

HEURISTIC PROGRAMMING AND THE

MINIMAL CROSSING PROBLEM

by

VIncent J. Grosso

A Thesis submitted to the Faculty of the

College of Sc fence
In Pcrtfal Fulfillment of the Requirements for the Degree of

Master of Sc fence

Florida Atlantic University
Boca Raton, Florida

August, 1970

HEURISTIC PROGRAMMING AND THE
' .

MINIMAL CROSSING PROBLEM

· by

1Vincent J. Grosso

This thesis was prepared under the direction of the
candidate•s thesis advisor, Dr. Frank Oo Hadlock,
Department of Mathematics and has been approved
by the members of his supervisory committee. It
was submitted to the faculty of the Collect of Science
and was accepted in partial fulfillment of the require­
ments for the Degree of Master of Science.

SUPERVISORY COMMITTEE:

In dedication to my wife, Kathy.

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Dr. Frank 0. Hadlock

· the introduction to combinatorial mathematics and for his assistance in writ-

~ this thesis. I would also like to thank Dr. Frederick Hoffman for his guld-

ce and advice in connection with this thesis. And a special thanks to Lou

•hnson for her professional concern and consideration In typing this thesis.

I

I
i .
I .
I

TABLE OF CONTENTS

Page

VLEDGMENlS • II

INTRODUCT JON ••

THE CROSSING PROBLEM AND A RElATED
COLORATION PROBLEM •••••••••••••••••••••••••••••••••• 6

MINIMAL VERTEX TWO-COLORATIONS •••••••••••••••••••••• 12

A.
B.
c.

EXHAUSTIVE GENERATION •• 12
RECOLORING ONE VERTEX AT A TIME • • • • • • • • • • • • • • • •• 15
CUT -SET METHOD •• 18

CREATING A LIBRARY OF RANDOM GRAPHS ••••••••••••••••• 25

RESULTS AND CONCLUSIONS •••••••••••••••••••••••••••••• 28

m

CHAPTER I

INTRODUCTION

The purpose of this thesis is to investigate the effectiveness of certain

heuristic procedures for embedding graphs in the plane so as to minimize the number

of crossings. These procedures were developed by Akers and Hadlock (1), at General

Electric Electronics Laboratory, while considering possible approaches to the problem

of the automated fay-out of integrated electronic circuits. These procedures, des­

cribed in the thesis, were programmed for the IBM 360/40 and applied to a library

of random graphs.

In the interest of being self-contained, we present all necessary definitions

and terms as found In (2) and (3).

A~ G Is defined abstractly to be an ordered pair (V, E), where Vis a

set and E is a binary relation on V. The elements in V are called vertices or nodes,

and the ordered pairs in E are called the edges of the graph. An edge is said to be

Incident with the vertices It foins. For example, the edge (a,b) is incident with the

vertices a and b.

A finite graph Is a graph with a finite number of points. A non-negative

Integer, ca lied the multiplicity, can be assigned to every ordered pair of vertices.

In general, there may be more than one edge between two vertices. The number

of edges between two vertices is the multiplicity of this pair of vertices. Figure

A shows a graph where each ordered pair of vertices has a multiplicity greater

than one.

Figure A

A linear graph Is one that contains no ordered pair of vertices with mul­

tiplicity larger than one.

A directed e of N edges (EI, E2, E3, ••• , EN) Is a sequence of edges

such that the terminal vertex of the edge E1 coincides with the Initial vertex of the

edge El+ 1 for I~ t ~ N-1. A dit,ected clrcvi~ Is a path In which the terminal vertex

of EN coincides with the Initial vertex of E1•

Because our work Involves undirected graphs, (graphs where directions are

not assigned to the edges), a .E!!! (circuit) Is defined to be a sequence of edges to

which directions can be assigned in such a way that the sequence becomes

a directed path (directed circuit). A graph is connected If every pair of

vertices cre foined by a path.

A tree is a connected graph that contains no circuit. A spanning ~

of a graph is a subgraph which is a tree and contains all the vertices in the graph.

A graph Gl = (VI I El) is a subgraph of a graph G = (V' E) if yl is a subset of v

and el is a subset of E. A branch of a tree is an edge that is in the tree. A chord

(relative to a tree) is an edge adjacent to the tree but not contained in the tree.

