, there are new avenues opening up for human computer interface. The

way users interact with the surrounding and information available over Internet is moving

from textual to image based. With a robust object recognition framework, application

developers now can provide new ways to provide a richer user experience. Some

examples of direct applications could be as follows:

• Object recognition framework will help build visual search applications, wherein

the user can get information just by clicking the picture of the object of interest.

• Augmented reality is another emerging application. With this feature, information

can be overlaid real time on the camera’s view finder. For example, having

directions overlaid on the real time view of the surrounding area rather than on a

schematic map.

• Real time Optical Character Recognition (OCR) and translation applications are a

great help while navigating in a foreign country. With this application, the user

can get a translation of a sign in different language just by pointing the camera at

the sign.

 4

• A collusion avoidance and guidance application for the visually impaired would

help improve their quality of life. Here the user can have the surrounding

information captured, processed and read out.

• Proposed framework can be extended to stem cell tracking and identification.

• The framework can be used to build application for medical imaging wherein

specific anomalies, like tumor, can be identified from a given image.

• Object recognition via mobile phones is a contributing technology for web 3.0.

Development of an efficient and accurate object recognition framework is the key to all

of the above mentioned applications.

1.3 Problem Statement

 Implementing an object recognition framework has the following challenges.

1.3.1 Distortions at Acquisition Stage

 Cameras on the mobile devices do not provide distortion-free images; these

images have geometric and photometric distortions. These distortions could result in

increased false negative results for the system.

1.3.2 Time Constraints

 For mainstream applications, the system must meet certain time constraints. If the

time taken to provide results is high, the application will fail to provide an interactive

user experience.

1.3.3 Computing Constraints

 Although the processing power on Mobile devices has increased, object

recognition algorithms take a significant amount of computing resources. They have to be

carefully implemented so as not dominate all the resources on the device.

 5

1.3.4 Bandwidth Constraints

 The data transferred over the mobile network still is a costly affair. Also the data

speeds are slow compared to other modes of transfers. This has a direct impact on the

cost effectiveness of the solution as well as the latency. Therefore, the application should

send as little information as possible over the network.

1.3.5 System Architecture and Test Framework

 For implementing an efficient application in this domain, we require a end-to-end

system architecture and test framework.

1.4 Contribution

 In this section we discuss the contribution of this thesis. System architecture

developed in this thesis consists of an object recognition framework for mobile devices

and an implementation of classification algorithms. Case studies also were conducted

using a mobile device, and the results are presented.

1.4.1 System Architecture for Application

 We provide a client server-based system architecture for an object recognition

application on an Android mobile platform.

1.4.2 SURF Implementation

 For overcoming geometric and photometric distortions, we present an

implementation of a SURF algorithm on Android.

1.4.3 Load Balancing

 We provide a framework for choosing the computational balance between the

client side and server side computation.

 6

1.4.4 Evaluation Framework

We provide an evaluation framework of the proposed system, which can be extended

further to any system for mobile object recognition.

1.4.5 Case Study

 We perform a case study using the architecture, and the results are reported.

1.4.6 Classification Algorithm

 A nearest neighbor search-based classification algorithm is proposed for matching

feature vectors.

1.5 Thesis Overview

 In chapter 2, we provide the background and related work for this thesis topic. In

chapter 3 we present the architecture of the proposed system. Chapter 4 describes a case

study for implementing the proposed architecture, along with a test methodology.

Chapter 5 discloses the results of the tests conducted on the case study, conclusions and

future work of the thesis. Finally, we provide the code for the implementation in

Appendix A.

 7

CHAPTER - 2 BACKGROUND

2.1 Background

 Object recognition has been an active area of research for many years now. There

have been various approaches to this problem and over the years the algorithms have

become more robust. The initial research had focused on taking clues from image

understanding in humans. Along these lines, a recognition by components approach was

proposed by Biederman [19]. The earlier application and evaluation had been on human

face recognition [20][21][22][23] .The reason for choosing face detection was the

availability of vast amount of test images and the fact that this was the only practical

application of computer vision at that time. With the improvement in camera technology

and the explosion of Internet connectivity, object recognition now has become a

multiclass problem with varied applications. Most object recognition techniques have

converged to using features vectors as a representation of an image. These features

require two operations. First we need criteria to find the location of these features in an

image; the algorithms that are used to do this are called feature detectors. After the

location and region of the feature have been found, we require a representation of these

regions. The methods to describe the regions are called feature descriptors. Properties of

an ideal feature descriptor would be as follows [25]. The features should be localized

rather than representing the image as a whole. Having local features helps in overcoming

 8

difficulties due to occlusion and clutter. It is desirable that the features be invariant to

common transformations like scale, rotation and light conditions. The feature should be

robust so that anomalies like noise, blur, discretization, and compression, etc. do not have

a big impact on the feature. The feature should be distinctive so that an individual feature

can be matched to a large database of objects. It should be possible to generate the feature

even from small objects, so that fine details could be generated. The feature should be

computationally efficient so that it could be utilized to build close to real time

applications.

 Some of the prominent feature detectors are as follows. Harris-Laplace [27] are

detected by the scale-adapted Harris function [26]and selected in scale-space by the

Laplacian-of-Gaussian operator[26]. Harris-Laplace detects corner-like structures and is

invariant to rotation and scale changes. Hessian-Laplace regions [30][31] are localized in

space at the local maxima of the Hessian determinant [29] and in scale at the local

maxima of the Laplacian-of-Gaussian. These are invariant to rotation and scale changes.

 Hessian-Affine regions [32] are invariant to affine image transformations.

Localization and scale are estimated by the Hessian-Laplace detector and the affine

neighborhood is determined by the affine adaptation process.

 After the region has been detected, it is encoded using a descriptor vector. The

descriptor algorithm vector takes the parameters from the detected region and converts it

to feature vectors. There are many region descriptor algorithm available; SIFT is the most

popular and robust among them. A SIFT descriptor is a 3D histogram of gradient location

and orientation, where location is quantized into a 4x4 location grid and the gradient

angle is quantized into 8 orientations. The resulting descriptor is of dimension 128. Each

 9

orientation plane represents the gradient magnitude corresponding to a given orientation.

To obtain illumination invariance, the descriptor is normalized by the square root of the

sum of squared components.

 A shape context descriptor is similar to the SIFT descriptor, but is based on edges.

Shape context is a 3D histogram of edge point locations and orientations. Edges are

extracted by the Canny detector.

 A PCA-SIFT [33] descriptor is a vector of image gradients in x and y direction,

computed within the support region. The gradient region is sampled at 39x39 locations;

therefore the vector is of dimension 3042. The dimension is reduced to 36 with principle

component analysis [34] PCA.

 A spin image [36][37] is a histogram of quantized pixel locations and intensity

values. The intensity of a normalized patch is quantized into 10 bins. A 10 bin

normalized histogram is computed for each of 5 rings centered on the region. The

dimension of the spin descriptor is 50.

 Among these descriptors is the Speed up Robust Feature (SURF) proposed by

Herbert Bay et al. in 2006. It is a robust feature, invariant to scale rotation and brightness,

and it is partially inspired by SIFT. SURF finds interest points in the image by a Fast-

Hessian Detector. It uses “Integral Image" for faster calculation of intensities in

rectangular regions. Haar wavelet functions are used to calculate descriptor of the

interest point's surrounding area. It is claimed to be more robust against a different image

transformation than SIFT. At the same time, it is less computationally intensive than

SIFT. This makes it an ideal candidate for use in a computationally constrained

 10

environment such as mobile devices. For this reason, we are using SURF in this thesis for

interested point detection and description.

2.2 Object Recognition Framework

 In this section, we discuss the main steps in an object recognition framework,

illustrated in Figure 2-1. Regardless of whether the implementation is a client server

model or a monolith application, the steps are the same.

