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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to investigate the effectiveness of certain 

heuristic procedures for embedding graphs in the plane so as to minimize the number 

of crossings. These procedures were developed by Akers and Hadlock (1), at General 

Electric Electronics Laboratory, while considering possible approaches to the problem 

of the automated fay-out of integrated electronic circuits. These procedures, des­

cribed in the thesis, were programmed for the IBM 360/40 and applied to a library 

of random graphs. 

In the interest of being self-contained, we present all necessary definitions 

and terms as found In (2) and (3). 

A~ G Is defined abstractly to be an ordered pair (V, E), where Vis a 

set and E is a binary relation on V. The elements in V are called vertices or nodes, 

and the ordered pairs in E are called the edges of the graph. An edge is said to be 

Incident with the vertices It foins. For example, the edge (a,b) is incident with the 

vertices a and b. 

A finite graph Is a graph with a finite number of points. A non-negative 

Integer, ca lied the multiplicity, can be assigned to every ordered pair of vertices. 



In general, there may be more than one edge between two vertices. The number 

of edges between two vertices is the multiplicity of this pair of vertices. Figure 

A shows a graph where each ordered pair of vertices has a multiplicity greater 

than one. 

Figure A 

A linear graph Is one that contains no ordered pair of vertices with mul­

tiplicity larger than one. 

A directed e of N edges (EI, E2, E3, ••• , EN) Is a sequence of edges 

such that the terminal vertex of the edge E1 coincides with the Initial vertex of the 

edge El+ 1 for I~ t ~ N-1. A dit,ected clrcvi~ Is a path In which the terminal vertex 

of EN coincides with the Initial vertex of E1• 

Because our work Involves undirected graphs, (graphs where directions are 

not assigned to the edges), a .E!!! (circuit) Is defined to be a sequence of edges to 



which directions can be assigned in such a way that the sequence becomes 

a directed path (directed circuit). A graph is connected If every pair of 

vertices cre foined by a path. 

A tree is a connected graph that contains no circuit. A spanning ~ 

of a graph is a subgraph which is a tree and contains all the vertices in the graph. 

A graph Gl = (VI I El) is a subgraph of a graph G = (V' E) if yl is a subset of v 

and el is a subset of E. A branch of a tree is an edge that is in the tree. A chord 

(relative to a tree) is an edge adjacent to the tree but not contained in the tree. 

A planar graph is a graph which can be mapped Into a plane in such a way 

that no two edges Intersect one another except at a vertex. The intersection of 

a pair of edges, except at a vertex Is called a crossing of the edges. (See example 

below). 

Example I: K5• In Figure lA we see a mapping of K5. There are five crossings 

marked with x•s. We can redraw K5 as in Figure I B. This time 

there Is only one crossing. 

Figure lA Figure IB 



Example 2: K3,3. In Figure IC we see a mapping of K.3,3. There are nine 

crossings marked with x•s. We can redraw K3,3 as In 

Figure 10. This time there Is only one crossing. 

Figure IC Figure 10 

These Cl"e examples of the crossing problem. That is, how can we map a given graph 

In a plane to minimize the number of crossings ? In this thesis we shall create some 

heuristic procedures to e11swer this question. 

Continuing with our definitions, to J.w-:QLlt or to...,!!!!p a graph into a plane is 

simply to draw the graph Into the plane subJect to these two constraints: 

{I) Except at a vertex, a pair of edges may cross each other 1 

at most, one tl me. 

{2) Except at a vertex, no more than two edges may cross at a 

single point. 



A complete graph K., is defined as a graph in which there is an edge 

between every pair of then vertices. A bipartite graph is one whose vertices 

can be partitioned into two subsets V1 and V2; such that every edge in the graph 

is incident to one of the m vertices in Vt and one of the n vertices in V2. A 

complete bipartite graph Km,n is a bipartite graph such that each vertex in one 

partition is adjacent to every vertex in the other partition. 

In this thesis we shall only concern ourselves with linear, finite, con­

nected graphs. 