A planar graph is a graph which can be mapped Into a plane in such a way

that no two edges Intersect one another except at a vertex. The intersection of

a pair of edges, except at a vertex Is called a crossing of the edges. (See example

below).

Example I: K5• In Figure lA we see a mapping of K5. There are five crossings

marked with x•s. We can redraw K5 as in Figure I B. This time

there Is only one crossing.

Figure lA Figure IB

Example 2: K3,3. In Figure IC we see a mapping of K.3,3. There are nine

crossings marked with x•s. We can redraw K3,3 as In

Figure 10. This time there Is only one crossing.

Figure IC Figure 10

These Cl"e examples of the crossing problem. That is, how can we map a given graph

In a plane to minimize the number of crossings ? In this thesis we shall create some

heuristic procedures to e11swer this question.

Continuing with our definitions, to J.w-:QLlt or to...,!!!!p a graph into a plane is

simply to draw the graph Into the plane subJect to these two constraints:

{I) Except at a vertex, a pair of edges may cross each other 1

at most, one tl me.

{2) Except at a vertex, no more than two edges may cross at a

single point.

A complete graph K., is defined as a graph in which there is an edge

between every pair of then vertices. A bipartite graph is one whose vertices

can be partitioned into two subsets V1 and V2; such that every edge in the graph

is incident to one of the m vertices in Vt and one of the n vertices in V2. A

complete bipartite graph Km,n is a bipartite graph such that each vertex in one

partition is adjacent to every vertex in the other partition.

In this thesis we shall only concern ourselves with linear, finite, con­

nected graphs.

After programming our heuristic procedures we will examine the output to

determine if our procedures have failed. If they fall, we will attempt to correct

them. If this is not possible, we hope that our examination has given us an in•

sight for better heuristic procedures.

CHAPTER II

THE RELATED CROSSING PROBLEM AND

A COLORATION PROBLEM

We shall discuss a relatively straight-forward procedure for laying

out graphs. The layout, will generally involve relatively few, If not the

mia:lnium, number of crossings. A graph coloration problem arises in a very

natural way from the layout pro<.:tdure.

Assume for the time being that the graph to be laid out has a Hamil•

ton ian circuit. A Hamiltonian circuit is a circuit that passes through each of

the vertices in a graph exactly once. The first step In the procedure Is to lay

the circuit out with no crossings. The embedded circuit dlvnles the plane into two f

faces. For any remaining pair of edges (those not In th~ ctn:uit), It is obvious

as to whether they can both be drawn entirely within the same face without

lntenectlng. If not, the two edges will be said to intenect with respect to

this particular Hamiltonian circuit. Clearly this Is the case if the endpoints

of the two edges alternate as the circuit Is travened.

The second step Is to pactltion the remaining edges Into two disJoint

blocks. The Idea Is to find a pc:rtition resulting In the fewest number of Inter­

secting pain contained entirely within the same block. The reader will probably

u

have anticipated the final step. All edges within one block are drawn within

one face and all edges within the other block are drawn within the other face.

A simple example will serve to Illustrate the procedure. Consider K3,3

which Is displayed in Figure 3A with a Hamiltonian circuit Illustrated by the

heavy lines. In Figure 38, the circuit is embedded with no crossings and the

remaining three edges are lettered a,b,c and drawn In the same face of the

circuit.
I 2

6

5 2

Figure 3A Figure 38

From this it is seen that every pair of remaining edges intenects with respect

to the circuit. There are three two-block partitions of the set f a,b,c} ;

each contains one intenectlng pair of edges as one block. To each partition

corresponds a single crossing layout. To layout K3,3 with fewer crossings, a

planar embedding would have to be found. But then the Hamiltonian circuit

would appear without crossing itself and each remaining branch would be drcmn

entirely within one face. But these are precisely the conditions we are im­

posing on the layout. Therefore, for K3,3, the procedure yields a minimal

crossing layout as displayed In Figuie 3C.