Figure 2-1 Object Recognition Framework

2.2.1 Image Acquisition

 The first step in any object recognition framework is the acquisition of image by

camera. Here camera refers to the digital camera found on handheld devices. The camera

converts the analog light into an array of intensity pixel data. Most of the object

recognition algorithm works on grayscale images. The role of color in object recognition

is debatable and few studies have indicated that it is useful only under certain conditions

[38] The camera’s ability to capture distortion free images greatly affects the matching

Pixel

Array of coordinates in
image with region
description

Feature Detection

Feature Extraction

Feature Vector

Classification

Existing Dataset

Result

Image Acquisition

 11

algorithm. Geometric and photometric distortion may add noise to the image data, which

could result in false negatives. The output of the camera is a pixel matrix with normalized

pixel intensity.

2.2.2 Feature Detection

 The feature detection step involves finding “interesting” points in an image. The

points could be corners, edges, etc. The important criteria for these points are

repeatability and invariance. This means that the algorithm should be able to find the

same points in multiple images of the object. Some of the algorithms used are discussed

in section 2.1. The output of the feature detection algorithm would be a numeric

description of the region.

2.2.3 Feature Extraction

 After the interest point has been found, the next step is to encode it. The encoding

process involves taking data from the feature detection step and converting it into a

feature vector. SIFT and SURF are the foremost algorithms in this domain. The choice of

algorithm and optimization is a major area of work when it comes to mobile platforms.

As these are the most computational intensive steps in the framework, care has to be

taken in selecting the right one. For an interactive application, it is important that the

results are presented as fast as possible. In this regard, SURF has a better performance

over SIFT. The output of the feature extraction step is a set of feature vector. The

dimension of the vector depends on the algorithm used; for example, SIFT generates a

vector of dimension 128, whereas SURF generates a vector of size 64.

 12

2.2.4 Classification

 The classification step gives the final answer to the class of the object. That is to

say, in this step we get to know “what” this object is. The classification step can be

implemented in many ways and the choice of the methods is dictated by the tradeoff

between speed and accuracy. The central idea in the entire classification algorithm is the

notion of “distance.” In a two dimensional vector space, a distance can be imaged as a

straight line between the two points. However, most of the classification algorithms have

to deal with multidimensional vector space. The theoretical aspect of classification is

discussed in detail in section 2.4. The output of the classification step is a “label” or

identifier of the object present in the initial image.

 After the traditional object recognition is complete, we can search further for

more information about the object, depending on the application. For example, if we

know the ISBN number of the book in the image, we might want to retrieve the

information about its price, author information, etc.

2.3 Speeded Up Robust Features

 The speeded Up Robust Feature is an image detector and descriptor proposed by

Herbert Bay et al. in 2006 [2]. It is a robust feature, invariant to scale rotation and

brightness. It is partially inspired by SIFT, claims to be more robust against different

image transformation than SIFT. At the same time, it is less computationally intensive

than SIFT. This makes it an ideal candidate for use in a computationally constrained

environment, like mobile devices. SURF can be used for object recognition, object

tracking, augmented reality, and 3D reconstruction. The original SURF algorithm is

composed of three stages. In the first stage, interest points are found in the image by a

 13

Fast-Hessian Detector. In the second stage, Haar wavelet responses for both x and y

directions are calculated around the interest point and the most dominant direction is

chosen to achieve rotation invariance. In the last stage, Haar wavelet functions are used to

calculate a descriptor of interest points surrounding the area. The obtained descriptor is

invariant against changes in scale, rotation, and brightness. The SURF algorithm contains

several optimizations. The most significant improvement in calculation speed is achieved

by use of “Integral Image,” which allows fast calculation of filter responses used in all

previously mentioned stages.

2.4 Related Work

 The application of object recognition to mobile platforms is an area of ongoing

research. Even though the current systems are complex, lengthy and prone to error,

careful analysis of user behavior has shown that the end user appears content to use these

systems. The application of this system started with a simple application involving

barcodes. Barcode scanners are comparatively easier to implement as the information is

explicitly represented. Also, the barcodes are one dimensional data and hence the

complexity of computation is low. The direct application of barcode scanner application

is to help the user find pricing information about the products for which they are

shopping [51]. With the advent of an efficient object recognition algorithm like SURF,

the application were extended to recognize book covers and CD covers [54]. These

application delivers acceptable performance and accuracy. Apart from object recognition,

augmented reality is another area of application. Augmented reality is the technique of

overlaying relevant computer generated information over a live image in real time.

Depending on the context, the real world can be viewed as a canvas for information. The

 14

Augmented relation application relies on object recognition algorithms to infer the

context and overlay the information. There has been several implementations of

augmented reality, both on the iPhone [56] and Android [55]

 The most ambitious application of object recognition on mobile platform has been

with Google goggles [57] by Google. This application aims to recognize any object in the

image captured by the phone. It can recognize varied classes of objects including

barcode, visiting cards, book covers, locations, etc. The framework for building such

applications are very similar. The focus is on finding a robust and computationally

effected feature descriptor for the image. SIFT has been proven to be a robust feature for

object detection. However, SIFT is very demanding in terms of computational resources.

This is where SURF has proven to provide a good balance of robustness and

computational efficency. As such, SURF has been proposed as a good choice for an

building object recognition framework for mobile devices.

 Similar to this thesis, there has been various implementations of the SURF

algorithm on Android. Implementation of SURF on Android. One of the approaches is

the use the OpenCV library for Android. OpenCV has been ported on android as a library

[16] and can be used for implementing SURF. Another approach is to take the desktop

version of SURF and try to port it to the Android platform. The SURF algorithm has been

implemented as libraries in different languages like java, C++ C# and even in

ActionScript for Adobe Flash Platform[6]. The original implementation is available as a

closed source library.[2] Open source implementation of SURF is available as C++ and

C# libraries [3] [5] For Java, the algorithm has been implemented as a stand alone library

[8]and a plug-in to ImageJ [1]Software [7]. Some implementations of SURF rely on

 15

other libraries for low level routines, like parallel SURF [12] (based on Pan-o-manic)

and OpenCV SURF (based on OpenCV [10][54]),or are a part of a generic library such

Pan-o-manic [11]In addition to general purpose languages, SURF also has been

implemented on Matlab (SURFmex[13]) and has several GPU implementations like

speeded up SURF [14] and GPU SURF.

 Android is a Java-like programming environment. It also supports native code via

JNI. So either we can take the java implementation of SURF and then port it to the

Android environment or we can take the native implementation of SURF and use the

native function via Java Native Interface (JNI). A good comparison of the two

approaches has been provided in the implementation of AndSurf. For this thesis, we have

taken a java-based SURF implementation JopenSurf [18] and ported it to Android

environment.

 Similar framework has been proposed in previous works [17].However the

implementation of test framework to assess the effect of various conditions is a major

contribution of this thesis .Most of the related work on the field presents the results as a

measure of the accuracy of the system. There was no methodology of testing the accuracy

under different test conditions. In this thesis we provide this framework.

 16

CHAPTER - 3 MATCHING ALGORITHM

3.1 Classification Theory

 Classification is an area of study under machine learning, where the goal is to

place the observations into groups (classes) based upon their quantitative attributes.

Observations for our context are the feature vector of the input image, which we get after

the feature extraction stage (section 2.2.3). Classification has two distinct types. We may

be given a set of observations with the aim of establishing the existence of classes or

clusters in the data; or we may know for certain that there are so many classes, and the

aim is to establish a rule whereby we can classify a new observation into one of the

existing classes. The former type is known as Unsupervised Learning (or Clustering), the

latter as Supervised Learning. For the current context we will be using supervised

learning. Therefore, we start with the set of observations for which the class value is

known and then for a new observation the classifier has to find the most appropriate class

value.

 Let the training set be a set of feature vector-class pair

 () () () ()}{ 1, 1 2, 2 3, 3 ,, , ,......, n ni c i c i c i c

Where i represents the SURF feature vector of an image.

di I∈ here 64d = and c C∈ represents the image identifier, like the ISBN number of a

book.

 17

 Then the goal is to produce a classifier :H I C→ , which will map any new

feature vector x di I∈ to its true classification label xc C∈ by some rule.