After programming our heuristic procedures we will examine the output to 

determine if our procedures have failed. If they fall, we will attempt to correct 

them. If this is not possible, we hope that our examination has given us an in• 

sight for better heuristic procedures. 



CHAPTER II 

THE RELATED CROSSING PROBLEM AND 

A COLORATION PROBLEM 

We shall discuss a relatively straight-forward procedure for laying 

out graphs. The layout, will generally involve relatively few, If not the 

mia:lnium, number of crossings. A graph coloration problem arises in a very 

natural way from the layout pro<.:tdure. 

Assume for the time being that the graph to be laid out has a Hamil• 

ton ian circuit. A Hamiltonian circuit is a circuit that passes through each of 

the vertices in a graph exactly once. The first step In the procedure Is to lay 

the circuit out with no crossings. The embedded circuit dlvnles the plane into two f 

faces. For any remaining pair of edges (those not In th~ ctn:uit), It is obvious 

as to whether they can both be drawn entirely within the same face without 

lntenectlng. If not, the two edges will be said to intenect with respect to 

this particular Hamiltonian circuit. Clearly this Is the case if the endpoints 

of the two edges alternate as the circuit Is travened. 

The second step Is to pactltion the remaining edges Into two disJoint 

blocks. The Idea Is to find a pc:rtition resulting In the fewest number of Inter­

secting pain contained entirely within the same block. The reader will probably 

u 



have anticipated the final step. All edges within one block are drawn within 

one face and all edges within the other block are drawn within the other face. 

A simple example will serve to Illustrate the procedure. Consider K3,3 

which Is displayed in Figure 3A with a Hamiltonian circuit Illustrated by the 

heavy lines. In Figure 38, the circuit is embedded with no crossings and the 

remaining three edges are lettered a,b,c and drawn In the same face of the 

circuit. 
I 2 

6 

5 2 

Figure 3A Figure 38 

From this it is seen that every pair of remaining edges intenects with respect 

to the circuit. There are three two-block partitions of the set f a,b,c} ; 

each contains one intenectlng pair of edges as one block. To each partition 

corresponds a single crossing layout. To layout K3,3 with fewer crossings, a 

planar embedding would have to be found. But then the Hamiltonian circuit 

would appear without crossing itself and each remaining branch would be drcmn 

entirely within one face. But these are precisely the conditions we are im­

posing on the layout. Therefore, for K3,3, the procedure yields a minimal 



crossing layout as displayed In Figuie 3C. 

5 2 

Figure 3C 

The procedure will not always yield a minimal crossing layout. The 

conditions imposed to simplify the problem will sometimes severly constrain 

the solution. For example, the Mobius Ladder 1 M.,, (as defined by Guy and 

Harary) are graphs which can be drawn with far fewer crossing by drawing the 

Hamiltonian circuit with a crossing. In Ma, Figure 3o, 

Figure 3 E 



there are n/2-= r chords connecting vertices opposite each other (l,r 1), 

(2, r + 2) ••• (r,m). Using our method, the minimal crossing number Is far 

greater than the one crossing we get by having the Hamiltonian circuit eros-

sing itself; see Figure 3E. 

8 

7 2 

6 3 

Figure 30 

However, the minimal number of crossings of a large class of graphs can be 

found by finding the Hamiltonian circuit which does not cross Itself and pro• 

ceding with our heuristic procedures for finding the mlnhnal number of cr.aulngs. 

In the example used to Illustrate the layout procedure, (see Figure 38), 

there were only three remaining edges after the Hamiltonian circuit had been 

embedded in the plane. These were partitioned between the two faces by 

considering all possible partitions.* As a rule this will be impractical, as 

* FOr additional information the reader is referred to Chapter Ill, Heuristic 
Procedure A. 

7 



if there are N remaining edges, there will be 2N-I partitions of the edges 

between the two faces. ( No distinction is made between the faces). There-

tore, a procedure is needed for selecting a best partition without looking at 

all partitions. ** It is natural to formulate this as a graph coloration problem. 

Given a graph with a Hamiltonian circuit, another graph (hereafter 

called the 11 crossing graph 11 of the remaining edges) is constructed as follows. 

