You are here
Propulsive Performance and Maneuver Control of Undulatory Ribbon Fin Propulsion Using Bio-inspired Robotic Systems
- Date Issued:
- 2017
- Summary:
- Undulatory ribbon- n-based propulsion is an appealing propulsion mechanism due to its rich locomotor capabilities that can improve the propulsive performance and maneuverability of underwater vehicles. For instance, the swimming mechanics of weakly electric black ghost knife sh (Apteronotus albifrons) is of great interest to study because of their high swimming e ciency at low speeds and extraordinary agility such as rapid reversal swimming, hovering in presence of water disturbance, rolling and vertical swimming. In this thesis work, to facilitate our understanding on the exible undulatory ribbon n propulsion, we have four research motivations. The rst objective is to study how the use of exible rays and di erent n morphology can in uence the propulsive performance of ribbon- n propulsion. It is possible that natural swimmers using this locomotion method could take advantage of passive n motion based on the coupling of uid-structure interaction and the elasto-mechanical responses of the undulating n. Therefore, the second objective is to understand how an under-actuated undulating n can take advantage of natural dynamics of the uid-structure interaction for the propulsive force generation. In addition to the impressive propulsive performance of the undulatory n propulsion, the exceptional maneuverability of knife sh is also a key motivation that drives this thesis work. Thus, we dedicate to investigate how traveling wave shapes and actuation parameters (frequency, wavelength) can manipulate the maneuvering behaviors of a swimmer propelled by an undulating ribbon n. Lastly, we aim to uncover the e ect of varying traveling wave amplitudes and pectoral ns on its maneuvering performances. Two robotic devices were developed to study the propulsive performance of both fullyactuated and under-actuated ribbon n propulsion and investigate the maneuver control of a free-swimming underwater robot propelled by an undulatory n. For the rst research aim, we study the e ect of exible rays and di erent n morphology on the propulsive performance of ribbon- n propulsion. A physical model composed of fteen rays interconnected with an elastic membrane was used to test four di erent ray exural sti ness and four aspect ratios. Our results show that exible rays can improve the propulsive e ciency compared to a rigid counterpart. In addition, the morphology of the ribbon n a ects its propulsive performance as well, and there could exist an optimal n morphology. To understand how an underactuated undulating n can modify its active and passive n motion to e ectively control the hydrodynamic force and propulsive e ciency. We did a series of experiments using the same robotic n model but with some structural modi cations and we measured n kinematics, net surge force and power consumption. We nd that the under-actuated n can keep the equivalent propulsive e ciency as the fully-actuated counterpart within our experimental parameter range. Moreover, our results demonstrate that the thrust force and power consumption of an under-actuated n follow the same scaling laws as the fully-actuated n. To conduct the free-swimming maneuver study, we developed a self-contained, free-swimming robot propelled by an undulatory n, which is able to perform the following maneuvers: forward, reversed swimming and hovering motion. We also performed V3V PIV experiments to capture the ow structures generated by the robotic device. Our results show that the robot can reach higher swimming e ciency at low frequencies. As the number of traveling waves increases, the robot swims more stably in roll, pitch and yaw motions. For cases with varying wave amplitudes, traveling wave with incremental wave amplitude can achieve free-swimming velocity higher than that of decremental wave amplitude. However, the latter case can generate higher pitch angles. For the robot with slightly negative-pitched pectoral ns, it can perform slow diving maneuvers. These ndings demonstrate that we can take advantage of the undulating ribbon n propulsion to achieve high maneuverability for the future underwater vehicles in complex environment.
Title: | Propulsive Performance and Maneuver Control of Undulatory Ribbon Fin Propulsion Using Bio-inspired Robotic Systems. |
349 views
69 downloads |
---|---|---|
Name(s): |
Liu, Hanlin, author Curet, Oscar M., Thesis advisor Florida Atlantic University, Degree grantor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2017 | |
Date Issued: | 2017 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 146 p. | |
Language(s): | English | |
Summary: | Undulatory ribbon- n-based propulsion is an appealing propulsion mechanism due to its rich locomotor capabilities that can improve the propulsive performance and maneuverability of underwater vehicles. For instance, the swimming mechanics of weakly electric black ghost knife sh (Apteronotus albifrons) is of great interest to study because of their high swimming e ciency at low speeds and extraordinary agility such as rapid reversal swimming, hovering in presence of water disturbance, rolling and vertical swimming. In this thesis work, to facilitate our understanding on the exible undulatory ribbon n propulsion, we have four research motivations. The rst objective is to study how the use of exible rays and di erent n morphology can in uence the propulsive performance of ribbon- n propulsion. It is possible that natural swimmers using this locomotion method could take advantage of passive n motion based on the coupling of uid-structure interaction and the elasto-mechanical responses of the undulating n. Therefore, the second objective is to understand how an under-actuated undulating n can take advantage of natural dynamics of the uid-structure interaction for the propulsive force generation. In addition to the impressive propulsive performance of the undulatory n propulsion, the exceptional maneuverability of knife sh is also a key motivation that drives this thesis work. Thus, we dedicate to investigate how traveling wave shapes and actuation parameters (frequency, wavelength) can manipulate the maneuvering behaviors of a swimmer propelled by an undulating ribbon n. Lastly, we aim to uncover the e ect of varying traveling wave amplitudes and pectoral ns on its maneuvering performances. Two robotic devices were developed to study the propulsive performance of both fullyactuated and under-actuated ribbon n propulsion and investigate the maneuver control of a free-swimming underwater robot propelled by an undulatory n. For the rst research aim, we study the e ect of exible rays and di erent n morphology on the propulsive performance of ribbon- n propulsion. A physical model composed of fteen rays interconnected with an elastic membrane was used to test four di erent ray exural sti ness and four aspect ratios. Our results show that exible rays can improve the propulsive e ciency compared to a rigid counterpart. In addition, the morphology of the ribbon n a ects its propulsive performance as well, and there could exist an optimal n morphology. To understand how an underactuated undulating n can modify its active and passive n motion to e ectively control the hydrodynamic force and propulsive e ciency. We did a series of experiments using the same robotic n model but with some structural modi cations and we measured n kinematics, net surge force and power consumption. We nd that the under-actuated n can keep the equivalent propulsive e ciency as the fully-actuated counterpart within our experimental parameter range. Moreover, our results demonstrate that the thrust force and power consumption of an under-actuated n follow the same scaling laws as the fully-actuated n. To conduct the free-swimming maneuver study, we developed a self-contained, free-swimming robot propelled by an undulatory n, which is able to perform the following maneuvers: forward, reversed swimming and hovering motion. We also performed V3V PIV experiments to capture the ow structures generated by the robotic device. Our results show that the robot can reach higher swimming e ciency at low frequencies. As the number of traveling waves increases, the robot swims more stably in roll, pitch and yaw motions. For cases with varying wave amplitudes, traveling wave with incremental wave amplitude can achieve free-swimming velocity higher than that of decremental wave amplitude. However, the latter case can generate higher pitch angles. For the robot with slightly negative-pitched pectoral ns, it can perform slow diving maneuvers. These ndings demonstrate that we can take advantage of the undulating ribbon n propulsion to achieve high maneuverability for the future underwater vehicles in complex environment. | |
Identifier: | FA00004853 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2017. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Underwater propulsion. Wave-motion, Theory of. Remote submersibles--Design. Marine engineering. |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004853 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004853 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |