
WEB SERVICES CRYPTOGRAPHIC PATTERNS

By

Keiko Hashizume

A Thesis Submitted to the Faculty of

The College of Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Florida Atlantic University

Boca Raton, Florida

August 2009

 iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Eduardo Fernandez, for his guidance

during my research and study at Florida Atlantic University. I also want to express my

gratitude to the members of the Secure Systems Research group for the constructive

comments and suggestions they provided in developing the patterns. My studies were

supported by the US Department of Defense (Secure Telecommunications Network) and

by Pronto Progress, I thank both institutions.

 iv

ABSTRACT

Author: Keiko Hashizume

Title: Web Services Cryptographic Patterns

Institution: Florida Atlantic University

Thesis Advisor: Dr. Eduardo B. Fernandez

Degree: Master of Science

Year: 2009

 Data security has been identified as one of the most important concerns where

sensitive messages are exchanged over the network. In web service architecture multiple

distributed applications communicate with each other over the network by sending XML

messages. How can we protect these sensitive messages? Some web services standards

have emerged to tackle this problem. The XML Encryption standard defines the process

of encrypting and decrypting all of an XML message, part of an XML message, or even

an external resource. Like XML Encryption, the XML Signature standard specifies how

to digitally sign an entire XML message, part of an XML message, or an external object.

WS-Security defines how to embed security tokens, XML encryption, and XML

signature into XML documents. It does not define new security mechanisms but

leverages existing security technologies such as encryption and digital signature.

 v

WEB SERVICES CRYPTOGRAPHIC PATTERNS

List of Table………………………………………………………………………………ix

List of Figures……………………………………………………………………………..x

Introduction…………………………………………………………………………..........1

Background…………………………………………………………………………..........4

SOA...…..…………………………………………………....................................4

 Web Services and Standards……………………….……………………...............5

The Current Status of Web Services Standards…...…………………………....................7

 Web Services Standards Classification…………………...……………………….7

 XML Specifications……………………………………………………….7

 Messaging Specifications………………………………………………….9

 Description and Discovery Specifications……………………………….11

 Security Specifications…………………………………………...............13

 Reliable Messaging Specifications………………………………………17

 Business Process Specifications…………………………………………18

 Transaction Specifications……………………………………………….18

 Management Specifications……………………………………………...19

Web Services Security Standards Interdependencies…………………................20

Encryption Patterns………...…………………………………………………………….23

 Symmetric Encryption………………………………….......................................24

 vi

 Intent……………………………………………………………..............24

 Example………………………………………………………………….24

 Context………………………….………………………………………..25

 Problem………………………………….……………………………….25

 Solution………………………………………….……………………….25

 Implementation………………………………………….……………….30

 Known Uses…………………………………………………….………..31

 Consequences………………….…………………………………………32

 Example Resolved…………………………………………………….…33

 Related Patterns………………………………………………………….33

 Asymmetric Encryption………………..………………………...........................33

 Intent……………………………………………………………………..33

 Example………………………………………………………………….34

 Context………………………….………………………………………..34

 Problem………………………………….……………………………….34

 Solution………………………………………….……………………….35

 Implementation………………………………………….……………….40

 Known Uses…………………………………………………….………..41

 Consequences…………………….………………………………………41

 Example Resolved…………………………………………………….…43

 Related Patterns………………………………………………………….43

XML Encryption……………………………………………………....................44

Intent……………………………………………………………………..44

 vii

Example………………………………………………………………….44

 Context…………………………………………………………………...44

 Problem…………………………………………………………………..44

 Solution…………………………………………………………………..45

 Implementation…………………………………………………………..52

 Known Uses……………………………………………………………...54

 Consequences…………………………………………………………….54

 Related Patterns………………………………………………………….55

Summary…………………………………...…………………….........................56

Signature Patterns….………………...…………………………………………………..57

 Digital Signature with Hashing ……………………………………………….....58

 Intent……………………………………………………………………..58

 Example………………………………………………………………….59

 Context………………………………………………………….………..59

 Problem……………………………………….………………………….60

 Solution……………………………………………….………………….60

 Implementation……………………………………………….………….67

 Known Uses………………………………….…………………………..69

 Consequences………………………………………….…………………69

 Example Resolved……………………………………………….……....71

Related Patterns………………………………………………………….71

 XML Signature…………………………………………………..........................72

 Intent……………………………………………………………………..72

 viii

 Example………………………………………………………………….72

 Context…………………………………………………………………...73

 Problem…………………………………………………………………..73

 Solution…………………………………………………………………..74

 Implementation…………………………………………………………..83

 Known Uses……………………………………………………………...84

 Consequences…………………………………………………………….85

 Example Resolved……………………………………………………….87

 Related Patterns………………………………………………………….87

 Summary…………………………………………………………........................88

WS-Security Pattern……………………………………….……………………….…….89

 Intent……………………………………………………………………………..90

 Context…………………………………………………………………………...90

 Problem…………………………………………………………………………..90

 Solution…………………………………………………………………………..91

 Implementation…………………………………………………………………..96

 Known Uses……………………………………………………………………...97

 Consequences…………………………………………………………………….97

 Related Patterns………………………………………………………………….98

 Summary…………………………………………………………........................98

Conclusion and Future Work…………………………………………………………….99

Reference…………...…………………………………………………………………..100

 ix

TABLES

Table 1. List of XML Specifications………...…………………………………………...8

Table 2.. List of Messaging Specifications………...……………………………………...9

Table 3. .List of Description and Discovery Specifications……………………...……...11

Table 4. .List of Security Specifications…………………...…………………………….13

Table 5. .List of Reliable Messaging Specifications……..…………...………………….17

Table 6. .List of Business Process Specifications……………..…...…………………….18

Table 7. .List of Transaction Specifications……..………………………...…………….18

Table 8. .List of Management Specifications……..………..…………...……………….19

 x

FIGURES

Figure 1. Pattern Diagram for Web Services Security Standards………………...……..22

Figure 2. Class Diagram for Symmetric Encryption Pattern…………………...……….27

Figure 3. Sequence Diagram for encrypting a message………………………..……….29

Figure 4. Sequence Diagram for decrypting an encrypted message…………..………..30

Figure 5. Class Diagram for Symmetric Encryption Pattern…………………...……….37

Figure 6. Sequence Diagram for encrypting a message………………………..……….39

Figure 7. Sequence Diagram for decrypting an encrypted message……………..……..40

Figure 8. Class Diagram for XML Encryption Pattern…………………………..……..49

Figure 9. Sequence Diagram for encrypting XML elements……………………..….....50

Figure 10. Sequence Diagram for decrypting XML elements..…………………..….....51

Figure 11. Class Diagram for Digital Signature Pattern..…………………………..…..64

Figure 12. Sequence Diagram for signing a message…..………………………..……..66

Figure 13. Sequence Diagram for verifying a signature………………………..………67

Figure 14. Class Diagram for XML Signature Pattern..…………………………..……80

Figure 15. Sequence Diagram for signing different XML elements…..………..……...81

Figure 16. Sequence Diagram for verifying an XML Signature………………..……...83

Figure 17. Class diagram for WS-Security Pattern……………………………..………93

Figure 18. Sequence Diagram for encrypting a message………………………..……...95

Figure 19. Sequence Diagram for signing a XML element…………..…...…………….96

 1

1. INTRODUCTION

Web services are components that are located in the Internet and can be

incorporated into applications or as a standalone services. Web services are an alternative

way for businesses to communicate with other businesses and also with clients. Web

services communicate using XML messages that may contain sensitive data. How can we

protect this data? Traditional protocols such as SSL and IPSec can be used to transport

web services, but using these transport protocols lead to some limitations. SSL protects

the data while they are in transit. After the data is delivered, the security is lost.

Additionally, in secure transport layers, the entire message is protected. We cannot

protect only the sensitive data; we cannot allow either different access to different parts

of a document. In response of this deficiency, some standards have emerged to fill this

gap.

XML Encryption and XML Signature are two of the basic standards in securing

web services, and these standards are used by other emerging standards such as WS-

Security. The XML Encryption standard defines the process of encrypting and decrypting

all of an XML message, part of an XML message, or even an external resource.