 This rule can be selected based upon the implementation. For this thesis, we chose

the Euclidian distance as a measure of distance between the two vectors. For the search of

class label from the database, we utilize the nearest neighbor search methodology.

3.1.1 Nearest Neighbor Search

 In the nearest neighbor search strategy, the query vector is paired up with every

feature vector stored in the database. Therefore, given a query vector di S∈ and a set of

features T , the nearest neighbor of i is the vector 1i T∈ with the smallest Euclidean

distance. The query vector will be labeled with the same class as 1i if the ratio 1

2

i
i

between the two closest neighbors is smaller than a threshold φ .

3.2 Matching Algorithm

 As discussed in section 2.4, there are many ways in which a matching algorithm

can be implemented. Here we use the Euclidian distance as measure for the similarity of

the feature set. Each image has a set of SURF feature vectors associated with it, which

are 64 dimensional vectors. The image retrieval system works by first calculating the

match number, which is the measure of “similarity” between two images. It is calculated

as follows.

 Let I and J be two images. After applying the SURF algorithm, these images

are represented as follows:

}{1 2 3, , ,......, nI i i i i=

 18

}{ 1 2 3, , ,......, mJ j j j j=

Where , di j R∈ here d=64.

 To compare the images we have to match each of the feature vectors in image I

with that in image J, and then the reverse.

 For this we use the Nearest Neighbor Search (Section 2.4.1) to find the match for

vectors in I .

 Let matchIJ be the number of vectors in I that found a match.

 Repeating the same procedure, we find

 matchJI

The total number of matches thus found is termed as Match Number:

Match Number ij match matchM IJ JI= + .

Match Ratio =Match Number/Total Number of Pairs

Match Number
Number of vectors in I +Number of vectors in J

ij
ij

M
MR

I J
= =

+

For simplicity MRΘ is expressed as a percentage.

The Match Ratio is the measure of degree of similarity for the images I and J .

 For the database search:

Let }{ 1 , 2 , 3 ,...D d d d dn∈ and q be the query image. We first calculate the Match

Ratio for the query image for each image in the database.

}{ 1 2 3, , ,...,qd qd qd qdnMR MR MR MR

We then select a threshold for selection MRΘ .

 19

The Matched images are those that have MR MRΘ≥ .

3.3 Receiver Operating Curve (ROC)

 To start with ROC, we first need to define True Positive and False Positive states

for our system.

 For a two-class classification, the following would be the outcomes, as shown in

Table 1:

Predicted Class

Actual Class

 Yes No

Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative (TN)

Table 1 Confusion Matrix

This representation is called a confusion matrix.

On this basis we define

True Positive Rate True Postive
Total Numer of Positive

TPR =

Hence TPTPR
TP FN

=
+

False Positive Rate
False Postive

Total Number of Negative
FPR =

Hence FPFPR
FP TN

=
+

 20

 A Receiver Operating Curve is a two dimensional graph in which the True

Positive Rate (TPR) is plotted on the Y-axis and the False Positive Rate (FPR) is plotted

on the X-axis, as shown in Figure 3-1.

Figure 3-1 Receiver Operating Curve

 For a given classifier, the experiments are carried out with different threshold

MRΘ values. The results of the test are plotted on the ROC curve. The points in the ROC

curve space carry special meaning. The diagonal line y=x represents the strategy of

randomly guessing a class. That is, if a classifier randomly guesses the positive class half

the time, it can be expected to get half the positives and half the negatives correct; this

yields the point (0.5, 0.5) in ROC space. Any classifier that appears in the lower triangle

Random

Bad

Good

Best

 21

performs worse than random guessing. A classifier that is above the diagonal and near to

the Y axis is acceptable, because the TPR is greater than the FPR. That means the system

is producing less of a false positive case. The best scenario is the upper left hand corner.

In this case, the system is producing zero false positive cases and all the right positive

cases. For carrying out the experiment, we take a set of test images with 50% of the

images in the database and 50% of the images NOT from the data set.

 For our experiments:

True positive (TP) state is when we take the input image of a book cover that is present in

the database, and the system returns the match in the set of results returned.

True negative (TN) state is when we take the input image of a book cover that is NOT

present in the database and the system returns zero results.

False positive (FP) state is when we take the input image of a book cover that is NOT

present in the database and the system returns a set of results.

False Negative (FN) state is when we take the input image of a book cover that is present

in the database and the system returns zero results.

 Based upon the above-mentioned definitions, we can calculate True Positive Rate

(TPR) and False Positive Rate (FPR) for our system.

 With these definitions we carry out the experiments to find the best MRΘ .

 22

CHAPTER - 4 SYSTEM ARCHITECTURE

4.1 Overview

 The system is implemented using client server application architecture. The image

processing and feature extraction steps are carried out on the client end. In this thesis, the

client end application is a mobile application. The client extracts the SURF vectors from

the image and sends it to the server over Hypertext Transfer Protocol (

4.2 System Architecture

HTTP). The

matching of features and information retrieval is done on the server side. The server

communicates the result back to the client in Extensible Markup Language (XML)

format. This XML data is parsed by the client application and is presented to the user on

the mobile screen. On the mobile end, we implement the client application on the

Android Mobile Platform. Android is the prevalent mobile framework with a rich

ecosystem for application developers. Sever components are web applications that run

on a J2EE platform. The J2EE technology is platform independent and has a rich set of

web application framework libraries. The server hosts the information relevant to the

application on a MySQL database. This allows for easy access to feature information and

the metadata. The following section describes the architecture in detail.

 The architecture for the proposed system is shown in Figure 4-1.The system runs

in parts on the mobile phone (client) and on the server. The major components for the

system are as follows:

 23

Figure 4-1 System Architecture

Mobile Client component:

• Android platform.

• Client interface application.

• Object recognition algorithm.

• Client communication protocol.

Server Component:

• J2EE platform.

• MySQL database.

• Matching algorithm application.

• Server communication protocol.

4.3 Mobile Component

 The application component on the mobile end is implemented on an Android

platform. The mobile client is responsible for sending the feature vector to the server and

 24

displaying the results of the classification. The first part of the functionality involves

image acquisition and feature extraction. The Android platform provides us with a media

framework to abstract the image acquisition stage. The feature extraction functionality is

provided by implementing the SURF algorithm in Java. For displaying results, the client

interface application parses the XML feed received from the server to display the results.

4.3.1 Android Platform

 Android is an operating system with a Linux kernel as its heart, and it is targeted

toward mobile devices. Apart from the Linux kernel, Android has various middle ware

libraries to enable high quality applications. Figure 4-2 provides a glimpse into the

Android application framework.

Figure 4-2 Android Application Framework

 25

 With the use of the Android application framework, the system has the following

components:

• Abstraction of the camera hardware – Android provides APIs access to the

camera hardware on the Mobile device. Using these APIs, we get direct access to

the image captured by the camera. Android APIs handle all the low level details.

• Java like runtime environment for Algorithm implementation – the Android

Framework implements Dalvik JVM. This JVM is very similar to Sun JAVA

JVM, and gives us access to most of the java standard libraries, like collections,

etc.

• User Interface APIs for building front end application – Android has a rich set of

API for user interface development. Android supports inflatable XML layouts

for easy customization. This helps in building an efficient and scalable user

interface.

• Communication APIs for Data exchange with server – Android supports the

java.net library and further extends it with android.net extension. Together these

libraries provide a wide range of communication protocols like HTTP.

• Support for XML parsing – Android has built in support for XML parsing; XML

is a convenient method for data transfer. With a built in parser, the XML results

received from the server can be directly fed to the User Interface components.

4.3.2 Client Interface Application

 Client Interface application is an Android application that executes in the Android

runtime, as illustrated in Figure 4-3.

 26

Figure 4-3 Client Interface Application

The client application has the following functionality:

• Provide user interface – The client application is the front end of the whole

system. Using XML layouts from the Android APIs we build a highly interactive

user interface. With the interface, the user can access the camera and acquire the

image of interest.

