You are here

Storm-Induced Neashore Sediment Transport

Download pdf | Full Screen View

Date Issued:
2017
Summary:
Each year storms impact coastal areas, sometimes causing significant morphologic change. Cold fronts are associated with increased wave energy and frequently occur during the winter months along many coasts, such as the Atlantic and Gulf of Mexico. The higher wave energy can be responsible for a large quantity of the sediment transport resulting in rapid morphologic change. Using streamer traps, the vertical distribution of onshore-directed sediment transport during two different cold fronts on two low-wave energy beaches (i.e., along the northern Yucatan and southeast Florida) were compared with the resulting morphologic change. The objectives of this study are to: 1) analyze the grain size distribution (statistics) of sediment transported during a cold front, 2) compare the vertical sediment distribution throughout the water column, and 3) compare characteristics of bed sediment to the sediment within the water column. Understanding the changing grain size distribution of bottom sediments in comparison to directional transport (throughout the water column) should help determine the sediment fraction(s) being eroded or deposited, which could greatly improve predictions of storm-induced morphology change.
Title: Storm-Induced Neashore Sediment Transport.
0 views
0 downloads
Name(s): Warren, William F., author
Briggs, Tiffany Roberts, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Geosciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 79 p.
Language(s): English
Summary: Each year storms impact coastal areas, sometimes causing significant morphologic change. Cold fronts are associated with increased wave energy and frequently occur during the winter months along many coasts, such as the Atlantic and Gulf of Mexico. The higher wave energy can be responsible for a large quantity of the sediment transport resulting in rapid morphologic change. Using streamer traps, the vertical distribution of onshore-directed sediment transport during two different cold fronts on two low-wave energy beaches (i.e., along the northern Yucatan and southeast Florida) were compared with the resulting morphologic change. The objectives of this study are to: 1) analyze the grain size distribution (statistics) of sediment transported during a cold front, 2) compare the vertical sediment distribution throughout the water column, and 3) compare characteristics of bed sediment to the sediment within the water column. Understanding the changing grain size distribution of bottom sediments in comparison to directional transport (throughout the water column) should help determine the sediment fraction(s) being eroded or deposited, which could greatly improve predictions of storm-induced morphology change.
Identifier: FA00004830 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Coast changes--Mathematical models.
Coastal zone management.
Geomorphology.
Sediment transport--Analysis.
Coastal engineering--Mathematical models.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004830
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004830
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.