Represent each remaining edge by a vertex in the crossing graph. Connect 

two vertices in the crossing graph If the pair of remaining edges they repre-

· sent happen to intersect with respect to the Hamiltonian circuit*** now the 

problem of partitioning the remaining edges between the two faces of the 

Hc!'Tllltonian circuit becomes the problem of two-coloring the nodes of the 

crossing graph so as to minimize the number of edges which have both end-

points colored the same. To see this, let us agree to call an edge of a colored 

graph either proper or improper, depending on whether the endpoints are 

colored differently or the same. Then corresponding to an improper edge of 

the colored qrossing graph, we have a pair of the remaining edges of the 

original graph which intersect with respect to the Hamiltonian circuit and 

which are to be drawn In the same face of the circuit, thus representing a 

crossing in the final layout. To minimize the number of crossings, then, 

** 

*** 

For additional information the reader is referred to Chapter Ill, Heuristic 
Procedure 8 & C. 

This construction ~similar to that of finding the dual graph of a planar graph. 
(pg. 113, Harary) ) 
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we wish to color the crossing graph so as to minimize the number of improper 

edges. 

To illustrate these ideas, consider again the graph K3,3. The cross­

ing graph of the three remaining edges is a triangle since each pair intersects 

with respect to the Hamiltonian circuit. Fo details examine the sequence of 

Figures 3A, 38 and 3F. 

c 

a 

Figure 3F 

Since it contains an odd circuit, the crossing graph has no perfect color-

ations. It can be colored with one improper edge and so, by coloring the 

crossing graph, we obtain a layout of K3 3 with one crossing. 
I 

We now see that we can solve the minimal crossing problem by ex-

aming the dual problem, that of a best two-coloration. Once achieving this 

best two-coloration we can transform this result to solve the original minimal 

crossing problem. 

II 



CHAPTER Ill 

Ml NIMAL VERTEX TWo-COLORATIONS 

EXHAUSTIVE GENERATION 

Given a crossing graph, we can exhaustively examine every possible 

vertex two-coloration of the graph. Hence, for a graph of N vertices, there 

are 2N possible different colorations. We can then calculate the number of 

improper edges for each coloration. The program for this heuristic procedure, 

where x=.S and the number of vertices is 16, is as follows: 

DIMENSION GRAPH(16 , 16) ,JCOLR(16) ,JGRPH(16,16) 
DIMENSION NSAMN(16) ,ITAB(8) ,KSCLR(16,16) 
REWIND 008 
READ(8) N, ((GRAPH(I,J) ,J=1,N) ,I=1,N) 
IF(N,LT,16) GO TO 1 
X=. 5 
NN=N-1 
NBN=O 
NPT=1 
DO 2 I=1,N 
JCOLR(I)=O 
NSAMN(I)=O 
ITAB(I)=400 
DO 2 J=1,N 
KSCLR(I,J)=O 
JGRPH(I,J)=O 
IF(GRAPH(I,J) .LE.X) GO TO 2 
GRAPH(I,J)=3. 
JGRPH(I,J)=1 
CONTINUE 
DO 3 I=1,NN 
II=I+1 
DO 3 J=II,N 
NSAMN(I)=NSAMN(I)+1 
NSAMN(J)=NS~(J)+1 
NBN=NBN+1 
NAX=NBN 
ITAB(1)=NBN 



NPT=1 
I=1 
M=I 
DO 5 L=1,N 
IF(H-2(M/2).EQ.O) GO TO 6 
M=M/2 
K=N-L+L 
NACC=O 

'" 

DO 19 J=1,N 
NIND=(1-2*JCOLR(K)-2*JCOLR(J)+4*JCOLR(K)*JCOLR(J))*JGRPH(J K) 
NACC=NACC+NIND I 

NSAMN (K) =NSAI.ffi (K) -NINO 
NSAMN (J) =NSAI·.ffi (J) -NIND 
CONTINUE 
JCOLR(K)=1-JCOLR(K) 
NBN=NBN=-NACC 
IF(NAX.LE.NBN) GO TO 25 
DO 23 L=1,N 
KSCLR(NPT,L)=JCOLR(L) 
ITAB(NPT)=NBN 
NAX=ITAB (1) 
NPT=1 
DO 24 L=1,10 
IF(ITAB(L).LE.NAX) GO TO 24 
NPT=L 
NAX=ITAB(L) 
CONTINUE 
JJJ=I-2**N+1 
IF(O.LE.JJJ) GO TO 26 
I=I+1 
GO TO 4 
DO 28 L=1,10 
HRITE (3,96) ITAB(L) I (KSCLR(L,J) ,J=l,N) 
FORMAT(lOX,14,10X,20I4) 
CALL EXIT 
END 

This program prints out each permutation and the number of improper 

edges (edges with both endpoints colored the some) for each permutation. 



For small N~ 10) the procedure Is very efficient. As N Increases, the 

efficiency of the program Is extremely hampered. That Is, for a large N, say 

f'.F20, we need to examlne220 possible two color permutations of the graph. 

The computer time and the larger volume of output received make this program 

unfeasible. Therefore, we must search for a more efficient procedure. 

, ... 



RECOLORING ONE VERTEX AT A TIME 

For our second procedure, we initially color each vertex d the crossing 

graph the same color. We define the excess (possibly negative)~~ vertex to 

be the number d Improper edges minus the number of proper edges (edges with 

different colored endpoints) Incident to the vertex. We then change the color 

of the vertex with the maximum excess. Initially, this vertex Is the one with 

the largest degree. The degree of a vertex Is the number of edges Incident to the 

vertex. The result of changing the color of this vertex Is that the Immediate In­

crease In the amount of proper edges If maximized. That Is, we change the largest 

amount of improper edges to proper edges; while the number of proper edges changed 

to Improper edges Is kept at a minimum. 

We again calculate the excess of each vertex, changing the color of the 

vertex with the largest excess. We continue In this manner until the excess of each 

vertex is a non..,osltlve number. Now, changing the color of any vertex will not 

Improve our two-coloration. For Instance, if the maximum excess Is less than zero, 

we have more proper than Improper edges incident to each vertex. Changing the 

color of any vertex wtll then give more Improper edges than the preceding coloration. 

Hence, we should stop because we cannot Improve on our coloration by changing the 

color of a single vertex. 

J;) 



The program for this heuristic procedure, where X=.5 and the number of 

vertices is 16, Is as follows: 

DIMENSION GRAPH(16,16) ,ID1R(200,KXSS(200) ,KEDGE(SOO) 
DIMENSION ICOLR(200) ,NUBCH(200) 
REWIND 008 

1 READ (8) N, ( (GRA'PH(I,J) ,J=1,N) ,I=1,N) 
IF(N.LT.16) GO TO 1 
DO 10 I=1,200 
ICOLR(I)=O 
KXSS(I)=O 
KEDGE(I)=O 
10NUBCH(I)=O 
ID1R(1)=1 
LAST=1 
KPNT=O 
NN=N-1 
X=.S 
D~ 2 I=1,NN 
II=I+2 
DO 2 J=II,N 
IF(GRAPH(I,J) .LE.X) GO TO 2 
GRAPH(I,J)=3. 
GRAPH (J, I) =3. 
KPNT=KPNT+1 
KXSS(I)=KXSS(I)+1 
KEDGE(KPNT)=J 
IF(I.EQ.LAST) GO TO 2 
IDIR(I)=KPNT 
LAST= I 

2 CONTINUE 
IDIR(N+1)=KEDGE(N)+KXSS(N) 
MAX=KXSS(1) 
MAXPT=1 
DO 4 I=1,N 
IF(KXSS(I) .LE.MAX) GO TO 4 
MAX=KXSS(I) 
MAXPT=I 