5 2

Figure 3C

The procedure will not always yield a minimal crossing layout. The

conditions imposed to simplify the problem will sometimes severly constrain

the solution. For example, the Mobius Ladder 1 M.,, (as defined by Guy and

Harary) are graphs which can be drawn with far fewer crossing by drawing the

Hamiltonian circuit with a crossing. In Ma, Figure 3o,

Figure 3 E

there are n/2-= r chords connecting vertices opposite each other (l,r 1),

(2, r + 2) ••• (r,m). Using our method, the minimal crossing number Is far

greater than the one crossing we get by having the Hamiltonian circuit eros-

sing itself; see Figure 3E.

8

7 2

6 3

Figure 30

However, the minimal number of crossings of a large class of graphs can be

found by finding the Hamiltonian circuit which does not cross Itself and pro•

ceding with our heuristic procedures for finding the mlnhnal number of cr.aulngs.

In the example used to Illustrate the layout procedure, (see Figure 38),

there were only three remaining edges after the Hamiltonian circuit had been

embedded in the plane. These were partitioned between the two faces by

considering all possible partitions.* As a rule this will be impractical, as

* FOr additional information the reader is referred to Chapter Ill, Heuristic
Procedure A.

7

if there are N remaining edges, there will be 2N-I partitions of the edges

between the two faces. (No distinction is made between the faces). There-

tore, a procedure is needed for selecting a best partition without looking at

all partitions. ** It is natural to formulate this as a graph coloration problem.

Given a graph with a Hamiltonian circuit, another graph (hereafter

called the 11 crossing graph 11 of the remaining edges) is constructed as follows.

Represent each remaining edge by a vertex in the crossing graph. Connect

two vertices in the crossing graph If the pair of remaining edges they repre-

· sent happen to intersect with respect to the Hamiltonian circuit*** now the

problem of partitioning the remaining edges between the two faces of the

Hc!'Tllltonian circuit becomes the problem of two-coloring the nodes of the

crossing graph so as to minimize the number of edges which have both end-

points colored the same. To see this, let us agree to call an edge of a colored

graph either proper or improper, depending on whether the endpoints are

colored differently or the same. Then corresponding to an improper edge of

the colored qrossing graph, we have a pair of the remaining edges of the

original graph which intersect with respect to the Hamiltonian circuit and

which are to be drawn In the same face of the circuit, thus representing a

crossing in the final layout. To minimize the number of crossings, then,

**

For additional information the reader is referred to Chapter Ill, Heuristic
Procedure 8 & C.

This construction ~similar to that of finding the dual graph of a planar graph.
(pg. 113, Harary))

10

we wish to color the crossing graph so as to minimize the number of improper

edges.

To illustrate these ideas, consider again the graph K3,3. The cross­

ing graph of the three remaining edges is a triangle since each pair intersects

with respect to the Hamiltonian circuit. Fo details examine the sequence of

Figures 3A, 38 and 3F.

c

a

Figure 3F

Since it contains an odd circuit, the crossing graph has no perfect color-

ations. It can be colored with one improper edge and so, by coloring the

crossing graph, we obtain a layout of K3 3 with one crossing.
I

We now see that we can solve the minimal crossing problem by ex-

aming the dual problem, that of a best two-coloration. Once achieving this

best two-coloration we can transform this result to solve the original minimal

crossing problem.

II

CHAPTER Ill

Ml NIMAL VERTEX TWo-COLORATIONS

EXHAUSTIVE GENERATION

Given a crossing graph, we can exhaustively examine every possible

vertex two-coloration of the graph. Hence, for a graph of N vertices, there

are 2N possible different colorations. We can then calculate the number of

improper edges for each coloration. The program for this heuristic procedure,

where x=.S and the number of vertices is 16, is as follows:

DIMENSION GRAPH(16 , 16) ,JCOLR(16) ,JGRPH(16,16)
DIMENSION NSAMN(16) ,ITAB(8) ,KSCLR(16,16)
REWIND 008
READ(8) N, ((GRAPH(I,J) ,J=1,N) ,I=1,N)
IF(N,LT,16) GO TO 1
X=. 5
NN=N-1
NBN=O
NPT=1
DO 2 I=1,N
JCOLR(I)=O
NSAMN(I)=O
ITAB(I)=400
DO 2 J=1,N
KSCLR(I,J)=O
JGRPH(I,J)=O
IF(GRAPH(I,J) .LE.X) GO TO 2
GRAPH(I,J)=3.
JGRPH(I,J)=1
CONTINUE
DO 3 I=1,NN
II=I+1
DO 3 J=II,N
NSAMN(I)=NSAMN(I)+1
NSAMN(J)=NS~(J)+1
NBN=NBN+1
NAX=NBN
ITAB(1)=NBN