• Link with the feature extraction components – This application provides a channel

to forward the captured image to the feature extraction component.

• Interface server communication – This application enables the listener to accept

communication from the server.

• Display match results – This application also is responsible for displaying the

results from the server. It invokes the XML parser and presents the result to the

user.

• Latency logging – This utilizes the profiler to track the time spent on the

components on the mobile side.

Raw Image
User Input

Results from Server

 27

4.3.3 Object Recognition Algorithm

 The Object recognition algorithm (Figure 4-4) is the heart of the Client

component. Here the SURF algorithm (discussed in the previous section) is implemented.

The performance of the overall application depends mostly on the efficient

implementation of this application. In this thesis, we implemented the whole application

in java. This is to make use of standard APIs provided by the Android framework.

Figure 4-4 Object Recognition Application

Functions:

• Identify point of interest – Using the SURF algorithm, the application finds

 the point of interest in the given image.

• Extract feature vector – At the point of interest, a 64 valued feature vector is

 extracted.

• Interface server communication – This application implements the HTTP

 communication protocol to send this feature vector to the server for image

 identification.

Feature

Http

Raw Image

SURF

 28

4.3.4 Client Communication Protocol

 The communication Protocol is part of the object recognition application. The

function of the protocol is to provide a standard mechanism for data exchange between

the server and the client application. Here we use the standard http protocol for

communicating with the . For our application, Android provides standard APIs to be

invoked for implementing this protocol.

4.4 Server Component

 The server end of the application is responsible for implementing the

classification algorithm. Before a classification algorithm can be run, we need to create a

reference database. This database stores the meta data for the object of interest and the

feature vector. First, we gather the images from the relevant categories to populate our

reference database. For example, if we are including books and CD covers as categories,

we gather images for this data set. The sources are chosen so as to also include Meta data.

In Figure 4-5, we present the steps for populating a database for a “Books” category.

 29

Figure 4-5 Step One for Populating Database – Image Set Acquisition

In the second step, we convert the image to feature vector by applying SURF algorithm,

as shown in Figure 4-6.

Figure 4-6 Step Two for Populating Database – Converting Image to Feature Vector

Public

Data

Sources

 SURF

ALGORITHM
Feature Vector

 30

This feature vector, along with the image information, is then stored in the database,

shown in Figure 4-7.

Figure 4-7 Step Three for Populating Database – Transfer of Data to MySQL

 Here the feature vector received from the client end is matched with the stored

image set. The matching algorithm uses a “distance” criteria for deciding upon the best

match for the given query vector. The distance criteria depend upon the choice of

classification algorithm used in the process. This was discussed in detail in the previous

chapter. The server side implements a database for storing the meta data associated with

the image set. After the best match is selected, the server application retrieves the meta

data of the matched image, which includes relevant information about the image. For

example, if the image is a book, then meta data can include the title, author, summary,

MySQL Database on

 31

price, etc. The server application then encodes this information in XML format and sends

it back to the client application. The performance criteria for the server side are the

classification algorithm and the database latency. We now will discuss the server side

components in detail.

4.4.1 J2EE Platform

 The thesis uses J2EE technology for implementing the server side component.

The java platform Enterprise Edition includes libraries that provide functionality to

deploy fault –tolerant, distributed, multi-tiered java software, based largely on modular

components running on an application server. J2EE provides a component based

approach to the design, development, assembly, and deployment of enterprise

applications. This approach reduces cost and also enables a fast track through design and

implementation. The J2EE platform provides a multi-tiered distributed application model,

the ability to reuse components, a unified security model, and flexible transaction control.

This enables a faster development of application and results in a scalable architecture. For

the application server, the

4.4.2 MySQL Database

JBoss application server is chosen as it is a Java EE certified

platform for developing and deploying enterprise Java applications and Web applications.

The JBoss application server also provides the full range of Java EE 5 features as well as

extended enterprise services including clustering, caching, and persistence

 The database on the server side carries the relevant information about the images

in the form of a feature vector. The schema for the database will depend on the target

application type. However one common table set would be the feature vector to ImagInfo

mapping. The feature vector is used by the matching algorithm to find the best match for

 32

the query vector. Once the match is found, the corresponding ImageID is used to find the

relevant basic information about the image. As mentioned earlier, depending upon the

type of application, the database can contain further information about the image. The

query from the client also can contain additional parameters to further refine the

information needed to be accessed from the database. In Figure 4-8 we show a sample

database schema.

Figure 4-8 Sample Database Schema for Server

4.4.3 Matching Algorithm Application

 As discussed in section 3.4, the first step in the server side processing is to find

the most appropriate match for the query vector. The application server forwards the

feature vector to the application. In the training stage, the SURF algorithm is applied to

 33

the training images and the corresponding feature vector are extracted. The matching

algorithm uses the “distance” criteria to find the best match for the query vector. This is

illustrated in Figure 4-9.

Figure 4-9 Matching Algorithm Application

 After a match is found, the application then queries the database to retrieve the

meta data for the image. This meta data then is transformed in to a XML file and sent

over the http to the client application.

4.4.4 Server Communication

 The server communication with the client also occurs over HTTP. The server

communication components receive the information in the form of formatted XML. This

then is sent serially to the mobile client for further processing. The Java J2EE

architecture provides standard APIs to make the communication occur seamlessly.

Feature

vector

Http

Feature and

meta data

 Algorithms

Euclidian distance

Kd Trees

Scalable vocabulary tree

XML Layout

Http

To client

 34

CHAPTER - 5 CASE STUDY

5.1 Overview

 For implementing the framework described in chapter 3, we developed a sample

application for a case study. This application provides the ability to recognize books from

the image captured by the mobile device. With this application, the user will be able to

gather all the information about a book just by clicking on a photo of the book with the

camera in the mobile device. The user flow chart is described in detail in section 4.4. For

implementing the server side, a data set for book cover images is created for this

application. The information regarding these images, like the name, author, description,

etc. is stored in the database. The images are converted to feature vectors as described in

section 3.4. A feature vector to image id mapping is stored in a memory data structure for

the matching algorithm. On the client side, the image acquisition and feature extraction

application is created along the lines described in section 3.3. The purpose of this case

study is to evaluate the various performance parameters of the proposed framework.

5.2 Client Test Platform

 For the client application we used Android Dev Phone 1. This is essentially an

HTC Dream (G1) phone without operator locks. The relevant hardware specifications

are:

• Qualcomm MSM7201A ARM11 processor at 528MHz.

• 3.2 inch capacitive touch screen.

 35

• 192 MB DDR SDRAM and 256 MB Flash memory.

• 3.2 megapixel camera with auto focus.

• Quad band mobile network access and 802.11 b/g wireless LAN connectivity.

Also, this phone has Android OS version 1.5

5.3 Android Application Development Setup

 For developing application for Android OS, Google has provided Android

software development Kit (SDK.) [47]The Android SDK has all the tools to build, test and

deploy the application for an Android platform. The SDK also comes with a phone

emulator [48]that mimics all the function of a real phone. Using the emulator, the

application can be fully tested before deploying on the real device.

 For developing the application we used eclipse IDE for Java developers [44] 3.5

(Galileo Version). Eclipse provides a integrated framework for writing java application,

and provides a plug-in framework for targeting specific development environment. We

chose eclipse because it could support both client and server side development. For

android development, we used the eclipse plug-in for android [45] and the Android 1.5

SDK [46]summary of the development system is as follows.

5.3.1 Development System.

• Intel Core 2 Duo CPU 2.53 GHz with 2 GB RAM.

• Windows XP professional Service pack 3.

• Sun Java Development Kit 6.

• Eclipse 3.5 Galileo.

• Android SDK 1.5.

 36

5.4 Server Side Implementation

 The server side of the application provides a feature matching algorithm. It also

supports a database that stores the meta data for the image files. The implementation of

the server side component is done using the Google App Engine[49], which provides the

abstraction of the architecture similar to that proposed in section 3.4. Using this, we can

develop and deploy the application at a much faster rate. The app engine also provides us

with an analytics feature that helps us test the latency of the algorithm implemented.