4 CONTINUE 
IF(MAX.LE.O) GO TO 7 
ICOLR(MAXPT)= 1-ICOLR(MAXPT) 
NUBSCH(MAXPT)=NUBCH(MAXPT)+1 
L=ID1R(MAXPT) 
M=ID1R(MAXPT+1)-1 
DO 6 K=L,M 

lo 



MM=KEDGE(K) 
IF(ICOLR(MAXPT) .EQ.ICOLR(MM)) GO TO 5 
KXSS(MAXPT)=KXSS(MAXPT)-2 
KXSS(MM)=KXSS(MM)-2 
GO TO 6 

5 KXSS(r1AXPT)=KXSS(MAXPT)+2 
KXSS(MM)=KXSS(MM)+-

6 CONTINUE 
GO TO 3 

7 CONTINUE 
WRITE(3,8) (ICOLR(I) , I=l,N) 

8 FORMAT(lH ,20I4) 
WRITE(3,9)-(NUBCH(I) , I=l,N) 

9 FORMAT(lH ,20I4) 
CALL EXIT-
END 

This program should print out a minimal coloration and the number of 

times each vertex changed colors. However, after examining a large quantity 

of output we see that In certain specific cases our procedure falls. The details 

of these failures shall be discussed In Chapter Five. Therefore, we must again 

create another procedure for finding the best two-coloration of a graph. 

17 



CUT -SET METHOD 

In the previous sections, we posed the problem of two-coloring 

the vertices of a graph so as to minimize the number if improper edges. 

It is known (Kontg(2)) that a proper coloration exists if and only If the 

graph contains no odd circuits. 

For graphs with odd circuits, a minimal coloration will be one for 

which the number of Improper edges is a minimum. The following theorem 

choraterizes minimal colorations: 

Theorem: Let G be a graph. If C is a two-coloration of the 

vertices c:l G, C is minimal if and only if every 

cut-set contains as many proper as improper edges. 

A maximal coneected subgraph of a graph is called a connected 

component or simply component. A cut-set is a (minimal) set of edges 

in a graph, the removal of which will increase the number of connected 

components In the remaining subgraph, whereas the removal of any proper 

subset of which will not. It follows that in a connected graph, the re­

moval of a cut-set will separate the graph into two disjoint, connected 

subgraphs. A second definition of a cut-set is the set of edges wtth the 

endpoints of each edge in opposite components of a two-component par­

tition of the set of vertices. 

IS 



PROOF: The necessity is immediate. If there exists a cut-set 

YA th more Improper than proper edges,complement the 

color of every vertex In one of the cut-set's two components. 

Only edges In the cut-set change status. In the cut-set, 

Improper edges become proper and vice-vena. Hence, the 

resulting coloration has fewer improper edges. To show the 

sufficiency, consider a coloration for which no cut-set con­

tains more Improper than proper edges. To prove it is a 

minimal coloration, consider a second coloration. The two 

colorations Induce a cut-set as follows. Partition the ver­

tices into two blocks: Those vertices colored the same under 

both colorations and those colored differently. We must 

show that if the second coloration had fewer improper edges 

than the fint, then the cut-set would contain more improper 

than proper edges, a contradiction. Edges for which the 

two colorations agree on both endpoints have the same status 

under either coloration. Edges for which the two colorations 

disagree on both endpoints have the same status under either 

coloration. Edges in the cut-set have opposite status. Thus 

edges in the cut-set which are proper under the first coloration 

19 



are Improper under the second coloration. Hence they 

ere fewer In number than the remaining edges which are 

Improper under the original coloration. But this is a con­

tradiction and so the original coloration Is minimal. (I) 

This theorem not only characterizes the minimal colorations, It 

provides an approach for a heuristic scheme for finding them. Obviously 

we would like to find a cut-set with more improper than proper edges. By 

complementing all vertices fn one component, we reduce the number of 

Improper edges by their excess over the proper edges In the cut-set. 

What we propose Is a rule for improving a cut-set by moving a 

single vertex from one side to the other. First define the excess~!~"'!!! 

as being the number of improper minus the number of proper edges contained 

In the cut"'""8t. A cut-set is better than another if its excess is greater. 