NPT=1
I=1
M=I
DO 5 L=1,N
IF(H-2(M/2).EQ.O) GO TO 6
M=M/2
K=N-L+L
NACC=O

'"

DO 19 J=1,N
NIND=(1-2*JCOLR(K)-2*JCOLR(J)+4*JCOLR(K)*JCOLR(J))*JGRPH(J K)
NACC=NACC+NIND I

NSAMN (K) =NSAI.ffi (K) -NINO
NSAMN (J) =NSAI·.ffi (J) -NIND
CONTINUE
JCOLR(K)=1-JCOLR(K)
NBN=NBN=-NACC
IF(NAX.LE.NBN) GO TO 25
DO 23 L=1,N
KSCLR(NPT,L)=JCOLR(L)
ITAB(NPT)=NBN
NAX=ITAB (1)
NPT=1
DO 24 L=1,10
IF(ITAB(L).LE.NAX) GO TO 24
NPT=L
NAX=ITAB(L)
CONTINUE
JJJ=I-2**N+1
IF(O.LE.JJJ) GO TO 26
I=I+1
GO TO 4
DO 28 L=1,10
HRITE (3,96) ITAB(L) I (KSCLR(L,J) ,J=l,N)
FORMAT(lOX,14,10X,20I4)
CALL EXIT
END

This program prints out each permutation and the number of improper

edges (edges with both endpoints colored the some) for each permutation.

For small N~ 10) the procedure Is very efficient. As N Increases, the

efficiency of the program Is extremely hampered. That Is, for a large N, say

f'.F20, we need to examlne220 possible two color permutations of the graph.

The computer time and the larger volume of output received make this program

unfeasible. Therefore, we must search for a more efficient procedure.

, ...

RECOLORING ONE VERTEX AT A TIME

For our second procedure, we initially color each vertex d the crossing

graph the same color. We define the excess (possibly negative)~~ vertex to

be the number d Improper edges minus the number of proper edges (edges with

different colored endpoints) Incident to the vertex. We then change the color

of the vertex with the maximum excess. Initially, this vertex Is the one with

the largest degree. The degree of a vertex Is the number of edges Incident to the

vertex. The result of changing the color of this vertex Is that the Immediate In­

crease In the amount of proper edges If maximized. That Is, we change the largest

amount of improper edges to proper edges; while the number of proper edges changed

to Improper edges Is kept at a minimum.

We again calculate the excess of each vertex, changing the color of the

vertex with the largest excess. We continue In this manner until the excess of each

vertex is a non..,osltlve number. Now, changing the color of any vertex will not

Improve our two-coloration. For Instance, if the maximum excess Is less than zero,

we have more proper than Improper edges incident to each vertex. Changing the

color of any vertex wtll then give more Improper edges than the preceding coloration.

Hence, we should stop because we cannot Improve on our coloration by changing the

color of a single vertex.

J;)

The program for this heuristic procedure, where X=.5 and the number of

vertices is 16, Is as follows:

DIMENSION GRAPH(16,16) ,ID1R(200,KXSS(200) ,KEDGE(SOO)
DIMENSION ICOLR(200) ,NUBCH(200)
REWIND 008

1 READ (8) N, ((GRA'PH(I,J) ,J=1,N) ,I=1,N)
IF(N.LT.16) GO TO 1
DO 10 I=1,200
ICOLR(I)=O
KXSS(I)=O
KEDGE(I)=O
10NUBCH(I)=O
ID1R(1)=1
LAST=1
KPNT=O
NN=N-1
X=.S
D~ 2 I=1,NN
II=I+2
DO 2 J=II,N
IF(GRAPH(I,J) .LE.X) GO TO 2
GRAPH(I,J)=3.
GRAPH (J, I) =3.
KPNT=KPNT+1
KXSS(I)=KXSS(I)+1
KEDGE(KPNT)=J
IF(I.EQ.LAST) GO TO 2
IDIR(I)=KPNT
LAST= I