5.4.1 Google App Engine Development Setup

 Google App Engine provides an easy to build maintain and scale infrastructure.

The framework runs on the Google infrastructure, hence providing a high quality of

service and reliability. The App Engine provides an abstraction to the server side

technology. Google App Engine supports apps written in several programming languages.

With App Engine's Java runtime environment, we can build our app using standard Java

technologies, including the JVM, Java servlets, and the Java programming language - or

any other language using a JVM-based interpreter or compiler, such as JavaScript or

Ruby. App Engine also features a dedicated Python runtime environment, which includes

a fast Python interpreter and the Python standard library. The Java and Python runtime

environments are built to ensure that an application runs quickly, securely, and without

interference from other apps on the system. We chose app engine because of the many

features it provides [50]

• Dynamic web serving, with full support for common web technologies.

• Persistent storage with queries, sorting and transactions.

• Automatic scaling and load balancing.

 37

• APIs for authenticating users and sending email using Google Accounts.

• A fully featured local development environment that simulates Google

App engine on your computer.

• Task queues for performing work outside of the scope of a web request.

• Scheduled tasks for triggering events at specified times and regular intervals.

 App Engine also supports both Java and Python. For our implementation, we use

the Java flavor. The Java implementation allows apps to interact with the environment

using the Java Servlet standard, and uses common web application technologies, such as

JavaServer Pages (JSPs). The Java runtime environment uses Java 6. The App Engine

Java SDK supports developing apps using either Java 5 or 6.

 The environment includes the Java SE Runtime Environment (JRE) 6 platform

and libraries. The restrictions of the sandbox environment are implemented in the JVM.

An app can use any JVM bytecode or library feature, as long as it does not exceed the

sandbox restrictions. For instance, bytecode that attempts to open a socket or write to a

file will throw a runtime exception.

 In the Google App Engine, the application accesses most App Engine services

using Java standard APIs. For the App Engine data store, the Java SDK includes

implementations of the Java Data Objects (JDO) and Java Persistence API (JPA)

interfaces.

5.5 Application Flow Chart

 Figure 5-1 shows the flow chart for the application use case. The user would

initialize the application from the phone’s control panel. On start, the application will

present the user with a camera viewfinder window to take the picture of the target object.

 38

The user then will take a picture of the book cover. The application will do internal

processing to find the appropriate match for the image. When the match is found, the

application will display the relevant information about the book in the phone user

interface. In case an appropriate match is not found, we can investigate whether the book

was in the database. If the information was not in the database, we can have an upload

data feature, wherein the information regarding the book can be uploaded back to the

server for future usage. The application then provides the user with the choice of either

taking another picture for identification or exiting the app.

 39

Figure 5-1 Application Flow Chart

5.6 Data Flow

 During the course of execution, the application transforms the data, and in this

section we give a glimpse of data flow in the application. Figure 5-2 shows the data flow

during different stages, along with the components and the platform where it is happening.

This presents a better understanding of the system and serves to provide insight into

No

Start Client
application

Yes

Take picture of
the target object

Was the
object
identified

Exit Application

Do you want
to identify
another
object?

Do you want to
update the data
base?

Submit ground
truth Values to
server

No

Yes

No

Database Yes

 40

optimization opportunities. The first step is the phone camera on the mobile device. The

camera captures the image and presents the data in an android.graphics.Bitmap data

object. This object has the image intensity captured in a pixel array. This data is easily

available for manipulation by calling standard methods on the object. The feature

extraction application takes the pixel data and calculates the feature vector. An image can

have a varied number of feature vectors, depending upon the number of interest points

present in the image. The size of each vector is fixed as 64. The elements in the vector

represents the SURF feature attributes. The next step in the operation is the transmission

of these vectors to the server application. For this, the feature vector set is wrapped in

HTTP protocol and sent over to the server. The server front end unwraps the data and

makes it available to the Matching algorithm application. Here the feature vector for the

query image is matched with the previously stored feature vectors. Based upon a

predefined criterion, a match is found. The matching feature vector is identified by the

Image_ID, which is the primary key to the information stored in the data base about that

object. From that key, the database query is executed and the relevant information about

the object is extracted. In this step, the information is stored in an XML data object. This

XML data object is sent over to the client as a HTTP response. At the client end, the client

application parses this data and displays the result to the user.

 41

Figure 5-2 Data Flow Diagram

5.7 Test Methodology

 For testing system performance, we conduct a series of tests on the framework to

identify performance and effectiveness. The goal is to present quantitative assessments of

the stages of processing in the application. Before the testing phase, the system is setup

with the server database. The thresholdΘ is set to 0.6 as found by similar system

implementation.[17] The accuracy of system depends on the value of MRΘ (Section

 42

4.4.2). To find the optimum MRΘ we plot the Receiver operating characteristic curve

(ROC) for our classifier.

5.8 Latency

 We define latency for the system as the time elapsed from the capture of the

image to the display of the results. The latency can be subdivided further into client side

latency and server side latency. For testing the latency, we used the Wi-Fi data channels

for data transmissions. The software was tagged with system time function call to capture

the time stamp. These time stamps were retrieved via log files to further calculate the time

difference.

5.9 Effect of Field Condition

 The image captured by the user frrm the mobile device will not be in a canonical

view like that stored in the database. The image can have a different transformation with

respect to the stored image. The transformations occur because the user in the real world

will take a picture from the mobile device in varied ways and under different conditions.

As this application is targeted towards field implementation, we cannot constraint the user

into following a controlled procedure. Hence, we study the different transformations and

field conditions that can occur in the field and their effect on the accuracy of the system.

To study the effect of the external conditions in a quantitative manner we simulate the

field condition by photo editing software. With this we can have better control over our

test condition. We used open source software GIMP [59] for this proposes. To test the

effects of these conditions, we employ a presentation methodology called response curve.

A response curve is a plot of Match Ratio values for all the images in the database for a

given image. The response curve shows the discriminative state of the query image with

 43

respect to the rest of the database. An image has a higher probability of being recognized

correctly if it has a single clearly defined peak in the response curve. In Figure 5-3 we can

see that the query image StateA has a high discriminative state as compared to StateB. By

analyzing the response curve, we can find the effect of external conditions on the

discriminating power of classifier.

Figure 5-3 Response Curve

5.9.1 Rotation

 Rotation is a type of affine transformation. Affine transformation is a geometrical

transformation that is known to preserve the parallelism of lines but not lengths and

angles. Rotation of input image with respect to the view stored in the database can occur

when the user clicks a picture of the target object in an angle different from what is stored

in the database. To test the effects of rotation, we calculate the response curve for the

-1

19

39

59

79

99

119

10.jpg

11.jpg

12.jpg

13.jpg

14.jpg

15.jpg

16.jpg

17.jpg

1.jpg

18.jpg

19.jpg

2.jpg

20.jpg

3.jpg

4.jpg

5.jpg

6.jpg

7.jpg

8.jpg

9.jpg

M
R

Images

StateA StateB

 44

image under varied conditions. Using GIMP, we create three different states of the

original image with different angles of rotation and analyze the response curve.

5.9.2 Perspective View

 Perspective view refers to the image capture situation where the camera plane is

not parallel to the object plane. GIMP toolbox provides methods to simulate different

perspectives views on given image. We create three images from the original image,

representing three different perspective views.

5.9.3 Light Conditions

 The images stored in the database are taken in a well-illuminated environment.

This is to ensure that the finer details of the target object could be captured. However, in a

real life scenario, the light condition can vary and most of the time it is not as good as the

image in the database. For testing the effect of light conditions, we create three different

image states with decreasing light intensity. Here the light conditions were simulated by

using the GIMP tool on the original image.

5.9.4 Scale

 Scale refers to the change in dimension of the images while keeping the other

geometric properties the same. The scale condition occurs when the user captures the

image from a distance different than that present in the database. To simulate the scale

condition, we use the GIMP tool to create three different versions of the input image.

These are created at different scales. We then analyze the response curve to study the

effect of scaling on discriminative state.

