You are here

Quasi-local energy of rotating black hole spacetimes and isometric embeddings of 2-surfaces in Euclidean 3-space

Download pdf | Full Screen View

Date Issued:
2017
Summary:
One of the most fundamental problems in classical general relativity is the measure of e↵ective mass of a pure gravitational field. The principle of equivalence prohibits a purely local measure of this mass. This thesis critically examines the most recent quasi-local measure by Wang and Yau for a maximally rotating black hole spacetime. In particular, it examines a family of spacelike 2-surfaces with constant radii in Boyer-Lindquist coordinates. There exists a critical radius r* below which, the Wang and Yau quasi-local energy has yet to be explored. In this region, the results of this thesis indicate that the Wang and Yau quasi-local energy yields complex values and is essentially equivalent to the previously defined Brown and York quasi-local energy. However, an application of their quasi-local mass is suggested in a dynamical setting, which can potentially give new and meaningful measures. In supporting this thesis, the development of a novel adiabatic isometric mapping algorithm is included. Its purpose is to provide the isometric embedding of convex 2-surfaces with spherical topology into Euclidean 3-space necessary for completing the calculation of quasilocal energy in numerical relativity codes. The innovation of this algorithm is the guided adiabatic pull- back routine. This uses Ricci flow and Newtons method to give isometric embeddings of piecewise simplicial 2-manifolds, which allows the algorithm to provide accuracy of the edge lengths up to a user set tolerance.
Title: Quasi-local energy of rotating black hole spacetimes and isometric embeddings of 2-surfaces in Euclidean 3-space.
161 views
49 downloads
Name(s): Ray, Shannon, author
Miller, Warner A., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Physics
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 88 p.
Language(s): English
Summary: One of the most fundamental problems in classical general relativity is the measure of e↵ective mass of a pure gravitational field. The principle of equivalence prohibits a purely local measure of this mass. This thesis critically examines the most recent quasi-local measure by Wang and Yau for a maximally rotating black hole spacetime. In particular, it examines a family of spacelike 2-surfaces with constant radii in Boyer-Lindquist coordinates. There exists a critical radius r* below which, the Wang and Yau quasi-local energy has yet to be explored. In this region, the results of this thesis indicate that the Wang and Yau quasi-local energy yields complex values and is essentially equivalent to the previously defined Brown and York quasi-local energy. However, an application of their quasi-local mass is suggested in a dynamical setting, which can potentially give new and meaningful measures. In supporting this thesis, the development of a novel adiabatic isometric mapping algorithm is included. Its purpose is to provide the isometric embedding of convex 2-surfaces with spherical topology into Euclidean 3-space necessary for completing the calculation of quasilocal energy in numerical relativity codes. The innovation of this algorithm is the guided adiabatic pull- back routine. This uses Ricci flow and Newtons method to give isometric embeddings of piecewise simplicial 2-manifolds, which allows the algorithm to provide accuracy of the edge lengths up to a user set tolerance.
Identifier: FA00004865 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Gravitational fields.
General relativity (Physics)
Newton-Raphson method.
Ricci flow.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004865
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004865
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.