2 CONTINUE
IDIR(N+1)=KEDGE(N)+KXSS(N)
MAX=KXSS(1)
MAXPT=1
DO 4 I=1,N
IF(KXSS(I) .LE.MAX) GO TO 4
MAX=KXSS(I)
MAXPT=I

4 CONTINUE
IF(MAX.LE.O) GO TO 7
ICOLR(MAXPT)= 1-ICOLR(MAXPT)
NUBSCH(MAXPT)=NUBCH(MAXPT)+1
L=ID1R(MAXPT)
M=ID1R(MAXPT+1)-1
DO 6 K=L,M

lo

MM=KEDGE(K)
IF(ICOLR(MAXPT) .EQ.ICOLR(MM)) GO TO 5
KXSS(MAXPT)=KXSS(MAXPT)-2
KXSS(MM)=KXSS(MM)-2
GO TO 6

5 KXSS(r1AXPT)=KXSS(MAXPT)+2
KXSS(MM)=KXSS(MM)+-

6 CONTINUE
GO TO 3

7 CONTINUE
WRITE(3,8) (ICOLR(I) , I=l,N)

8 FORMAT(lH ,20I4)
WRITE(3,9)-(NUBCH(I) , I=l,N)

9 FORMAT(lH ,20I4)
CALL EXIT-
END

This program should print out a minimal coloration and the number of

times each vertex changed colors. However, after examining a large quantity

of output we see that In certain specific cases our procedure falls. The details

of these failures shall be discussed In Chapter Five. Therefore, we must again

create another procedure for finding the best two-coloration of a graph.

17

CUT -SET METHOD

In the previous sections, we posed the problem of two-coloring

the vertices of a graph so as to minimize the number if improper edges.

It is known (Kontg(2)) that a proper coloration exists if and only If the

graph contains no odd circuits.

For graphs with odd circuits, a minimal coloration will be one for

which the number of Improper edges is a minimum. The following theorem

choraterizes minimal colorations:

Theorem: Let G be a graph. If C is a two-coloration of the

vertices c:l G, C is minimal if and only if every

cut-set contains as many proper as improper edges.

A maximal coneected subgraph of a graph is called a connected

component or simply component. A cut-set is a (minimal) set of edges

in a graph, the removal of which will increase the number of connected

components In the remaining subgraph, whereas the removal of any proper

subset of which will not. It follows that in a connected graph, the re­

moval of a cut-set will separate the graph into two disjoint, connected

subgraphs. A second definition of a cut-set is the set of edges wtth the

endpoints of each edge in opposite components of a two-component par­

tition of the set of vertices.

IS

PROOF: The necessity is immediate. If there exists a cut-set

YA th more Improper than proper edges,complement the

color of every vertex In one of the cut-set's two components.

Only edges In the cut-set change status. In the cut-set,

Improper edges become proper and vice-vena. Hence, the

resulting coloration has fewer improper edges. To show the

sufficiency, consider a coloration for which no cut-set con­

tains more Improper than proper edges. To prove it is a

minimal coloration, consider a second coloration. The two

colorations Induce a cut-set as follows. Partition the ver­

tices into two blocks: Those vertices colored the same under

both colorations and those colored differently. We must

show that if the second coloration had fewer improper edges

than the fint, then the cut-set would contain more improper

than proper edges, a contradiction. Edges for which the

two colorations agree on both endpoints have the same status

under either coloration. Edges for which the two colorations

disagree on both endpoints have the same status under either

coloration. Edges in the cut-set have opposite status. Thus

edges in the cut-set which are proper under the first coloration

19

are Improper under the second coloration. Hence they

ere fewer In number than the remaining edges which are

Improper under the original coloration. But this is a con­

tradiction and so the original coloration Is minimal. (I)

This theorem not only characterizes the minimal colorations, It

provides an approach for a heuristic scheme for finding them. Obviously

we would like to find a cut-set with more improper than proper edges. By

complementing all vertices fn one component, we reduce the number of

Improper edges by their excess over the proper edges In the cut-set.

What we propose Is a rule for improving a cut-set by moving a

single vertex from one side to the other. First define the excess~!~"'!!!

as being the number of improper minus the number of proper edges contained

In the cut"'""8t. A cut-set is better than another if its excess is greater.

Now consider the effect on the excess of moving one vertex from one

side of the cut-set to the other. The net effect on the excess of moving a

vertex will be called the Increment of that vertex. The Increment, wi II be

the Increase In Improper edges tn the cut-set, plus the decrease in proper

edges In the cut-set. Considering only edges incident with the particular

vertex, the increase In improper edges will be the number not in the cut-set

minus the number In the cut-set. The decrease in proper edges will be the

number In the cut-set minus the number not In the cut-set.

The rule is to increase the excess of cut-set by changing the vertex with

maximum positive increment until no vertex has positive increment. The final cut-

set, if it has positive excess, is used to obtain a better coloration.

The following figures illustrate the procedure:

2

J

3 -3

-2

Figure 3CI

0

-

0

Figure 3C2

0

I

I
I

Figure 3C3

Figure 3C4

_,

-2
...... _

21

In each of the Figures 3CI, and 3C2 and 3C3 the coloration remains the same.

In Figure 3CI, corresponding to the coloration and indicated cut-set, the Increment

for each vertex and the excess of the cut-set have been computed. The vertex in Figure

3CI with the maximum positive increment is indicated by an arrow. This vertex will

be moved across the cut-set resulting in a new set of increments for each vertex and

a change in the excess of the cut-set. Our graph now has the form of Figure 3C2.

The cut-set in Figure 3C2 is obtained from the cut-set in Figure 3CI by moving the

indicated vertex.

Since there still exists a vertex with positive increment, we continue the

process to get the graph In Figure 3C3. Because no vertex has positive Increment,

no further Improvement In the coloration can be made. The colors of the vertices In

either component are then complimented. This results In a minimal coloration as

shown in Figure 3C4.

The program for this heuristic procedure, where X=. 5 and the number of

vertices of the graph Is 16, is as follows:

DIMENSION GRAPH(16,16) ,KGRPH(16,16) ,ICOLR(100) ,ICP(100)
DIMENSION KTGPH(16,16) ,JNC(16,16) ,INC(16) ,NUMB(100)
REWIND 008

1 READ (8) N, ((C!RAPH(I,J) ,,T=1,N) ,I=1,N)
IF(N,LT,16) GO TO 1
X=.S
NN=N-1

22

DO 2 I=1,N
NUMB(I)=O
DO 2 ~T=1 ,N
KGRPH(I,J)=O
KTGPH(I,J)=O

2 JNC(I,J)=O
DO c I=1,NN
II=I+1
DO 3 J=II,N
IF (~RAPH (I,J) .NE.3.) GO TO 3
K~RPH(I,J)=2
KGRPH(J,I)=2

3 CONTINUE
NNN=N-1
DO 4 I=I,NNN
III=I+1
DO 4 J=III,N
IF(KGRPH(I,J) .NE.2) \,0 TO 6
IF(ICOLR(I) .EQ.ICOLR(J)) GO TO 5
KTGPH(I,J)=1
KTGPH(J,I)=1
KTDM=KTDM-1
GO TO 4

5 KT\,PH(I,J)=-1
KTGPH(J,I)=-1
KTDM=KTDM=1

6 CONTINUE
IF(KGRPH(I,J) .NE.1) GO TO 4
IF(ICOLR(I) .EQ.ICOLR(J)) GO TO 7
KTGPH(I,J)=-1
J<T~PH(J,I)=-1
GO TO 4

7 KT~PH (I ,J) =1
KTGPH(J,I)=1
CONTINUE
DO 8 I=1,N
DO 8 J=1,N
JNC(I,J)=KT~PH(I,J)

8 CONTINUE
DO 9 I=1,N
DO 9 J=2,N
JJJ=J-1
JNC(I,J)=JNC(I,J)+JNC(I,JJJ)
INC (I) =,JNC (I ,J)

9 CONTINUE
LMAX=INC(1)
LPT=1
DO 10 I=1,N
IF(INC(I) .LE.LMAX) GO TO 10

23

LMAX=INC(I)
LPT=I

10 CONTINUE
IF(LMAX.LE.)) GO TO 13
ICP(LPT)=1=ICP(LPT)
NUMB(LPT)=NUMB(LPT)+1
DO 12 J=1,N
IF(KGRPH(LPT,J) .NE.2) GO TO 11
KGFPH(LPT,J)=KGRPH(LPT,J)-1
KGRPH(J,LPT)=KGRPH(J,LPT.)=1
GO TO 12