 45

CHAPTER - 6 RESULTS AND CONCLUSION

6.1 Threshold Selection

 In this section we present the results and conclusions from our case study. We

start with the selection of MRΘ from ROC. We did multiple experiments with a data set

of 20 images, 10 of which were present in the database (see Table 2).

 46

MRΘ
 A
P

A
ct

ua
l P

os
iti

ve

A
ct

ua
l

N
eg

at
iv

e
 PP

Pr

ed
ic

te
d

Po
si

tiv
e

Pr
ed

ic
te

d
N

eg
at

iv
e

Tr

ue

Po
si

tiv
e

Fa

ls
e

Po
si

tiv
e

Fa

ls
e

N
eg

at
iv

e

TN

Tr
ue

 N
eg

at
iv

e

TP
R

Tr

ue
Po

si
tiv

eR
at

e

FP
R

Fa

ls
eP

os
iti

ve
R

at
e

100 10 10 0 20 0 0 10 10 0 0

90 10 10 0 20 0 0 10 10 0 0

80 10 10 0 20 0 0 10 10 0 0

60 10 10 0 20 0 0 10 10 0 0

50 10 10 0 20 0 0 10 10 0 0

40 10 10 0 20 0 0 10 10 0 0

30 10 10 0 20 0 0 10 10 0 0

25 10 10 1 19 1 0 9 10 0.1 0

20 10 10 5 15 5 0 5 10 0.5 0

15 10 10 9 11 9 0 1 10 0.9 0

10 10 10 10 10 10 0 0 10 1 0

2 10 10 11 9 10 1 0 9 1 0.1

1.5 10 10 13 7 10 3 0 7 1 0.3

1 10 10 15 5 10 5 0 5 1 0.5

0.5 10 10 19 1 10 9 0 1 1 0.9

0.1 10 10 20 0 10 10 0 0 1 1

Table 2 ROC Values

 47

With these values, we plot our ROC curve, shown in Figure 6.1.

Figure 6-1 ROC Curve for Case Study

This curve represents a perfect classifier. The value of MRΘ =10.

6.2 Latency

 We define latency as the time elapsed between capturing the image from the

mobile device to the delivery of results. The latency can depend on many factors, such as

the processing power of the devices, efficiency of the implementation, transmission time,

memory usage, etc. For simplicity we studied the time delay as a function of time taken to

process the data on client end and server end. Figure 6-2 shows the average time taken to

process the data on different platforms.

 48

Figure 6-2 Processing Time Distribution

We observed that the majority of time is spent at the client end. The opportunity,

therefore, lies in improving the algorithm for SURF feature vector extraction.

6.3 Rotation Effect

 As discussed in section 4.9.1, we create three different images from the original

image. These images are created at different angles. Figure 6-3 gives a view of this

transformation.

Figure 6-3 Affine Transformation Legend

Client

Server

0

20

40

60

80

100

120

140

1

Ti
m

e
(S

ec
on

ds
)

Platform

Processing Time

Client Server

 49

 For finding the effect of rotation on the system, we study the response of an image

(1.jpg) with the database. This image is matched with all the images in the database and

its Match Ratio (MR) is recorded. The MR then is plotted on order to analyze the

discriminative state of the image. An image has a higher probability of being recognized

correctly if it has a single, clearly defined peak in the response curve (like original image

in Figure 6-3).

Figure 6-4 Rotation Response Curve

 We observe that as the angle of rotation increases, the image features lose their

discrimination state. The original image has a clearly defined peak. The rest of the images

have multiple peaks, which means it would be difficult to discriminate the correct match

from the database. We can infer that the current implementation is not robust to the effect

of rotation on query data.

-2

0

2

4

6

8

10

10.jpg

11.jpg

12.jpg

13.jpg

14.jpg

15.jpg

16.jpg

17.jpg

18.jpg

19.jpg

2.jpg

1.jpg

20.jpg

3.jpg

4.jpg

5.jpg

6.jpg

7.jpg

8.jpg

9.jpg

original 45 90 270

 50

6.4 Light Intensity

 Figure 6-5 depicts the image sample created to represent different levels of light

intensities. These images were simulated with the GIMP tool. The numbers 25,50,100

represent the level of screening effect.

Figure 6-5 Light Intensity Legend

Figure 6-6 Light Intensity Response

 As indicated in Figure 6-6, we observed that at lower levels of screening, the

images retain their discriminatory power. However, at higher levels, multiple peaks start

to emerge. The main peak also reduces in magnitude and becomes comparable to other

-1

4

9

14

19

24

29

1.jpg

10.jpg

11.jpg

12.jpg

13.jpg

14.jpg

15.jpg

16.jpg

17.jpg

18.jpg

19.jpg

2.jpg

20.jpg

3.jpg

4.jpg

5.jpg

6.jpg

7.jpg

8.jpg

9.jpg

M
R

Images

original 25 50 100

 51

smaller peaks. This is indicative of loss in discriminative power. For most of the actual

conditions, the system should be fairly stable and give correct results.

6.5 Perspective Transformation

 Perspective transformation occurs when the camera plane is not parallel to the

object. In this experiment, three images were created using the GIMP tool with different

views, illustrated in Figure 6-7.

Figure 6-7 Perspective Transformation Legend

Figure 6-8 Perspective Transformation Response Curve

-1

4

9

14

19
1.jpg

10.jpg

11.jpg

12.jpg

13.jpg

14.jpg

15.jpg

16.jpg

17.jpg

18.jpg

19.jpg

2.jpg

20.jpg

3.jpg

4.jpg

5.jpg

6.jpg

7.jpg

8.jpg

9.jpg
M

R

Images

original back front side

 52

 In Figure 6-8, the response curve shows loss of discriminatory power in the front

view. The rest of the perspective views are invariant to the changes.

6.6 Scale

 Scaling effect is indicative of the shrinking or enlargement of image dimensions,

keeping the aspect ratio the same. This is shown in Figure 6-9.

.

Figure 6-9 Scaling Legend

Figure 6-10 Scaling Response Curve

-1

9

19

29

39

49
1.jpg

10.jpg

11.jpg

12.jpg

13.jpg

14.jpg

15.jpg

16.jpg

17.jpg

18.jpg

19.jpg

2.jpg

20.jpg

3.jpg

4.jpg

5.jpg

6.jpg

7.jpg

8.jpg

9.jpg

M
R

Images

original 75% 50% 25%

 53

 The response curve, illustrated in Figure 6-10, shows that there is a gradual loss of

discriminative power as the image shrinks. At 25% of its size, it is fairly impossible to

make a distinctive selection for the match. However, for most of the real life applications,

the system is robust and effective. In Figure 6-11, we present a consolidated test report for

the system testing.

Test Type Test state 1 Test state 2 Test state 3 Test state 4

Rotation effect

Original

45 Degree

90 Degree

270 Degree

Light Intensity

Original

25 Screen

50 Screen

100 Screen

Perspective

Transformation

Original

Back

Front

Side

Scale

Original

75%

50%

25%

 Positive
 Negative

Figure 6-11 Consolidated Test Results

Legend

 54

CHAPTER - 7 CONCLUSION AND FUTURE DIRECTION

7.1 Conclusion

 In this thesis, we proposed a scalable system architecture for providing object

recognition capabilities on Android based mobile devices. The object recognition

algorithm used is based on SURF. We ported a Java based implantation of SURF to the

Android platform. The architecture is a client server model, which divides the effort

between the mobile device and remote server for optimizing results. The client end

extracts SURF features and the server end matches the query feature to the image data

stored in the backend database. We proposed and implemented a simple matching

algorithm based on nearest neighbor search. We provided a case study of implementing

this architecture using an Android platform and the Google app engine framework .The

case study consisted of a book cover matching application along with a test framework.

We analyzed the matching algorithm using the ROC curve and found the best threshold

for the classifier. We further identified the factors that could impact the ideal behavior of

the system. Factors such as image rotation, perspective views, scale, and illuminations can

cause negative effects on the accuracy of the classifier build in ideal conditions. To study

the effects of these factors, we proposed a simple methodology called response curve.