Now consider the effect on the excess of moving one vertex from one 

side of the cut-set to the other. The net effect on the excess of moving a 

vertex will be called the Increment of that vertex. The Increment, wi II be 

the Increase In Improper edges tn the cut-set, plus the decrease in proper 

edges In the cut-set. Considering only edges incident with the particular 

vertex, the increase In improper edges will be the number not in the cut-set 

minus the number In the cut-set. The decrease in proper edges will be the 

number In the cut-set minus the number not In the cut-set. 



The rule is to increase the excess of cut-set by changing the vertex with 

maximum positive increment until no vertex has positive increment. The final cut-

set, if it has positive excess, is used to obtain a better coloration. 

The following figures illustrate the procedure: 

2 

J 

3 -3 

-2 

Figure 3CI 

0 

- ...... 

0 

Figure 3C2 

0 

I 

I 
I 

Figure 3C3 

Figure 3C4 

_, 

-2 
...... _ 
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In each of the Figures 3CI, and 3C2 and 3C3 the coloration remains the same. 

In Figure 3CI, corresponding to the coloration and indicated cut-set, the Increment 

for each vertex and the excess of the cut-set have been computed. The vertex in Figure 

3CI with the maximum positive increment is indicated by an arrow. This vertex will 

be moved across the cut-set resulting in a new set of increments for each vertex and 

a change in the excess of the cut-set. Our graph now has the form of Figure 3C2. 

The cut-set in Figure 3C2 is obtained from the cut-set in Figure 3CI by moving the 

indicated vertex. 

Since there still exists a vertex with positive increment, we continue the 

process to get the graph In Figure 3C3. Because no vertex has positive Increment, 

no further Improvement In the coloration can be made. The colors of the vertices In 

either component are then complimented. This results In a minimal coloration as 

shown in Figure 3C4. 

The program for this heuristic procedure, where X=. 5 and the number of 

vertices of the graph Is 16, is as follows: 

DIMENSION GRAPH(16,16) ,KGRPH(16,16) ,ICOLR(100) ,ICP(100) 
DIMENSION KTGPH(16,16) ,JNC(16,16) ,INC(16) ,NUMB(100) 
REWIND 008 

1 READ (8) N, ((C!RAPH(I,J) ,,T=1,N) ,I=1,N) 
IF(N,LT,16) GO TO 1 
X=.S 
NN=N-1 
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DO 2 I=1,N 
NUMB(I)=O 
DO 2 ~T=1 ,N 
KGRPH(I,J)=O 
KTGPH(I,J)=O 

2 JNC(I,J)=O 
DO c I=1,NN 
II=I+1 
DO 3 J=II,N 
IF (~RAPH (I,J) .NE.3.) GO TO 3 
K~RPH(I,J)=2 
KGRPH(J,I)=2 

3 CONTINUE 
NNN=N-1 
DO 4 I=I,NNN 
III=I+1 
DO 4 J=III,N 
IF(KGRPH(I,J) .NE.2) \,0 TO 6 
IF(ICOLR(I) .EQ.ICOLR(J)) GO TO 5 
KTGPH(I,J)=1 
KTGPH(J,I)=1 
KTDM=KTDM-1 
GO TO 4 

5 KT\,PH(I,J)=-1 
KTGPH(J,I)=-1 
KTDM=KTDM=1 

6 CONTINUE 
IF(KGRPH(I,J) .NE.1) GO TO 4 
IF(ICOLR(I) .EQ.ICOLR(J)) GO TO 7 
KTGPH(I,J)=-1 
J<T~PH(J,I)=-1 
GO TO 4 

7 KT~PH (I ,J) =1 
KTGPH(J,I)=1 
CONTINUE 
DO 8 I=1,N 
DO 8 J=1,N 
JNC(I,J)=KT~PH(I,J) 

8 CONTINUE 
DO 9 I=1,N 
DO 9 J=2,N 
JJJ=J-1 
JNC(I,J)=JNC(I,J)+JNC(I,JJJ) 
INC (I) =,JNC (I ,J) 

9 CONTINUE 
LMAX=INC(1) 
LPT=1 
DO 10 I=1,N 
IF(INC(I) .LE.LMAX) GO TO 10 
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LMAX=INC(I) 
LPT=I 