Encryption provides message confidentiality by protecting messages from being read by

people other than the intended recipients. Like XML Encryption, the XML Signature

standard specifies how to digitally sign an entire XML message, part of an XML

 2

message, or an external object. This security mechanism, digital signature, provides

message integrity (the message has not been changed since it was created) and message

authentication (the message was originated from the sender). WS-Security defines how to

embed XML encryption and XML signature into XML documents. It also defines how to

embed security tokens such as Kerberos Tickets and X.509 which provide message

authentication. WS-Security does not define new security mechanisms but leverages

existing security technologies such as encryption and digital signature.

The problem with web services standards is that they can be lengthy documents

that have too many details that makes difficult for vendors to develop products and for

users to decide what product to use. Also, several organizations that have different goals

have developed standards that may overlap and even conflict to each other. Thus, we

develop patterns for these standards to have a better understanding of them. A pattern is

an encapsulated solution to a recurrent problem. Patterns are described using a template.

For this work we follow the POSA template [Bus96]. We develop some patterns that are

used in SOA; however, we realized that these standards are quite complicated, so we also

develop their abstract patterns that will describe how these mechanisms work in general.

Chapter 2 presents the reader background information that will be useful for the

reader to understand better this work. In chapter 3, we present our classification of Web

Services Standards, used as a reference to relate our patterns. Chapter 4 presents the

XML Encryption Pattern and its abstract pattern Symmetric Encryption. Chapter 5

illustrates XML Signature Pattern and its abstract pattern Digital Signature with Hashing.

 3

Chapter 6 presents the WS-Security Pattern. In chapter 7, we present some conclusions

and possible future work.

 4

2. BACKGROUND

This section provides basic concepts in order to have a better understanding of

this work. We present a definition of SOA (Service Oriented Architecture) and web

services and its standards.

2.1 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) defines how entities communicate with each other,

where one entity (service provider) performs some work on behalf of another entity

(service user). A service represents a group of logical business operations. One important

property of these services is that they are loosely coupled which minimizes the impact of

change and allows convenient interoperability. SOA provides platform-independent

enabling components to be implemented in different platforms, technologies, and

languages. For example, a service can be implemented in .C#, and the application that

consumes the services can be implemented on a different language.

In order to achieve interoperability, services register their descriptions such as interfaces

and requirements that need to be met in order to communicate with them, using a

specialized language, WSDL.

SOA can be also implemented using ad hoc architectures, web services, Jini, CORBA,

 5

and others. However, the most common implementation of SOA is web services.

2.2 Web Services and Standards

Web service is defined by the W3C as “a software system designed to support

interoperable machine-to-machine interaction over a network”. Web services define a set

of operations available over the Internet. There are several organizations that are involved

in the evolution of Web Services Standards, but there are three of them that are the key to

the evolution of them: W3C (World Wide Web), OASIS (Organization for the

Advancement of Structured Information Standards), and the WS-I Organization.

The primary goal of web services is to achieve universal interoperability between diverse

systems by means of common standards. Four standards form the basis of web services:

eXtensible Markup Language (XML), Web Services Description Language (WSDL),

Universal Description, Discovery, and Integration (UDDI), and SOAP (Simple Object

Access Protocol). XML is a W3C recommendation, and it is the foundation of all web

services. It is a self-descriptive markup language that facilitates the exchange of

structured information. WSDL is an XML-based standard that describes a set of

operations that a web service provides, where the service is located, what services it can

perform, and how to invoke it. UDDI is an XML-based language where businesses

publish their web services so they can be discovered. SOAP is the communication

protocol for exchanging XML messages.

 6

There are a large number of web services standards. Security, reliability, and

interoperability standards are some examples of web services standards that can be used

in combination with the basic standards. Security standards such as WS-Security, XML

Encryption, XML Signature, and other describe how to secure communication between

applications through integrity, confidentiality, authentication, and authorization. WS-

Reliability and WS-ReliableMessaging describes standards to guarantee the delivery of

messages even in the presence of network failures.

 7

3. THE CURRENT STATUS OF WEB SERVICES STANDARDS

We have classified these web services standards into eight groups: XML,

Messaging, Description and Discovery, Security, Reliable Messaging, Business Process,

Transaction, and Management Specifications. Each group identifies several standards that

have similar objectives.

There are some standards that are composed by many parts such as XML Schema

that has three parts: primer, structure, and data types. Usually the primer contains basic

information to have a better understanding of the standard. The second part may be the

framework or core that includes the main structure of the standard, and the other parts

may be extended features. There are other standards that depend on others such as WS-

Security that uses XML Encryption and XML Digital Signature. Even some other

standards may overlap or conflict with each other such as ebXML and UDDI standards

that define similar functionalities.

3.1. Web services Standards Classification

The following tables summarize the current web services standards.

3.1.1 XML Specifications

XML Specifications provides information about XML such as structure, schema, and

namespaces. XML has also extended specifications that complement XML

functionalities.

 8

Table 1

List of XML Specifications

Standard Date Publisher Status Description Source
XML 1.1

(eXtensible
Markup Language)

Set
2006

W3C Recommenda
tion

It is derived from SGML. It
allows its users to create their
own tags, enabling the
definition, transmission,
validation and interpretation
of data between applications
and between organizations
[Xml06].

W3C

XML Namespaces Aug
2006

W3C Recommenda
tion

They provide a simple
method for qualifying
element and attribute names
used in XML documents by
associating them with
namespaces identified by URI
references [Nam06].

W3C

XML Schema
 Part 0:
 Primer

Oct
2004

W3C Recommenda
tion

It is a non-normative
document intended to provide
an easily readable description
of the XML Schema facilities
[Sch04a].

W3C

XML Schema
 Part 1:

 Structures

Oct
2004

W3C Recommenda
tion

It offers facilities for
describing the structure and
constraining the contents of
XML documents [Sch04b].

W3C

XML Schema
 Part 2:

 Datatypes

Oct
2004

W3C Recommenda
tion

It defines facilities for
defining datatypes to be used
in XML Schemas as well as
other XML specifications
[Sch04c].

W3C

XPath 2.0 Jan
2007

W3C Recommenda
tion

It is a language for addressing
parts of an XML document
[Pat07].

W3C

XQuery

Jan
2007

W3C Recommenda
tion

It is a query language that is
designed to query collections
of XML data [Que07].

W3C

XML Information
Set

Feb
2004

W3C Recommenda
tion

It provides a set of definitions
for use in other specifications
that need to refer to the
information in an XML
document [Inf04].

W3C

XInclude

Nov
2006

W3C Recommenda
tion

This specification introduces
a generic mechanism for
merging XML documents (as
represented by their
information sets) for use by
applications that need such a
facility [Inc06].

W3C

XLink June
2001

W3C Recommenda
tion

It allows elements to be
inserted into XML documents

W3C

http://en.wikipedia.org/wiki/XML_Namespace#XML
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/XML_Schema
http://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_Information_Set
http://en.wikipedia.org/wiki/XML_Information_Set
http://en.wikipedia.org/wiki/XInclude

 9

in order to create and describe
links between resources
[Lin01].

XPointer
Framework

March
2003

W3C Recommenda
tion

The framework is intended to
be used as a basis for
fragment identifiers for any
resource [Poi03a].

W3C

XPointer xmlns()
Scheme

March
2003

W3C Recommenda
tion

It is intended to be used with
XPointer Framework to o
allow correct interpretation of
namespace prefixes in
pointers [Poi03b].

W3C

XPointer xpointer()
Scheme

Dec
2002

W3C Working
Draft

It is intended to be used with
the XPointer Framework to
provide a high level of
functionality for addressing
portions of XML documents
[Poi03c].

W3C

3.1.2 Messaging Specifications

This group includes specifications that enable entities to exchange XML messages in a

distributed environment.

Table 2

List of Messaging Specifications

Standard Date Publisher Status Description Source
SOAP 1.2 Part 0:

Primer

April
2007

W3C Recommenda
tion

It is a non-normative
document intended to provide
an easily understandable
tutorial on the features of
SOAP Version 1.2 [Soap07a].

W3C

SOAP 1.2 Part 1:
Messaging
Framework

April
2007

W3C Recommenda
tion

It is a lightweight protocol
intended for exchanging
structured information in a
decentralized, distributed
environment [Soap07b].

W3C

SOAP 1.2 Part 2:
Adjuncts

April
2007

W3C Recommenda
tion

It defines a set of adjuncts that
MAY be used with the SOAP
messaging framework such as
SOAP encoding, SOAP RPC
representation and so on
[Soap07c].

W3C

WS-Notification Oct
2006

OASIS Standard It is the base specification on
which all the other
specifications in the family
depend. It consists of three
specifications: WS-

IBM,
OASIS

http://en.wikipedia.org/wiki/XPointer

 10

BaseNotification, WS-
BrokeredNotification and Ws-
Topics.

WS-
BaseNotification

Oct
2006

OASIS Standard It defines the normative Web
services interfaces for two of
the important roles:
NotificationProducer and
NotificationConsumer roles. It
includes standard message
exchanges to be implemented
by service providers that wish
to act in these roles, along
with operational requirements
expected of them [Not06a]..

IBM,
OASIS

WS-
BrokeredNotificati

on

Oct
2006

OASIS Standard It defines the Web services
interface for the
NotificationBroker. A
NotificationBroker is an
intermediary which, among
other things, allows
publication of messages from
entities that are not
themselves service providers
[Not06b].

IBM,
OASIS

WS-Topics Oct
2006

OASIS Standard It defines a mechanism to
organize and categorize items
of interest for subscription
known as “topics” [Top06].

IBM,
OASIS

WS-Addressing
1.0 - Core

May
2006

W3C Recommend
ation

It provides transport-neutral
mechanisms to address Web
services and messages.
Specifically, this specification
defines XML elements to
identify Web service
endpoints and to secure end-
to-end endpoint identification
in messages [Add06a].

W3C,
IBM

WS-Addressing
1.0 – SOAP

Binding

May
2006

W3C Recommend
ation

It defines the binding of the
abstract properties defined in
WS- Addressing 1.0 - Core to
SOAP Messages [Add06b].

W3C

WS-Addressing
1.0 - WSDL

Binding

May
2006

W3C Candidate
Recommend

ation

It defines how the abstract
properties defined in WS-
Addressing 1.0 - Core are
described using WSDL
[Add06c].

W3C

WS-Addressing
1.0 - Metadata

Sept
2007

W3C Recommend
ation

It defines how the abstract
properties defined in Web
Services Addressing 1.0 -
Core are described using
WSDL, how to include
WSDL metadata in endpoint
references, and how WS-
Policy can be used to indicate
the support of WS-Addressing

W3C

 11

by a Web service [Add06d].
WS-Transfer Set

2006
W3C Member

Submission
It describes a general SOAP-
based protocol for accessing
XML representations of Web
service-based resources
[Tra06].

W3C

WS-Eventing March
2006

W3C Member
Submission

It describes a protocol that
allows Web services to
subscribe to or accept
subscriptions for event
notification messages
[Eve06].

IBM

WS-Enumeration March
2006

Microsoft,
BEA, CA

Member
Submission

It describes a general SOAP-
based protocol for
enumerating a sequence of
XML elements that is suitable
for traversing logs, message
queues, or other linear
information models [Enu06].

W3C

SOAP Message
Transmission
Optimization
Mechanism

Jan
2005

W3C Recommend
ation

It describes an abstract feature
and a concrete
implementation of it for
optimizing the transmission
and/or wire format of SOAP
messages [Mtom05].

W3C

3.1.3 Description and Discovery Specifications

These specifications aim to describe Web Services in terms of location, operation,

interfaces, and policies, and publish this information in order to be publicly accessed.

Table 3

List of Description and Discovery Specifications

Standard Date Publisher Status Description Source
WS-Policy 1.5 -

Framework
Set

2007
W3C Recommendat

ion
It provides a general purpose
model and corresponding
syntax to describe the policies
of a Web Service [Pol07a].

W3C

WS-
PolicyAttachment

1.5

Set
2007

W3C Recommendat
ion

It defines two general-purpose
mechanisms for associating
policies, as defined in Web
Services Policy 1.5 -
Framework, with the subjects
to which they apply. It also
defines how these general-
purpose mechanisms may be

W3C

http://en.wikipedia.org/wiki/WS-Policy
http://en.wikipedia.org/w/index.php?title=WS-PolicyAttachment&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-PolicyAttachment&action=edit&redlink=1

 12

used to associate policies with
WSDL and UDDI
descriptions [Pol07b].

WS-Discovery

April
2005

Microsoft,
BEA, Intel

Draft This specification defines a
multicast discovery protocol
to locate services [Dis05].

Microso
ft

WS-
MetadataExchange

1.1

Aug
2006

BEA
Systems,

IBM,
Microsoft,
and SAP

Public Draft Web services use metadata to
describe what other endpoints
need to know to interact with
them [Met06].

IBM

UDDI 3.0.2
(Universal

Description,
Discovery, and

Integration)

Feb
2005

OASIS Standard It defines a set of services
supporting the description and
discovery of (1) businesses,
organizations, and other Web
services providers, (2) the
Web services they make
available, and (3) the
technical interfaces which
may be used to access those
services [Uddi05].

OASIS

ebXML Registry
Services and
Protocols 3.0

May
 2005

OASIS Standard It provides a set of services
that enable sharing of content
and metadata between
organizational entities in a
federated environment
[Ebx05a].

OASIS

ebXML Registry:
Information Model

3.0

May
 2005

OASIS Standard It defines the types of
metadata and content that can
be stored in an ebXML
Registry [Ebx05b].

OASIS

WSDL (Web
Service Description

Language) 1.1

March
2001

W3C Note It is an XML-based language
for describing Web services
and how to access them. It
specifies the location of the
service and the operations (or
methods) the service exposes
[Wsdl01a].

W3C

WSDL 2.0 Part 0:
Primer

June
2007

W3C Recommendat
ion

This primer is only intended
to be a starting point toward
use of WSDL 2.0, and hence
does not describe every
feature of the language
[Wsdl01b].

W3C

WSDL 2.0 Part 1:
Core

June
2007

W3C Recommendat
ion

It defines the core language
which can be used to describe
Web services based on an
abstract model of what the
service offers. It also defines
the conformance criteria for
documents in this language
[Wsdl01c].

W3C

WSDL 2.0 Part 2:
Adjuncts

June
2007

W3C Recommendat
ion

It specifies predefined
extensions for use in WSDL
2.0: message exchange

W3C

http://en.wikipedia.org/wiki/WS-Discovery
http://en.wikipedia.org/wiki/WS-MetadataExchange
http://en.wikipedia.org/wiki/WS-MetadataExchange
http://en.wikipedia.org/wiki/BEA_Systems
http://en.wikipedia.org/wiki/BEA_Systems
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/SAP_AG
http://en.wikipedia.org/wiki/Universal_Description%2C_Discovery%2C_and_Integration
http://en.wikipedia.org/wiki/Universal_Description%2C_Discovery%2C_and_Integration
http://en.wikipedia.org/wiki/Universal_Description%2C_Discovery%2C_and_Integration
http://en.wikipedia.org/wiki/Universal_Description%2C_Discovery%2C_and_Integration

 13

patterns, operation safety,
operation styles, and binding
extensions for SOAP and
HTTP [Wsdl01d].

WSDL 2.0 SOAP
1.1 Binding

June
2007

W3C Working
Group Note

It describes the concrete
details for using WSDL 2.0 in
conjunction with SOAP 1.1
protocol [Wsdl01e].

W3C

WSRF 1.2 Primer
(WS-Resource
Framework)

May
2006

OASIS Committee
Draft

It defines a generic framework
for modeling and accessing
persistent resources using
Web services [Res06a].

OASIS

WS-Resource 1.2

April
2006

OASIS Standard It describes the relationship
between a Web service and a
resource in the WS-Resource
Framework [Res06b].

OASIS

WS-
ResourceProperties

1.2

April
2006

OASIS Standard It standardizes the means by
which the definition of the
properties of a WS-Resource
may be declared as part of a
Web service interface
[Res06c].

OASIS

WS-
ResourceLifetime

1.2

April
2006

OASIS Standard It defines two means of
destroying a WS-Resource:
immediate destruction and
time-based, scheduled
destruction [Res06d].

OASIS

3.1.4 Security Specifications

These security specifications describe how to secure communication between

applications through integrity, confidentiality, authentication, and authorization.

Table 4

List of Security Specifications

Standard Date Publisher Status Description Source
AVDL 1.0

(Application
Vulnerability
Description
Language)

May
2004

OASIS Specification It describes a standard XML
format that allows entities
(such as applications,
organizations, or institutes) to
communicate information
regarding web application
vulnerabilities [Avdl04].

OASIS

DSS 1.0 (Digital
Signature
Services)

April
2007

OASIS Standard It defines the XML syntax
and semantics for the Digital
Signature Service core

OASIS

http://en.wikipedia.org/wiki/WS-Resource_Framework

 14

protocols, and for some
associated core elements
[Dsi07].

SAML 2.0
(Security Assertion
Markup Language)

Core

March
2005

OASIS Standard It defines the syntax and
semantics for XML-encoded
assertions about
authentication, attributes, and
authorization, and for the
protocols that convey this
information [Saml05a].

OASIS

SAML 2.0
(Security Assertion
Markup Language)

2.0
Binding

March
2005

OASIS Standard It defines protocol bindings
for the use of SAML
assertions and request-
response messages in
communications protocols
and frameworks [Saml05b].

OASIS

SAML 2.0
(Security Assertion
Markup Language)

2.0
Profiles

March
2005

OASIS Standard It defines profiles for the use
of SAML assertions and
request-response messages in
communications protocols
and frameworks, as well as
profiles for SAML attribute
value syntax and naming
conventions [Saml05c].

OASIS

SAML 2.0
(Security Assertion
Markup Language)

2.0
Metadata

March
2005

OASIS Standard It defines an extensible
metadata format for SAML
system entities, organized by
roles that reflect SAML
profiles [Saml05d].

OASIS

SAML 2.0
(Security Assertion
Markup Language)

2.0
Authentication

Context

March
2005

OASIS Standard It defines syntax for the
definition of authentication
context declarations and an
initial list of authentication
context classes for use with
SAML [Saml05e].

OASIS

SAML 2.0
(Security Assertion
Markup Language)

2.0
Security and

Privacy

March
2005

OASIS Standard This non-normative
specification describes and
analyzes the security and
privacy properties of
SAML [Saml05f].

OASIS

SPML 2.0 (Service
Provisioning

Markup Language)

April
2006

OASIS Standard This specification defines the
concepts and operations of an
XML-based provisioning
request-and-response protocol
[Spml06].

OASIS

WS-Security 1.1
Core

Feb
2006

OASIS Standard It enhances SOAP messages
in order to provide integrity
and confidentiality. It also
provides a general-purpose
mechanism for associating
security tokens with message

OASIS

 15

content [Sec04].
WS-Security:

 X.509 Certificate
Token Profile 1.1

Feb
2006

OASIS Standard It describes how to use X.509
Certificates with the WS-
Security [Cer06].

OASIS

WS-Security:
 Username Token

Profile 1.1

Feb
2006

OASIS Standard It describes how to use the
Username Token with the
WS-Security [Use06].

OASIS

WS-Security:
 SAML Token

Profile 1.1

Feb
2006

OASIS Standard It describes how to use
Security Assertion Markup
Language (SAML) V1.1 and
V2.0 assertions with WS-
Security [Saml06].

OASIS

WS-Security:
 Kerberos Token

Profile 1.1

Feb
2006

OASIS Standard It describes how to use
Kerberos tickets (specifically
the AP-REQ packet) with
WS-Security [Ker06].

OASIS

XACML 2.0
(Extensible Access

Control Markup
Language)

Core

Feb
2005

OASIS Standard It expresses policies for
information access
[Xacm05a].

OASIS

XACML 2.0:
Core and

Hierarchical role
based access

control (RBAC)
profile

Feb
2005

OASIS Standard It defines a profile for the use
of XACML in expressing
policies that use role based
access control (RBAC)
[Xacm05b].

OASIS

XACML 2.0:
Hierarchical

resource profile

Feb
2005

OASIS Standard It provides a profile for the
use XACML with resources
that are structured as
hierarchies [Xacm05c].

OASIS

XACML 2.0:
Multiple resource

profile

Feb
2005

OASIS Standard It provides a profile for
requesting access to more
than one resource in a single
XACML Request Context, or
for requesting a single
response to a request for an
entire hierarchy [Xacm05d].

OASIS

XACML 2.0:
Privacy policy

profile

Feb
2005

OASIS Standard It describes a profile of
XACML for expressing
privacy policies [Xacm05e].

OASIS

XACML 2.0:
SAML 2.0 profile

Feb
2005

OASIS Standard It defines a profile for the use
of SAML 2.0 to carry
XACML 2.0 policies, policy
queries and responses,
authorization decisions, and
authorization decision queries
and responses. It also
describes the use of SAML
2.0 Attribute Assertions with
XACML [Xacm05f].

OASIS

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

 16

XACML 2.0:
XML Digital

Signature profile

Feb
2005

OASIS Standard It uses XML-Signature
Standard in order to provide
authentication and integrity
protection for XACML
schema instances [Xacm05g].

OASIS

XML Digital
Signature

June
2008

W3C Recommenda
tion

It specifies XML syntax and
processing rules for creating
and representing digital
signatures [Sig08].

W3C

XML encryption Dec
2002

W3C Recommenda
tion

It specifies a process for
encrypting data and
representing the result in
XML [Enc02].

W3C

XKMS 2.0 (XML
Key Management

Specification)

June
2005

W3C Recommenda
tion

It specifies protocols for
distributing and registering
public keys, use in
conjunction with the XML
Signature [Xkms05a].

W3C

XKMS 2.0 (XML
Key Management

Specification)
Bindings

June
2005

W3C Recommenda
tion

It specifies protocol bindings
with security characteristics
for the XKMS [Xkms05b].

W3C

XrML 2.0
(Extensible Rights

Management
Language)

March
2002

Content
Guard

 It is based on XML and
describes rights, fees and
conditions together with
message integrity and entity
authentication information
[Xrml02].

XrML.or
g

XCBF 1.1
(XML Common

Biometric Format)

Augus
t

2003

OASIS Standard It defines XML codings for
Common Biometric
Exchange File Format
[Bio03].

OASIS

WS-Federation
Language 1.1

Dec
2006

IBM, BEA,
Microsoft,

RSA,
VeriSign,

etc

Public Draft Mechanisms to allow
different security realms to
federate. Allows brokering
trust of identities, attributes,
authentication between
participating Web services
[Fed06].

IBM,
BEA

WS-Federation:
Active Requestor

Profile 1.1

July
2003

IBM, BEA,
Microsoft,

RSA,
VeriSign

Public Draft It defines how federation
mechanisms defined in WS-
Federation are used by active
requestors such as SOAP-
enabled applications
[Fed03a].

IBM,
BEA

WS-Federation:
Passive Requestor

Profile

July
2003

IBM, BEA,
Microsoft,

RSA,
VeriSign

Public Draft It describes how WS-
Federation can be utilized
used by passive requestors
such as Web browsers to
provide Identity Services.
Limited to the HTTP protocol
[Fed03b].

IBM,
BEA

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www-106.ibm.com/developerworks/library/ws-fedpass/
http://www-106.ibm.com/developerworks/library/ws-fedpass/
http://www-106.ibm.com/developerworks/library/ws-fedpass/

 17

WS-
SecureConversation

1.3

March
2007

OASIS Standard This specification defines
extensions that build on [WS-
Security] to provide a
framework for requesting and
issuing security tokens, and to
broker trust relationships
[Con07a].

OASIS

WS-SecurityPolicy
1.2

Jul
2007

OASIS Standard It indicates the policy
assertions for use with WS-
Policy which apply to WS-
Security, WS-Trust and WS-
SecureConversation
[Secp07].

OASIS

WS-Trust 1.3 March
2007

OASIS Standard It defines extensions that
build on WS-Security to
provide a framework for
requesting and issuing
security tokens, and to broker
trust relationships [Trus07].

OASIS

3.1.5 Reliable Messaging Specifications

These specifications guarantees the delivery of messages even when the system or

network fails.

Table 5

List of Reliable Messaging Specifications

Standard Date Publisher Status Description Source
WS-

ReliableMessaging
1.1

June
2007

OASIS Standard It describes a protocol that
allows messages to be
transferred reliably between
nodes implementing this
protocol in the presence of
software component, system,
or network failures [Rel07].

OASIS

WS-Reliability
1.1

Nov
2004

OASIS Standard It is a SOAP-based protocol
for exchanging
SOAP messages with
guaranteed delivery, no
duplicates, and guaranteed
message ordering [Rel04].

OASIS

WS-RM Policy
Assertion 1.1

June
2007

OASIS Standard It describes a domain-specific
policy assertion for WS-
ReliableMessaging that that
can be specified within a
policy alternative as defined
in WS-Policy Framework
[Rmp07].

OASIS

http://www-128.ibm.com/developerworks/library/specification/ws-secon/
http://www-128.ibm.com/developerworks/library/specification/ws-secon/
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#wssecurity
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#wssecurity
http://www.ibm.com/developerworks/library/specification/ws-secpol/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wspolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wspolicy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wstrust
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wssecureconversation
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wssecureconversation
http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html#wssecurity
http://en.wikipedia.org/wiki/WS-ReliableMessaging
http://en.wikipedia.org/wiki/WS-ReliableMessaging

 18

3.1.6 Business Process Specifications

Business Process Specifications are the highest level specifications that specify business

process and participants involve in a transaction.

Table 6

List of Business Process Specifications

Standard Date Publisher Status Description Source
WS-BPEL 2.0

April
2007

OASIS Standard It is a language for specifying
business process behavior
based on Web Services
[Bpel07a].

OASIS

Web Services
Choreography
Interface 1.0

Aug
2002

W3C, Sun,
Intalio,
BEA

Note It is an XML-based interface
description language that
describes the flow of
messages exchanged by a
Web Service participating in
choreographed interactions
with other services [Cor05].

W3C

WS-Choreography
1.0

Nov
2005

W3C Candidate
Recommenda

tion

It is an XML-based language
that describes peer-to-peer
collaborations of participants
by defining, from a global
viewpoint, their common and
complementary observable
behavior; where ordered
message exchanges result in
accomplishing a common
business goal [Wsci02].

W3C

3.1.7 Transaction Specifications

Transaction specifications provide coordination mechanisms when interoperability is

needed between different domains.

Table 7

List of Transaction Specifications

Standard Date Publisher Status Description Source
WS-Coordination

 1.1

July
2007

OASIS Standard It describes an extensible
framework for providing
protocols that coordinate the

OASIS

http://en.wikipedia.org/wiki/WS-BPEL
http://en.wikipedia.org/w/index.php?title=Web_Services_Choreography_Interface&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Web_Services_Choreography_Interface&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Web_Services_Choreography_Interface&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_Service_Choreography
http://en.wikipedia.org/wiki/WS-Coordination

 19

actions of distributed
applications [Coo07].

WS-
BusinessActivity

1.1

July
 2007

OASIS Standard It provides the definition of
two Business Activity
coordination types:
AtomicOutcome or
MixedOutcome, that are to be
used with the extensible
coordination framework
described in the WS-
Coordination specification
[Bus07].

OASIS

WS-
AtomicTransaction

1.1

April
2007

OASIS Standard It provides the definition of
the Atomic Transaction
coordination type that is to be
used with the extensible
coordination framework
described in WS-
Coordination [Ato07].

OASIS

WS-Context
 1.0

April
2007

OASIS Standard It provides a definition, a
structuring mechanism, and
service definitions for
organizing and sharing
context across multiple
execution endpoints [Con07].

OASIS

3.1.8 Management Specifications

These specifications describe how to manage and access web services or other resources

located remotely on their networks.

Table 8

List of Management Specifications

Standard Date Publisher Status Description Source
WS-Management

1.0

Feb
2008

DMTF Specification It describes a general SOAP-
based protocol for managing
systems such as PCs, servers,
devices, Web services and
other applications, and other
manageable entities [Man08].

DMTF

WS-Management
Catalog

June
2005

Intel, Dell,
Microsoft,
Sun and
others

Specification It describes the default
metadata formats used for the
WS-Management Protocol
[Aro05].

OASIS

WS-
ResourceTransfer

1.0

Aug
2006

IBM, HP,
Microsoft

Draft It is intended to form an
essential core component of a
unified resource access

IBM

http://en.wikipedia.org/w/index.php?title=WS-BusinessActivity&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-BusinessActivity&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-AtomicTransaction&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-AtomicTransaction&action=edit&redlink=1
http://en.wikipedia.org/wiki/WS-Context
http://en.wikipedia.org/wiki/WS-Management
http://en.wikipedia.org/w/index.php?title=WS-Management_Catalog&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-Management_Catalog&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-ResourceTransfer&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=WS-ResourceTransfer&action=edit&redlink=1

 20

protocol for the Web services
space [Rei06].

Management Using
Web Services
(MUWS)1.1

Part 1

Aug
2006

OASIS Standard It provides the fundamental
concepts for management
using Web services
[Muws06a].

OASIS

Management Using
Web Services
(MUWS)1.1

Part 2

Aug
2006

OASIS Standard It provides specific messaging
formats used to enable the
interoperability of MUWS
implementations [Muws06b].

OASIS

Management of Web
Services

(MOWS)1.1

Aug
2006

OASIS Standard It addresses management of
the Web services endpoints
using Web services protocols
[Mows06].

OASIS

3.2 Web Services Security Standards Interdependencies

These web services security standards provide a way to communicate policy information

or describe security mechanism different domains such as authentication, authorization,

confidentiality, and integrity.

The XML Encryption standard describes a process to apply encryption functions to data

but keeping a correct XML syntax. Likewise, the XML Signature provides a means to

identify the source of the message (message authentication), and it provides also message

integrity.

WS-Security defines how to secure SOAP messages applying XML security technologies

such as XML Encryption and XML Signature. It also defines how to embed different

security tokens. Security tokens provides authentication by proving one’s identity.

http://en.wikipedia.org/wiki/Web_Services_Distributed_Management
http://en.wikipedia.org/wiki/Web_Services_Distributed_Management

 21

WS-Policy describes how to express requirements that are needed or supported by a web

service. For instance, it can indicate that a specific signature algorithm must be used

when adding a digital signature.

SAML [Del07] defines a standard protocol to exchange authentication and authorization

assertions. It may use WS-Security standard to protect assertions while they are being

transmitted.

WS-Trust provides a framework for requesting and issuing security tokens, and to broker

trust relationships [OAS07]. It uses WS-Security to transfer the required security tokens,

using XML Signature and Encryption to ensure confidentiality. This standard may use

WS-Policy to specify which security tokens are required at the target.

WS-SecureConversation defines mechanisms to allow security context establishment and

sharing, and session key derivation [Con07a]. This specification uses WS-Security, WS-

Trust and WS-Policy to negotiate and issue session keys.

WS-Federation defines mechanisms to allow different security domains to federate

[Fed06]. It describes how federated trust scenarios can be constructed using WS-Security,

WS-Policy, WS-Trust, and WS-SecureConversation.

Figure 1 illustrates the relationship between these web services security standards. The

patterns that are represented in solid lines are described in this thesis or written earlier,

and the ones in broken lines have not yet been written.

Figure 1

Patten Diagram for Web Services Security Standards

 22

 23

4. ENCRYPTION PATTERNS

An important security risk is that information can be captured and read during its

transmission. How do we protect this information from being read by intruders?

Encryption provides message confidentiality by transforming readable data (plain text)

into an unreadable format (cipher text) that can be understood only by the intended

receiver after a process called decryption, the inverse function that makes the encrypted

information readable again. There are two types of encryption: symmetric and

asymmetric encryption. In symmetric encryption a common key is used for both

encryption and decryption. In asymmetric encryption a public/private key pair is used for

encryption/decryption; the sender encrypts the information using the receiver’s public

key, while the receiver uses his private key to decrypt the ciphered text.

The encrypted messages may be intercepted and be the object of attacks,

including illegal reading, modification, and replay. An emerging use of web services that

exchanges XML messages also can be target of attacks. Some security standards have

been developed to apply correctly encryption functions and thus reduce security risks.

XML Encryption is one of the basic standards in securing web services. XML Encryption

defines how to encrypt/decrypt an entire XML message, part of an XML message, or an

external object linked to the message, and how to represent the encrypted content and

information such as encryption algorithm and key in XML format. We present here

 24

patterns for Symmetric Encryption and for XML Encryption. By presenting Symmetric

Encryption first we make the second pattern easier to understand.

Section 2 presents the Symmetric Encryption Pattern, and Section 3 presents the

XML Encryption pattern. We assume the reader is an application designer intending to

use message secrecy in her design and has a basic knowledge of cryptography and UML.

The XML pattern could also be of value to a designer of cryptographic products. While

the XML pattern does not include all aspects of the standard it has sufficient detail so as

it can be used as a guideline for design.

4.1 Symmetric Encryption

4.1.1 Intent

Encryption protects message confidentiality by making a message unreadable to those

that do not have access to the key. Symmetric encryption uses the same key for

encryption and decryption.