11 IF(KGRPH(LPT,J) .NE.1) GO TO 12
KGRPH(LPT,J)=KGRPH(LPT,J)+1
KGRPH(J,LPT)=KGRPH(J,LPT)+1

12 CONTINUE
GO TO 3

13 CONTINUE
DO !4 I=1,N
IF(ICP(I) .EQ.)) GO TO 14
ICOLR{I)=1-ICOLR(I)

14 CONTINUE
WRITE(3,97) (ICOLR(I) I I=l,,N)

97 FORMAT (lH, 2 014)
WRITE(3,98) (Nmm(I) ,I=l,N)

98 FORM.AT(1H, 'NO. TIMES ACROSS CUT' ,4X,20I4
CALL EXIT
END

24

CHAPTER IV

CREATING A LIBRARY OF RANDOM GRAPHS

Realizing the fact that much of our work is to be done on a computer,

we construct a library of random graphs and store them on magnetic tape. This

tape ts to be a reference library of graphs which we can work from.

To do thts, we stcrt with a complete graph of 10 vertices. We then

crbftrartly assign random lengths, of up to four decimal places, between 0 and I

to each edge of the graph. We ftnd the minimal spanning tree and then store the

tree and the random lengths of the remaining edges of the complete graph on

magnetic tape.

graphs:

The following ts a listing of the program for making a library of random

DIMENSION IPT(100) ,JPT(100) ,GRAPH(100,100)
IX=13107
DO 1 N=10,100,1
AMIN=2.
DO 2 I=1,N
IPT(I)=O
JPT(I)=O
GRAPH(I,I)=3.

2 CONTINUE
NNN=N-1
DO 3 I=1,NNN
III=I+1
DO 3 J=III,N
IY=IX*65539
IF(O.LE.IY) GO TO 5
IY=IY+2**31

5 YFL=IY

25

YFL=YFL*2.**(-31)
IX=IY
KY=IY
GRAPH (I I ,J) =YFL
GRAPH(J,I)=GRAPH(I,J)
IF(M1IN.LE.GRAPH(I,J)) GO TO 3
AMIN=GRAPH(I,J)
IPT(l)=I
IPT(2)=J

3 CONTINUE
GRAPH(IPT(l) ,IPT(2))=3.
GFAPH(IPT(2) ,IPT(1))=3.
JPT (2) =I PT (1)
DO 8 KK=3,N
BMIN=GRAPH(l,1)
DO 7 I=1,N
DO 7 L=1,N
IF(I.NE.IPT(L)) GO TO 7
DO 7 J=1,N
IF(BMIN.LE.GRAPH(I,J)) GO TO 7
DO 6 K=1,N
IF(IPT(K) .NE.J) GO TO 6
GO TO 7

6 CONTINUE
BMIN=GRAPH (I ,,J)
KPT=l
MPT=J

7 CONTINUE
JPT(KK)=RPT
IPT(KK)=MPT
GRAPH(JPT(KK) ,IPT(KK))=3.
GRAPH(IPT(KK) ,JPT(KK))=3.

8 CONTINUE
WRITE (8) N,((GRAPH(I,J) ,J=1,N) ,I=1,N)

1 CONTINUE
CALL EXIT
END

We store on tape the matrix representation of the complete graph including

the minimal spanning tree. Repeating the process, we create random graphs of

II, 12, 13 ••• until we finally stop at the complete graph of 90 vertices.

26

Now, for example, If we want to work with the family of graphs

having 16 vertices we first read the stored graph of 16 vertices.

We will be given a complete graph of 16 vertices with a minimal

spanning tree embedded In the graph. Since each chord of the graph has a

random length assigned to It, we can arbitrarily add branches to the spanning

tree. We pick some number X, where O<X<I, so that all the chords with

length~X will be added to the minimal spanning tree.