10 CONTINUE 
IF(LMAX.LE.)) GO TO 13 
ICP(LPT)=1=ICP(LPT) 
NUMB(LPT)=NUMB(LPT)+1 
DO 12 J=1,N 
IF(KGRPH(LPT,J) .NE.2) GO TO 11 
KGFPH(LPT,J)=KGRPH(LPT,J)-1 
KGRPH(J,LPT)=KGRPH(J,LPT.)=1 
GO TO 12 

11 IF(KGRPH(LPT,J) .NE.1) GO TO 12 
KGRPH(LPT,J)=KGRPH(LPT,J)+1 
KGRPH(J,LPT)=KGRPH(J,LPT)+1 

12 CONTINUE 
GO TO 3 

13 CONTINUE 
DO !4 I=1,N 
IF(ICP(I) .EQ.)) GO TO 14 
ICOLR{I)=1-ICOLR(I) 

14 CONTINUE 
WRITE(3,97) (ICOLR(I) I I=l,,N) 

97 FORMAT ( lH, 2 014) 
WRITE(3,98) (Nmm(I) ,I=l,N) 

98 FORM.AT(1H, 'NO. TIMES ACROSS CUT' ,4X,20I4 
CALL EXIT 
END 
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CHAPTER IV 

CREATING A LIBRARY OF RANDOM GRAPHS 

Realizing the fact that much of our work is to be done on a computer, 

we construct a library of random graphs and store them on magnetic tape. This 

tape ts to be a reference library of graphs which we can work from. 

To do thts, we stcrt with a complete graph of 10 vertices. We then 

crbftrartly assign random lengths, of up to four decimal places, between 0 and I 

to each edge of the graph. We ftnd the minimal spanning tree and then store the 

tree and the random lengths of the remaining edges of the complete graph on 

magnetic tape. 

graphs: 

The following ts a listing of the program for making a library of random 

DIMENSION IPT(100) ,JPT(100) ,GRAPH(100,100) 
IX=13107 
DO 1 N=10,100,1 
AMIN=2. 
DO 2 I=1,N 
IPT(I)=O 
JPT(I)=O 
GRAPH(I,I)=3. 

2 CONTINUE 
NNN=N-1 
DO 3 I=1,NNN 
III=I+1 
DO 3 J=III,N 
IY=IX*65539 
IF(O.LE.IY) GO TO 5 
IY=IY+2**31 

5 YFL=IY 
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YFL=YFL*2.**(-31) 
IX=IY 
KY=IY 
GRAPH (I I ,J) =YFL 
GRAPH(J,I)=GRAPH(I,J) 
IF(M1IN.LE.GRAPH(I,J)) GO TO 3 
AMIN=GRAPH(I,J) 
IPT(l)=I 
IPT(2)=J 

3 CONTINUE 
GRAPH(IPT(l) ,IPT(2))=3. 
GFAPH(IPT(2) ,IPT(1))=3. 
JPT ( 2 ) =I PT ( 1) 
DO 8 KK=3,N 
BMIN=GRAPH(l,1) 
DO 7 I=1,N 
DO 7 L=1,N 
IF(I.NE.IPT(L)) GO TO 7 
DO 7 J=1,N 
IF(BMIN.LE.GRAPH(I,J)) GO TO 7 
DO 6 K=1,N 
IF(IPT(K) .NE.J) GO TO 6 
GO TO 7 

6 CONTINUE 
BMIN=GRAPH (I ,,J) 
KPT=l 
MPT=J 

7 CONTINUE 
JPT(KK)=RPT 
IPT(KK)=MPT 
GRAPH(JPT(KK) ,IPT(KK))=3. 
GRAPH(IPT(KK) ,JPT(KK))=3. 

8 CONTINUE 
WRITE (8) N,((GRAPH(I,J) ,J=1,N) ,I=1,N) 

1 CONTINUE 
CALL EXIT 
END 

We store on tape the matrix representation of the complete graph including 

the minimal spanning tree. Repeating the process, we create random graphs of 

II, 12, 13 ••• until we finally stop at the complete graph of 90 vertices. 
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Now, for example, If we want to work with the family of graphs 

having 16 vertices we first read the stored graph of 16 vertices. 