4.1.2 Example

Alice, in the Purchasing department regularly sends purchase orders to Bob in a

distribution office. A purchase order contains sensitive data such as credit card numbers

and other company information, so it is important to keep it secret. Eve can intercept her

messages and may try to read them to get the confidential information.

 25

4.1.3 Context

Applications that exchange sensitive information over insecure channels.

4.1.4 Problem

Applications that communicate with external applications interchange sensitive data that

may be read by unauthorized users while they are in transit. How do we protect messages

from being read by intruders?

The solution for this problem is affected by the following forces:

• Confidentiality--Messages may be captured while they are in transit, so we need

to prevent unauthorized users from reading them by hiding the information of the

message. Hiding the information also makes replaying of messages by an attacker

harder to perform.

• Reception--The hidden information should be revealed conveniently to the

receiver.

• Protocol--We need to apply the solution properly or it will not be able to stand

attacks (there are several ways to attack a method to hide information.

• Performance--The time to hide and recover the message should be reasonable.

4.1.5 Solution

Transform a message in such a way that only can be understood by the intended receiver

after applying the reverse transformation using a valid key. The transformation process at

the sender’s end is called Encryption, while the reverse transformation process at the

receiver’s end is called Decryption.

The sender applies an encryption function (E) to the message (M) using a key (k); the

output is the cipher text (C).

C = Ek (M)

When the cipher text (C) is delivered, the receiver applies a decryption function (D) to

the cipher text using the same key (k) and recovers the message, i.e.

M = Dk (C)

Structure

Figure 2 describes the class diagram for the Symmetric Encryption Pattern.

 26

Figure 2

Class Diagram for Symmetric Encryption Pattern

A Principal may be a user or an organization that is responsible for sending or receiving

messages. This Principal may have the roles of Sender or Receiver. A Sender may send

a Message and/or an EncryptedMessage to a receiver with which it shares a secret Key.

The Encryptor creates the EncryptedMessage that contain the cipher text using the

shared key provided by the sender, while the Decryptor deciphers the encrypted data into

 27

 28

its original form using the same key. Both the Encryptor and Decryptor use the same

Algorithm to encipher and decipher a message.

Dynamics

We describe the dynamic aspects of the Encryption Pattern using sequence diagrams for

the following use cases: encrypt a message and decrypt a message.

Encrypt a message (Figure 3):

Summary: A Sender wants to encrypt a message

Actors: A Sender

Precondition: Both sender and receiver have a shared key and access to a repository

of algorithms. The message has already been created by the sender.

Description:

a) A Sender sends the message, the shared key, and the algorithm identifier to the

Encryptor.

b) The Encryptor ciphers the message using the algorithm specified by the sender.

c) The Encryptor creates the EncryptedMessage that includes the cipher text.

Postcondition: The message has been encrypted and sent to the sender.

Figure 3

Sequence Diagram for Encrypting a Message

Decrypt an Encrypted Message (Figure 4):

Summary: A receiver wants to decrypt an encrypted message from a sender.

Actors: A Receiver

Precondition: Both the sender and receiver have a shared key and access to a

repository of algorithms.

Description:

a) A Receiver sends the encrypted message and the shared key to the decryptor.

b) The Decryptor deciphers the encrypted message using the shared key.

c) The Decryptor creates the Message that contains the plain text obtained from the

previous step.

d) The Decryptor sends the plain Message to the receiver.

 29

Alternate Flows:

• If the key used in step b) is not the same as the one used for encryption, the

decryption process fails.

Postcondition: The encrypted message has been deciphered and delivered to the

Receiver.

Figure 4

Sequence Diagram for Decrypting an Encrypted Message

4.1.6 Implementation

• Use the Strategy Pattern [Gam94] to select different encryption algorithms.

• The designer should choose well-known algorithms such as AES (Advanced

Encryption Standard) [Fed01] and DES (Data Encryption Standard) [Fed99].

• Encryption can be implemented in different applications such as in email

communication, distribution of documents over the Internet, or web services. In

 30

 31

these applications, we are able to encrypt the entire document. However, in web

services we can encrypt parts of a message.

• Both the sender and the receiver have to previously agree what cryptographic

algorithm they support.

• A good key generator is very important. It should generate keys that are as

random as possible or an attacker who captures some messages could be able to

deduce the key.

• A long encryption key should be used (at least 64 bits). Only brute force is known

to work against the DES and AES for example; using a short key would let the

attacker generate all possible keys.

4.1.7 Known Uses

Symmetric Encryption has been widely used in different products.

• GNuPG [Gnu] is free software that secures data from eavesdroppers.

• OpenSSL [Ope] is an open source toolkit that encrypts and decrypts files.

• Java Cryptographic Extension [Suna] provides a framework and implementations

for encryption.

• The .NET framework [Mica] provides several classes to perform encryption and

decryption using symmetric algorithms.

• XML Encryption [W3C02] is one of the foundation web services security

standards that defines the structure and process of encryption for XML messages.

• Pretty Good Privacy (PGP), a set of programs used mostly for e-mail security,

includes methods for symmetric encryption and decryption [PGP].

 32

4.1.8 Consequences

This pattern presents the following advantages:

• Only receivers who possess the shared key can decrypt a message transforming it

into a readable form. A captured message is unreadable to the attacker. This

makes attacks based on replaying a message very hard.

• The strength of a cryptosystem is based on the secrecy of a long key [Sta06]. The

cryptographic algorithms are known to the public, so the key should be kept

protected from unauthorized users.

• It is possible to select from several encryption algorithms the one suitable for the

application needs.

• There exist encryption algorithms that take a reasonable time to encrypt messages.

The pattern also has some (possible) liabilities:

• This pattern assumes that the shared key was distributed in a secure way. This

may not be easy for large groups of nodes exchanging messages. Asymmetric

cryptography can be used to solve this problem.

• Cryptography operations are computationally intensive and may affect the

performance of the application. This is particularly important for mobile devices.

• Encryption does not provide data integrity. The encrypted data can be modified

by an attacker, other means such as hashing, are needed to verify that the message

was not changed.

 33

• Encryption does not prevent a replay attack because an encrypted message can be

captured and resent without being decrypted. It is recommended to use another

security mechanism such as Timestamps or Nonce to prevent this attack.

4.1.9 Example resolved

Alice now encrypts the purchase orders she sends to Bob. The purchase’s order sensitive

data is now unreadable to Eve. Eve can try to apply to it all possible keys but if the

algorithm has been well chosen and implemented, she cannot read the confidential

information.

4.1.10 Related Patterns

• The Secure Channel Communication pattern [Bra98], supports the

encryption/decryption of data. This pattern describes encryption in more general

terms. It does not distinguish between asymmetric and symmetric encryption.

Another version is given in [Sch06].

• Strategy Pattern [Gam94], defines how to separate the implementation of related

algorithms from the selection of one of them. This pattern can be used to select an

encryption algorithm dynamically.

• Asymmetric Encryption is commonly used to distribute keys.

4.2 Asymmetric Encryption

4.2.1 Intent

 34

Encryption provides message confidentiality by keeping information secret in such a way

that it can only be understood by intended recipients who have the access to the valid

key. In asymmetric encryption, a public/private key pair is used for encryption and

decryption respectively.

4.2.2 Example

Alice wants to send a personal message to Bob. They have not met each other to agree

upon a shared key. She wants to keep the message secret since it contains personal

information. Eve can intercept her messages and may try to obtain the confidential

information.

4.2.3 Context

Applications that exchange sensitive information over insecure networks.

4.2.4 Problem

Applications that communicate with external applications interchange messages that may

contain sensitive. These messages can be intercepted and read by impostors during

transmission. How do can we send sensitive information securely over insecure channels?

The solution for this problem is affected by the following forces:

• Confidentiality--Messages may be captured while they are in transit, so we need

to prevent unauthorized users from reading them by hiding the information of the

 35

message. Hiding the information also makes replaying of messages by an attacker

harder to perform.

• Reception--The hidden information should be revealed conveniently to the

receiver.

• Protocol--We need to apply the solution properly or it will not be able to stand

attacks (there are several ways to attack a method to hide information.

• Performance--The time to hide and recover the message should be reasonable.

• Key distribution -- Two parties may want to communicate to each other, but they

have not agreed upon a shared key. Thus, we need a way to send messages

without establishing a common key.

4.2.5 Solution

Apply mathematical functions to a message, so it can unreadable to those that do not have

a valid key. This approach uses a key pair: private and public key.