With response curve we can visualize the effect of the external factor on the

discriminative power of classifier. We used the response curve methodology to analyze

 55

the effects of external factors in our case study. We demonstrated that the system was

robust against most of the conditions.

 With this thesis we demonstrated that object recognition has come a long way

from being esoteric algorithms in research labs and is ready for primetime implementation

on mobile devices.

7.2 Future Work

 The following avenues can be explored for further development of the work

covered in this thesis:

• Implementing object recognition algorithm in Native code. Currently the

SURF implementation used in this thesis is implemented in JAVA; however

comparative studies have shown that it is efficient to implement the system in

Native code. The feature extraction component in the system is standalone and

can be replaced without affecting other components. Future implementation can

use Java Native Interface (JNI) to use C or C++ implementation of the SURF

algorithm.

• Automated testing: During the development of the system, it was found that a

large percentage of time is spent on testing the system for ROC and studying the

effect of external factors. Currently these tests were done manually using MS

Excel to collate the data. An automated system to test these scenarios can

significantly improve the time to market future implementations.

• Feature compression: The current implementation uses all the features extracted

by SURF algorithm for a given image and sends it over the wireless network to

the server. Future implementation can use a compression algorithm to quantify

 56

this data. This will help reduce the load on the wireless network while

maintaining the accuracy of the system.

 57

APPENDIX A

SOURCE CODE

/*This work was derived from Chris Evan's opensurf project and re-licensed as the

3 clause BSD license with permission of the original author. Thank you Chris!

Copyright (c) 2010, Andrew Stromberg

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

 * Neither Andrew Stromberg nor the

 names of its contributors may be used to endorse or promote products

 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF

 58

 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL Andrew Stromberg BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE. */

ImageTransformUtils.Java

package com.fau.vivek;

import java.awt.color.ColorSpace;

import java.io.File;

import javax.imageio.ImageIO;

import android.graphics.Bitmap;

import android.graphics.Color;

public class ImageTransformUtils {

 public static float[][]generateIntegralImage(Bitmap mOriginalImage){

 59

 float[][] integralImage = new

float[mOriginalImage.getWidth()][mOriginalImage.getHeight()];

 int width = mOriginalImage.getWidth();

 int height = mOriginalImage.getHeight();

 int pix;

 float sum;

 for (int y = 0; y < height; y++){

 sum = 0F;

 for (int x = 0; x < width; x++){

// raster.getPixel(x,y,pixel);

 pix=mOriginalImage.getPixel(x, y);

 float intensity = Math.round((0.299D*Color.red(pix) +

0.587D*Color.green(pix) + 0.114D*Color.blue(pix)))/255F;

 sum += intensity;

 if (y == 0){

 integralImage[x][y] = sum;

 } else {

 integralImage[x][y] = sum + integralImage[x][y-1];

 }

 }

 }

 60

 return integralImage;

 }

SurfCompare.Java

package com.fau.vivek;

import java.io.*;

import java.util.ArrayList;

import java.util.List;

import javax.imageio.ImageIO;

import android.app.Activity;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.os.Bundle;

import android.util.Log;

public class SurfCompare extends Activity {

 static final String TAG="SurfComapare";

 private Bitmap image;

 private float mImageAXScale = 0private float mImageAYScale = 0;

 private float mImageBXScale = 0;

 private float mImageBYScale = 0;

 private int mImageAWidth = 0;

 61

 private int mImageAHeight = 0;

 private int mImageBWidth = 0;

 private int mImageBHeight = 0;

 private Surf mSurfA;

 private Surf mSurfB;

 Bitmap imageA ;

 Bitmap imageB ;

 private java.util.List<SURFInterestPoint> mAMatchingPoints;

 private List<SURFInterestPoint> mBMatchingPoints;

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 List<Bitmap> imagedata = new ArrayList<Bitmap>();

 imageA =

BitmapFactory.decodeResource(getBaseContext().getResources(),

R.drawable.whitehouse1);

 62

 imageB =

BitmapFactory.decodeResource(getBaseContext().getResources(),

R.drawable.whitehouse2);

 Log.d(TAG,"call SurfCompareloc ");

 SurfCompareloc(imageA,imageB);

 }

 public void SurfCompareloc(Bitmap imageA2,Bitmap imageB2){

 this.image = imageA2;

 this.imageB = imageB2;

 mSurfA = new Surf(imageA2);

 mSurfB = new Surf(imageB2);

 mAMatchingPoints = mSurfA.getMatchingPoints(mSurfB,true);

 mBMatchingPoints = mSurfB.getMatchingPoints(mSurfA,true);

 Log.d(TAG,"match poirnts found")

 63

REFERENCES

[1] D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints,"

International Journal of Computer Vision, vol. 60, 2004, pp. 91-110.

[2] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool, "Surf: Speeded up robust features,"

Computer Vision and Image Understanding (CVIU), vol. 110, 2008, pp. 346-359.

[3] C. Evans, "Chris Evans Development OpenSURF.”

Available: http://www.chrisevansdev.com /c omputer-vision-opensurf.html

[Accessed: June. 12, 2010].

[4] Davis, “dlib C++ Library.” Available: http://dlib.net/ [Accessed: June. 12, 2010].

[5] F. Zlatko and T. Reiff, “MASS/Plugin/ProcessorSURF.” Available:

http://brain.fei.tuke.sk/wiki/index.php/MASS/Plugins/ProcessorSURF [Accessed:

June. 12, 2010].

[6] E. Zatepyakin, “ASSURF in sprit SURF feature extraction library in ActionScript

for the Adobe Flash Platform.” Available: http://code.google.com/p/in-

spirit/wiki/ASSURF [Accessed: June. 12, 2010].

[7] E. Labun, “ImageJ SURF.” Available: http://labun.com/imagej-surf/ [Accessed:

June. 12, 2010].

[8] Kitanovski, “JavaSurf Java implementation on speeded up robust features SURF.”

Available: http://code.google.com/p/javasurf/ [Accessed: June. 12, 2010].

 64

[9] National Institute of Health, “ImageJ Image Processing and Analysis in Java”

Available: http://rsbweb.nih.gov/ij/ [Accessed: June. 12, 2010].

[10] “OpenCV wiki.” Available: http://opencv.willowgarage.com/wiki/ [Accessed:

June. 12, 2010].

[11] Orlinski, “Pan-o-Manic ,tool to automates the creation of control points in

Hugin.” Available: http://aorlinsk2.free.fr/panomatic/ [Accessed: June. 12, 2010].

[12] D. Gossow, F. Schmitt and D. Dröge, “Parallel SURF An implemntaion of SURF

using Pan-o-manic.” Available:

http://sourceforge.net/apps/mediawiki/parallelsurf/index.php?title=Main_Page

[Accessed: June. 12, 2010].

[13] P. Strandmark, “SURFmex: A MATLAB SURF interface,”, Available:

http://www.maths.lth.se/matematiklth/personal/petter/surfmex.php [Accessed:

June. 12, 2010].

[14] P. Furgale and C. H. Tong, “Speeded Up SURF.” Available:

http://asrl.utias.utoronto.ca/code/gpusurf/ [Accessed: June. 12, 2010].

[15] N. Cornelis and L. Van Gool, "Fast scale invariant feature detection and matching

on programmable graphics hardware," 2008 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, 2008, pp. 1-8.

[16] N. Imamura, and B. McCord, “OpenCV for Android” Available:

http://billmccord.github.com/OpenCV-Android/ [Accessed: June. 12, 2010].

[17] S. Olsson and P. Akesson, "Distributed mobile computer vision and applications

on the android platform," M.S. thesis, Lund University, Lund, Sweden, 2009.

 65

[18] Stromberg, “JOpenSURF The SURF descriptor.” Available:

http://www.stromberglabs.com/jopensurf/ [Accessed: June. 12, 2010].