We will be given a complete graph of 16 vertices with a minimal 

spanning tree embedded In the graph. Since each chord of the graph has a 

random length assigned to It, we can arbitrarily add branches to the spanning 

tree. We pick some number X, where O<X<I, so that all the chords with 

length~X will be added to the minimal spanning tree. 

We now have an easily accessible library of random graphs from which 

we can work. 
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CHAPTER V 

RESULTS AND CONCLUSIONS 

It is intended to program a technique for finding Hamiltonian circuits 

in order to apply the lay-out procedure to the random connected graphs in the 

library. Also, the lay-out procedure will be applied to complete and bipartite 

graphs (where a Hamiltonian circuit is immediate) and the results compared with 

available upper bounds. For the present 1 the resu Its for the coloration procedure 

as applied to the random graphs from N= 10 to 18 using. a threshold of .25 is as 

follows: 

TABLE SA 

Absolute 
Fewest I of improper edges Efficiency lof Edges 

N A B c A/B A/C 

10 16 21 17 .875 .975 40 

11 20 25 23 .9 .94 51 

12 22 24 24 .965 .965 58 

13 28 36 33 .884 .928 69 

14 31 39 36 .9 .937 79 

• 
• 
• 
18 55 67 66 .909 .917 132 



More graphs would have been examined if more computer time were available. 

The time element Involved for the graph of 18 vertices was sixty-five minutes and 

for a graph of nineteen vertices the time would be approximately doubled. A 

measure of the efficiency of one procedure over another would be one minus the 

difference between the fewest number of improper edges from one procedure and the 

fewest number of improper edges from the other procedure, the difference being divided 

by the number of edges in the graph. The efficiency pf procedure A over pro-

cedure B is in the fifth column of Table 5A. The efficiency of procedure A over 

procedure C is in the sixth column of Table 5A. 

To determine Table 5A the three heuristic procedures were combined Into 

one program. The program was run from the tape which contained the library of 

random graphs. The program was started with a threshold of .25 and N (the 

number of vertices equal to 10). All the branches of lengths greater than .25 

were added to the spanning tree. The number of Improper edges from procedure A 

was calculated and compared with the number of improper edges from procedures 

B and C. The reason for doing this is to find the Improvement of one procedure 

over another. 
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This procedure was repeated for graphs having II vertices through graphs 

having 18 vertices. Examining the results of these programs It Is found that In 

certain cases procedure 8 falls. An example of where It falls is as follows: 

Starting with a coloration as in Figure 58 the excess of each vertex ts 

a non-positive number this Implies that this coloration has the fewest number 

of Improper edges. But clearly, the coloration of the graph in Figure 5C has 

fewer Improper edges. 

Figure 58 Figure 5C 

Hence, changing the color of one vertex does not always get the best 

two-coloration of a graph. Whereas simultaneously changing the color of 

two or more vertices results In a better two-coloration of a graph. 
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Upon further examination of the output it Is found that procedure C 

falls as In the following case: 

l _ _ _j 

Figure 50 

Starting with the cut-set as in Figure 50 tt is seen that every vertex 

has a non-positive Increment. This Implies that this coloration has the fewest 

number of improper edges. But clearly 1 the coloration of the graph in Figure 

5C has fewer t mproper edges. 

Although these procedures faf I In certain areas they sti II give us a fairly 

good approximation of the fewest number of improper edges of any given graph. 
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ABSTRACT 

There Cl"e several theorems which give the upper bounds on the number 

of crossings of a graph In a ple11e. In this thesis we shall program certain heuristic 

procedures for finding the layout of the graph with the fewest number of crossings. 

We will then examine the output of these procedures to see if they always give us 

a graph with the fewest number of ccosslngs. 
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