The sender encrypts (E) the message (M) using the receiver’s public key (PuK) that is

accessible by anyone. The result of this process is cipher text (C)

C = EPuK (M)

On the other side, the receiver decrypts (D) the cipher text (C) using his private key (PrK)

to recover the plain message (M).

M = DPrK (C)

Structure

Figure 1 describes the class diagram for the Asymmetric Encryption Pattern.

A Principal may be a user or an organization that is responsible for sending or receiving

messages. This Principal may have the roles of Sender or Receiver. A Sender may send

a Message and/or a EncryptedMessage to a receiver with which it shares a secret Key.

A Principal has one or more KeyPair that is composed of a private key that is kept

secret by its owner and a public key that is publicly published. PublicKeyRepository is a

repository that contains a list of public keys where users can register and/or access public

keys. These two keys are mathematically related, so while one encrypts, the other

decrypts. However, it is not feasible to deduce one’s private key from its corresponding

public key.

 36

Figure 5

Class Diagram for Asymmetric Encryption Pattern

The Encryptor creates the EncryptedMessage that contain the cipher text using the

shared key provided by the sender, while the Decryptor deciphers the encrypted data into

its original form using the same key. Both the Encryptor and Decryptor use the same

Algorithm to encipher and decipher a message.
 37

 38

Dynamics

We describe the dynamic aspects of the Asymmetric Encryption Pattern using sequence

diagrams for the following use cases: encrypt a message and decrypt a message.

Encrypt a message (Figure 2):

Summary: A Sender wants to encrypt a message.

Actors: A Sender

Precondition: The sender has access to the receiver’s public key. Both sender and

receiver have access to a repository of algorithms. The message has already been

created by the sender.

Description:

d) A Sender sends the message, the receiver’s public key, and the algorithm

identifier to the Encryptor.

e) The Encryptor ciphers the message using the algorithm specified by the sender.

f) The Encryptor creates the EncryptedMessage that includes the cipher text.

Postcondition: The message has been encrypted and sent to the sender.

Figure 6

Sequence Diagram for Encrypting a Message

Decrypt an Encrypted Message (Figure 3):

Summary: A receiver wants to decrypt an encrypted message from a sender.

Actors: A Receiver

Precondition: Both the sender and receiver have access to a repository of algorithms.

Description:

e) A Receiver sends the encrypted message and his private key to the decryptor.

f) The Decryptor deciphers the encrypted message using the receiver’s public key.

g) The Decryptor creates the Message that contains the plain text obtained from the

previous step.

h) The Decryptor sends the plain Message to the receiver.

Alternate Flows:

 39

• If the key used in step b) is not mathematically related to the key used for

encryption, the decryption process fails.

Postcondition: The encrypted message has been deciphered and delivered to the

Receiver.

Figure 7

Sequence Diagram for Decrypting an Encrypted Message

4.2.6 Implementation

• Use the Strategy Pattern [Gam94] to select different encryption algorithms.

• The designer should choose well-known algorithms such as RSA that was

developed by Ronald Rivest, Adi Shami, and Len Adleman [Riv78].

• Encryption can be implemented in different applications such as in email

communication, distribution of documents over the Internet, or web services. In

 40

 41

these applications, we are able to encrypt the entire document. However, in web

services we can encrypt parts of a message.

• Both the sender and the receiver have to previously agree what cryptographic

algorithm they support.

• A good key pair generator is very important. It should generate key pairs where

the private key cannot be deduced from the public key.

4.2.7 Known Uses

Asymmetric Encryption has been widely used in different products.

• GNuPG [Gnu] is free software that secures data from eavesdroppers.

• Java Cryptographic Extension [Sun] supports a variety of algorithms including

asymmetric encryption.

• The .NET framework [Mic] provides several classes to perform asymmetric

encryption and decryption.

• XML Encryption [W3C02] is one of the foundation web services security

standards that defines the structure and process of encryption for XML messages.

This standard supports both types of encryption: symmetric and asymmetric

encryption.

• Pretty Good Privacy (PGP) uses asymmetric encryption and decryption as one of

its process to secure e-mail communication [PGP].

4.2.8 Consequences

This pattern presents the following advantages:

 42

• Asymmetric encryption does not require a secret key to be shared among all the

participants. Anyone can look up for the public key in the repository and send

messaged to the owner of the public key.

• Recipients that posses the corresponding private key can make the encrypted

message readable again.

• The strength of a cryptosystem is based on the secrecy of a long key [Sta06]. The

cryptographic algorithms are known to the public, so the key should be kept

protected from unauthorized users.

• It is possible to select from several encryption algorithms the one suitable for the

application needs.

• There exist encryption algorithms that take a reasonable time to encrypt messages.

The pattern also has some (possible) liabilities:

• Cryptography operations are computationally intensive and may affect the

performance of the application. Asymmetric encryption is slower than symmetric

encryption. Thus, it is recommended to use a combination of both algorithms:

asymmetric encryption for key distribution and symmetric encryption for message

exchanging.

• Encryption does not provide data integrity. The encrypted data can be modified

by an attacker, other means such as hashing, are needed to verify that the message

was not changed.

 43

• Encryption does not prevent a replay attack because an encrypted message can be

captured and resent without being decrypted. It is recommended to use another

security mechanism such as Timestamps or Nonce to prevent this attack.

• This pattern assumes that a public key belongs to the person who he claims to be.

How do we know that this person is not impersonating another one? To confirm

that a person is who he says he is, we can use Certificates issued by some

Certification Authority.

4.2.9 Example Resolved

Alice now can look up for Bob’s public key and encrypts the message using this key.

Since Bob keeps his private key secret, he is the only one who can decrypt the message.

Eve cannot understand the encrypted data since she does not have access to Bob’s private

key.

4.2.10 Related Patterns

• The Secure Channel Communication pattern [Bra98], supports the

encryption/decryption of data. This pattern describes encryption in more general

terms. It does not distinguish between asymmetric and symmetric encryption.

Another version is given in [Sch06].

• Strategy Pattern [Gam94], defines how to separate the implementation of related

algorithms from the selection of one of them. This pattern can be used to select an

encryption algorithm dynamically.

 44

4.3 XML Encryption Pattern

4.3.1 Intent

The XML Encryption standard [W3C02] describes the syntax to represent XML

encrypted data and the process of encryption and decryption. XML Encryption provides

confidentiality by hiding selected sensitive information in a message using cryptography.

4.3.2 Example

Alice, in the Purchasing department regularly sends purchase orders in the form of XML

documents to Bob, who works in a distribution office. The purchase order contains

sensitive data such as credit card numbers and other company information, so it is

important to keep it secret. In the receiving end, different people will handle different

parts of the order. Eve can intercept these orders and may try to read them to get the

confidential information.

4.3.3 Context

Users of web services send and receive SOAP messages through insecure networks such

as the Internet.

4.3.4 Problem

In many applications that communicate with external applications the users interchange

sensitive data. This data may be read by unauthorized people while the messages are in

transit.

The solution for this problem is affected by the following forces:

 45

• Messages may be captured while they are in transit, so we need to prevent

unauthorized users from reading them by hiding the information of the message

using encryption.

• We need to express encrypted elements in a standardized XML format to allow

encrypted data to be nested within an XML message. Otherwise, different

applications cannot interoperate.

• Different parts of a message may be intended for different recipients, and not all

the information contained within a message should be available to all the

recipients. Thus, recipients should be able to read only those parts of the message

that are intended for them.

• For flexibility reasons, both symmetric and asymmetric encryption algorithms

should be supported.

• If a secret key is embedded in the message, it should be protected. Otherwise, an

attacker could read some messages.

4.3.5 Solution

Transform a message using some encryption algorithm so that it can only be understood

by legitimate receivers that possess a valid key.

First, the data has to be serialized before encryption. The serialization process will

convert the data into octets. Then, this serialized data is encrypted using the chosen

algorithm and the encryption key. The cipher data and the information of the encryption

(algorithm, key, and other properties) are represented in XML format.

 46

XML Encryption supports both types of encryption: symmetric and asymmetric. The

symmetric encryption algorithm uses a common key for both encryption and decryption.

The asymmetric encryption algorithm uses a key pair (public key and private key). The

sender encrypts a message using the receiver’s public key, and the receiver uses its

private key to decrypt the encrypted message. Thus, in both types of encryption, only

recipients who possess the shared key or the private key that matches the public key used

in the encryption process can read the encrypted message after decryption.

