You are here

Autophagy gene atg-18 regulates C. elegans lifespan cell nonautonomously by neuropeptide signaling

Download pdf | Full Screen View

Date Issued:
2017
Summary:
In the round worm C. elegans, it has recently been shown that autophagy, a highly conserved lysosomal degradation pathway that is present in all eukaryotic cells, is required for maintaining healthspan and for increasing the adult lifespan of worms fed under dietary restriction conditions or with reduced IGF signaling. It is currently unknown how extracellular signals regulate autophagy activity within different tissues during these processes and whether autophagy functions cell-autonomously or nonautonomously. We have data that for the first time shows autophagy activity in the neurons and intestinal cells plays a major role in regulating adult lifespan and the longevity conferred by altered IGF signaling and dietary restriction, suggesting autophagy can control these phenotypes cell non-autonomously. We hypothesize that autophagy in the neurons and intestinal cells is an essential cellular process regulated by different signaling pathways to control wild type adult lifespan, IGF mediated longevity and dietary restriction induced longevity. Excitingly we also have found that in animals with reduced IGF signaling autophagy can control longevity in only a small subset of neurons alone. Autophagy in either specific individual chemosensory neurons or a small group of them is completely sufficient to control IGF mediated longevity. This work provides novel insight to the function and regulation of autophagy which will help shed light on understanding this essential process in higher organisms, including mammals.
Title: Autophagy gene atg-18 regulates C. elegans lifespan cell nonautonomously by neuropeptide signaling.
198 views
121 downloads
Name(s): Minnerly, Justin, author
Jia, Kailiang, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 113 p.
Language(s): English
Summary: In the round worm C. elegans, it has recently been shown that autophagy, a highly conserved lysosomal degradation pathway that is present in all eukaryotic cells, is required for maintaining healthspan and for increasing the adult lifespan of worms fed under dietary restriction conditions or with reduced IGF signaling. It is currently unknown how extracellular signals regulate autophagy activity within different tissues during these processes and whether autophagy functions cell-autonomously or nonautonomously. We have data that for the first time shows autophagy activity in the neurons and intestinal cells plays a major role in regulating adult lifespan and the longevity conferred by altered IGF signaling and dietary restriction, suggesting autophagy can control these phenotypes cell non-autonomously. We hypothesize that autophagy in the neurons and intestinal cells is an essential cellular process regulated by different signaling pathways to control wild type adult lifespan, IGF mediated longevity and dietary restriction induced longevity. Excitingly we also have found that in animals with reduced IGF signaling autophagy can control longevity in only a small subset of neurons alone. Autophagy in either specific individual chemosensory neurons or a small group of them is completely sufficient to control IGF mediated longevity. This work provides novel insight to the function and regulation of autophagy which will help shed light on understanding this essential process in higher organisms, including mammals.
Identifier: FA00004862 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Caenorhabditis elegans--Molecular genetics.
Aging--Molecular aspects.
Life cycles (Biology)
Cell death.
Gene expression.
Autophagic vacuoles.
Apoptosis.
Eukaryotic cells.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004862
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004862
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.