[19] Biederman, "Recognition-by-components: A theory of human image

understanding.," Psychological review, vol. M, 1987, pp. 115-147.

[20] T. Mathew and A. Pentland, "Face Recognition using eigenfaces," IEEE

Conference on Computer Vision and Pattern Recognition, 1991.

[21] H.A. Rowley, S. Baluja, and T. Kanade, "Human Face Detection in Visual

Scenes," Neural Information Processing Systems (NIPS), 1995, pp. 875-881.

[22] F. Fleuret and D. Geman, "Graded Learning for Object Detection," IEEE

Workshop on Statistical and Computational Theories of Vision, 1999.

[23] P. Viola and M.J. Jones, "Robust Real-Time Face Detection," International

Journal of Computer Vision, 2004.

[24] B. Heisele, T. Serre, S. Mukherjee, and T. Poggio, "Feature reduction and

hierarchy of classifiers for fast object detection in video images," Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2001.

[25] T. Tuytelaars, “ Local Invariant Features: What? How? Why? When?.” Available:

http://homes.esat.kuleuven.be/~tuytelaa/ECCV06tutorial.html [Accessed: June.

12, 2010].

[26] C. Harris and M. Stephens, "A Combined Corner and Edge Dectector," Alvey

Vision Conference, 1988, pp. 147-152.

 66

[27] R. Wang, “Laplacian of Gaussian.” Available:

http://fourier.eng.hmc.edu/e161/lectures/gradient/node10.html [Accessed: June.

12, 2010].

[28] K. Mikolajczyk and C. Schmid, "Indexing based on scale invariant interest

points," International Conference on Computer Vision, 2001, pp. 525-531.

[29] Eric W. Weisstein, "Hessian. From MathWorld--A Wolfram Web Resource.”

Available: http://mathworld.wolfram.com/Hessian.html [Accessed: June. 12,

2010].

[30] B. Herbert and G. L. Van, “ SURF:Speeded UP Robust Features.” Available:

http://www.vision.ee.ethz.ch/~surf/index.html [Accessed: June. 12, 2010].

[31] K. Mikolajczyk and C. Schmid, "Scale & Affine Invariant Interest Point

Detectors," International Journal of Computer Vision, vol. 60, 2004, pp. 63-86.

[32] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F.

Schaffalitzky, T. Kadir, and L. V. Gool.A comparison of Affine region detectors.

Submitted to International Journal of Computer Vision.

[33] J. Canny, "A computational approach to edge detection," IEEE Transactions on

Pattern Analysis and Machine Intelligence, 1986.

[34] Y. Ke and R. Sukthankar, "PCA-SIFT : A More Distinctive Representation for

Local Image Descriptors," Evaluation, pp. 2-9.

[35] L. I. Smith, “A Tutorial on Principal Componenet Analsyis.” Available:

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

[Accessed: June. 12, 2010].

 67

[36] Johnson and M. Hebert, “Surface Matching for Object Recognition in Complex

Three-Dimensional Scenes,” Image and Vision Computing, vol. 16, pp. 635-651,

1998

[37] Johnson, “Spin-Images: A Representation for 3-D Surface Matching”,doctoral

dissertation, The Robotics Institute, Carnegie Mellon Univ, 1997.

[38] N. Davies, K. Cheverst, A. Dix, and A. Hesse, "Understanding the Role of Image

Recognition in Mobile Tour Guides," Methodology, 2005.

[39] D.A. Vigo, F.S. Khan, J.V. Weijer, and T. Gevers, "The Impact of Color on Bag-

of-Words based Object Recognition," Challenge.

[40] M. Behrmann and D. Mapelli, "The Role of Color in Object

Recognition:Evidence from Visual Agnosia," Neurocase, vol. Vol 3, 1997, pp.

237-247.

[41] L. Juan, "A Comparison of SIFT , PCA-SIFT and SURF," Image Processing, pp.

143-152.

[42] E.D. Michie, D. Spiegelhalter, and C.C. Taylor, "Machine Learning, Neural and

Statistical Classification," 1994, p. page 6.

[43] “Kooaba Query API.” Available: http://www.kooaba.com/developers/query-api/

[Accessed: June. 12, 2010].

[44] “Eclipse IDE for Java Developers.” Available:

http://www.eclipse.org/downloads/packages/eclipse-ide-java-

developers/galileosr2. [Accessed: June. 12, 2010].

[45] “Android ADT Plugin for Eclipse.” Available:

http://developer.android.com/sdk/eclipse-adt.html [Accessed: June. 12, 2010].

 68

[46] “Android 1.5 Platform.” Available: http://developer.android.com/sdk/android-

1.5.html [Accessed: June. 12, 2010].

[47] “Android SDK.” Available: http://developer.android.com/sdk/index.html

[Accessed: June. 12, 2010].

[48] :Android Emulator.” Available:

http://developer.android.com/guide/developing/tools/emulator.html [Accessed:

June. 12, 2010].

[49] “Google App Engine.” Available: Retrieved from

http://code.google.com/appengine/ [Accessed: June. 12, 2010].

[50] “What Is Google App Engine?”. Available:

http://code.google.com/appengine/docs/whatisgoogleappengine.html [Accessed:

June. 12, 2010].

[51] Tomas krajnik, J. Svab, and Libor preucil, "FPGA Based Speeded Up Robust

Features," IEEE Transactions on Circuits and Systems, 2009, pp. 10-12.

[52] P. Viola and M.J. Jones, "Robust Real-Time Face Detection," International

Journal of Computer Vision, 2004.

[53] “Shopsavvy for Android.” Available: http://www.biggu.com/apps/shopsavvy-

android/ [Accessed: June. 12, 2010].

[54] “Kooaba for Android.” Available: http://www.kooaba.com/using-kooaba/on-

android/ [Accessed: June. 12, 2010].

[55] “Layar Reality Browser for Android.” Available: http://www.layar.com/

[Accessed: June. 12, 2010].

 69

[56] “Augemented Geo Traveller for iPhone.” Available:

http://www.augmentedworks.com/ [Accessed: June. 12, 2010].

[57] “Google Goggles.” Available: http://www.google.com/mobile/goggles/#text

[Accessed: June. 12, 2010].

[58] T. Fawcett, An introduction to ROC analysis, elsevier, 2005.

[59] “GIMP-The GNU Image Manipulation Program.” Available:

http://www.gimp.org/ [Accessed: June. 12, 2010].

	by
	ACKNOWLEDGEMENTS
	ABSTRACT
	Speeded Up Robust Features
	4TList of Tables4T x
	List of Tables
	List of Figures
	Introduction
	Background
	Motivation
	Problem Statement
	Distortions at Acquisition Stage
	Time Constraints
	Computing Constraints
	Bandwidth Constraints
	System Architecture and Test Framework

	Contribution
	System Architecture for Application
	SURF Implementation
	Load Balancing
	Evaluation Framework
	Case Study
	Classification Algorithm

	Thesis Overview

	Background
	Background
	Object Recognition Framework
	Image Acquisition
	Feature Detection
	Feature Extraction
	Classification

	Speeded Up Robust Features
	Related Work

	Matching Algorithm
	Classification Theory
	Nearest Neighbor Search

	Matching Algorithm
	Receiver Operating Curve (ROC)

	System Architecture
	Overview
	System Architecture
	Mobile Component
	Android Platform
	Client Interface Application
	Object Recognition Algorithm
	Client Communication Protocol

	Server Component
	J2EE Platform
	MySQL Database
	Matching Algorithm Application
	Server Communication

	Case Study
	Overview
	Client Test Platform
	Android Application Development Setup
	Development System.

	Server Side Implementation
	Google App Engine Development Setup

	Application Flow Chart
	Data Flow
	Test Methodology
	Latency
	Effect of Field Condition
	Rotation
	Perspective View
	Light Conditions
	Scale

	Results and Conclusion
	Threshold Selection
	Latency
	Rotation Effect
	Light Intensity
	Perspective Transformation
	Scale

	Conclusion and Future Direction
	Conclusion
	Future Work

	Appendix A
	Source Code
	References