We now have an easily accessible library of random graphs from which

we can work.

27

28

CHAPTER V

RESULTS AND CONCLUSIONS

It is intended to program a technique for finding Hamiltonian circuits

in order to apply the lay-out procedure to the random connected graphs in the

library. Also, the lay-out procedure will be applied to complete and bipartite

graphs (where a Hamiltonian circuit is immediate) and the results compared with

available upper bounds. For the present 1 the resu Its for the coloration procedure

as applied to the random graphs from N= 10 to 18 using. a threshold of .25 is as

follows:

TABLE SA

Absolute
Fewest I of improper edges Efficiency lof Edges

N A B c A/B A/C

10 16 21 17 .875 .975 40

11 20 25 23 .9 .94 51

12 22 24 24 .965 .965 58

13 28 36 33 .884 .928 69

14 31 39 36 .9 .937 79

•
•
•
18 55 67 66 .909 .917 132

More graphs would have been examined if more computer time were available.

The time element Involved for the graph of 18 vertices was sixty-five minutes and

for a graph of nineteen vertices the time would be approximately doubled. A

measure of the efficiency of one procedure over another would be one minus the

difference between the fewest number of improper edges from one procedure and the

fewest number of improper edges from the other procedure, the difference being divided

by the number of edges in the graph. The efficiency pf procedure A over pro-

cedure B is in the fifth column of Table 5A. The efficiency of procedure A over

procedure C is in the sixth column of Table 5A.

To determine Table 5A the three heuristic procedures were combined Into

one program. The program was run from the tape which contained the library of

random graphs. The program was started with a threshold of .25 and N (the

number of vertices equal to 10). All the branches of lengths greater than .25

were added to the spanning tree. The number of Improper edges from procedure A

was calculated and compared with the number of improper edges from procedures

B and C. The reason for doing this is to find the Improvement of one procedure

over another.

29

This procedure was repeated for graphs having II vertices through graphs

having 18 vertices. Examining the results of these programs It Is found that In

certain cases procedure 8 falls. An example of where It falls is as follows:

Starting with a coloration as in Figure 58 the excess of each vertex ts

a non-positive number this Implies that this coloration has the fewest number

of Improper edges. But clearly, the coloration of the graph in Figure 5C has

fewer Improper edges.

Figure 58 Figure 5C

Hence, changing the color of one vertex does not always get the best

two-coloration of a graph. Whereas simultaneously changing the color of

two or more vertices results In a better two-coloration of a graph.

30

Upon further examination of the output it Is found that procedure C

falls as In the following case:

l _ _ _j

Figure 50

Starting with the cut-set as in Figure 50 tt is seen that every vertex

has a non-positive Increment. This Implies that this coloration has the fewest

number of improper edges. But clearly 1 the coloration of the graph in Figure

5C has fewer t mproper edges.

Although these procedures faf I In certain areas they sti II give us a fairly

good approximation of the fewest number of improper edges of any given graph.

31

HEURISTIC PROGRAMMING AND THE

MINIMAL CROSSING PROBLEM

by

VIncent J. Grosso

An Abstract submitted to the Faculty of the
College of Science

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University
Boca Raton, Florida

August 1 1970

ABSTRACT

There Cl"e several theorems which give the upper bounds on the number

of crossings of a graph In a ple11e. In this thesis we shall program certain heuristic

procedures for finding the layout of the graph with the fewest number of crossings.

We will then examine the output of these procedures to see if they always give us

a graph with the fewest number of ccosslngs.

(1)

(2)

(3)

(4)

BIBLIOGRAPHY

Akers, Sheldon B.; Hadlock, Frank 0. Electrical Networks
and the Minimal Crossing Problem. Presented at the
Graph Theory and Computing Conference. University
of West Indies: Kingston, Jamaica, January, 1969.

Uu, C. L. Introduction to Combinatorial Mathematics. New
York, New York: McGraw- Hill Book Company, 1968.

Harary, Frank. Graph The~. Reading, Massachusetts:
Addison-Wesley Publis tng Company, 1969

Berge, Claude. The Theory of Graphs. New York, New York:
John Wiley & Sons, Inc., 1962.

	00_0cover
	00_1
	00_2
	00_3
	00_4
	00_5
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035