Structure

Figure 5 describes the structure of the XML Encryption Pattern. The yellow classes

correspond to the classes of the Encryption pattern, the white classes describe the fact

that encryption can now be applied to specific portions of the message.

A Principal may be a user or an organization that sends and receives XMLMessages

and/or EncryptedXMLMessages. This principal may have the roles of Sender and

Receiver.

Both an XMLMessage and a EncryptedMLMessage are composed of XML elements.

Each XMLElement may have many children, and each child also can be composed by

other XML elements, and so on. The Encryptor and the Decryptor encipher a message

and decipher an encrypted message respectively.

 47

The EncryptedData contains other subelements such as the encryption method, key

information, cipher value, and encryption properties. The EncryptionMethod is an

optional element that specifies the algorithm used to encrypt the data. If this element is

not specified, the receiver must know the encryption algorithm. The KeyInfo (optional)

contains the same key information as the one describes in the XML Signature standard

[W3C08]. However, this standard defines two other subelements: EncryptedKey and

ReferenceList. The EncryptedKey contains similar elements as the EncryptedData;

however, they are not shown in the class diagram. The EncryptedKey includes an

optional ReferenceList element that points to data or keys encrypted using this key. The

CipherData is a mandatory element that stores either the cipher value or a pointer

(cipher reference) where the encrypted data is located. The EncryptionProperties

element holds information such as the time that the encryption was performed or the

serial number of the hardware used for this process.

Dynamics:

We describe the dynamic aspects of the XML Encryption Pattern using sequence

diagrams for the following use cases: “encrypt XML elements” and “decrypt an

encrypted XML message”.

Encrypt XML elements (Figure 6):

Summary: A sender wants to encrypt different elements of an XML message using a

shared key.

Actors: A sender

 48

Precondition: Both sender and receiver have a shared key and a list of encryption

algorithms.

Description:

a) A sender requests to the encryptor to encrypt a list of XML elements. This list is

represented with an asterisk (*) in the sequence diagram.

b) The encryptor creates the EncryptedXMLMessage.

c) The encryptor encrypts the XML Element using the shared key and the encryption

method provided by the sender and produces an encrypted value.

d) The encryptor creates the EncryptionData element including the

EncryptionMethod that holds the encryption algorithm used to encrypt the data,

the KeyInfo that contains information about the key, and the CipherData obtained

from step c)

e) The encryptor replaces the XML element with the encrypted data.

f) Repeat steps c) to e) for each XML element to encrypt.

g) The encryptor sends the EncrypteXMLMessage to the sender.

Alternate Flows: none

Postcondition: The encrypted XML message has been created.

Figure 8

Class Diagram for XML Encryption Pattern

 49

Figure 9

Sequence Diagram for encrypting XML Elements

Decrypt an Encrypted XML Message (Figure 7):

Summary: A receiver wants to decrypt an encrypted XML message.

Actors: A Receiver

Precondition: Both sender and receiver have a shared key and a list of encryption

algorithms Description:

a) A receiver requests to the verifier to decrypt an encrypted XML message.

b) The decryptor creates the XMLMessage that contains a copy of the

EncryptedXMLMessage.

c) The decryptor obtains the elements within the EncryptedData element such as the

EncryptionMethod, KeyInfo, and the cipherValue.

 50

d) The encryptor decrypts the cipher value using the encryption method and the

shared key.

e) The encryptor replaces the encrypted data with the plain text obtained from the

previous step.

f) Repeat steps c) to e) for each XML element to decrypt.

g) The decryptor sends the decrypted XMLMessage to the receiver.

Alternate Flows:

If the key used in step d) is not the same as the one used in the encryption, then the

decryption process fails.

Postcondition: The message has been decrypted.

Figure 10

Sequence Diagram for decrypting XML Elements

 51

 52

4.3.6 Implementation

• The designer should choose strong encryption algorithms to prevent attackers

from breaking them such as Advanced Encryption Standard (AES) and DES

(Data Encryption Standard) for symmetric encryption, and RSA (Rivest, Shamir,

and Adleman) for asymmetric encryption.

• Asymmetric encryption or public-key encryption is more computationally

intensive than symmetric encryption. However, symmetric encryption requires

that both sender and receiver share a common key. A better practice will be to use

the asymmetric encryption in combination with the symmetric encryption. Use

symmetric encryption for the data and asymmetric encryption for secure key

distribution.

• XML Encryption supports both symmetric and asymmetric encryption. This

provides application flexibility; for example, a session uses symmetric encryption

and key distribution uses asymmetric encryption.

• The following example illustrates how an encrypted part is embedded within an

XML message.

Suppose you want to send a purchase order to the distribution office. This

document contains details of the order such as what item to buy, quantity, and

credit card information for payment. We want to keep the XML document simple

just to focus on the encryption part.

<Order>

 <Item> Item X </Item>

 53

 <Quantity> 24 </Quantity>

 <Payment Info>

 <Credit Card>

<Number>1234566 </Number>

<Expiration Date> 12/12/2010<./Expiration Date>

</Credit Card>

 </Payment Info>

</Order>

Because Payment Info contains sensitive information, we want only to encrypt

this element, so it can only be understood by the intended receiver.

<Order>

 <Item> Item X </Item>

 <Quantity> 24 </Quantity>

 <Encrypted Data>

 <Encryption Method Algorithm=”AlgorithmX”/>

 <Cipher Data>

 <Cipher Value>ijutfrewsvbnmlkk </Cipher Value>

 </Cipher Data>

 <Key Info>

 <Key Name> KeyA </KeyName>

 </Key Info>

 54

 </Encrypted Data>

</Order>

The Payment Info element is replaced by the Encrypted Data element that includes all the

information needed by the receiver. The Encryption Method element includes the

algorithm used for the encryption. The Cipher Value contains the actual encrypted data.

For this example, the Key Info element includes the name to identify the key.

4.3.6 Known Uses

Several vendors have developed tools that support XML Encryption:

• Xtradyne’s WebService Domain Boundary Controller (WS-DBC) [Xtr]. The WS-

DBC is an XML firewall that provides protection against malformed messages

and malicious content, XML encryption, XML signature, and authentication,

authorization, and audit.

• IBM - DataPower XML Security Gateway XS40 [IBM] parses, filters, validates

schema, decrypts, verifies signatures, signs, and encrypts XML message flows.

• Forum Systems - Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.

• Microsoft .NET [Mic] includes APIs that support the encryption and decryption

of XML data.

4.3.7 Consequences

This pattern presents the following advantages:

 55

• Only users that know the key can decrypt and read the message. Each recipient

can only decrypt parts of a message that are intended for him but is unable to

decrypt the rest.

• The EncryptedData is an XML element that replaces the data to be encrypted. The

EncryptedData as well as the EncryptedKey are composed by other subelements

such as encryption method, key information, and cipher value.

• The entire XML message or only some parts can be encrypted.

• If both the sender and the receiver have not exchanged the keys previously, the

key can be sent in the message encrypted using public key system.

The pattern also has some (possible) liabilities:

• The general liabilities of symmetric and asymmetric encryption still apply.

• The structure is rather complex and users may get confused.

• Unencrypted portions in the message, they may help a possible attacker. This

might be improved by superencryption of the whole message at a lower level, e.g.

using TLS.

4.3.8 Related Patterns

• This pattern includes a specialization of the Symmetric Encryption Pattern.

• The WS-Security Pattern [Has09] is a standard for securing XML messages using

XML signature, XML Encryption, and security tokens.

• The Strategy Pattern [Gam94] defines how to separate the implementation of

related algorithms from the selection of one of them.

 56

The following specifications are related to XML Signature, but they have not been

developed as patterns.

• The XML Key Management Specification (XKMS) [W3C01] specifies the

distribution and registration of public keys, and works together with XML

Encryption.

• WS-SecurityPolicy [OAS07] standard describes how to express security policies

such as what algorithms are supported by a web service or what parts of an

incoming message need to be signed or encrypted.

4.4 Summary

We presented two patterns: Symmetric Encryption and XML Encryption, the latter a

specialization and extension of the first one. We showed these two patterns together to

make clearer the logic behind XML Encryption, a rather complex pattern.

 57

5. SIGNATURE PATTERNS

Data security has become one of the most important concerns among us especially

for organizations that need to protect their information against attackers. An important

security risk is that information can be modified during its transmission. How do we

prove that a message came from a specific user? Digital signature uses public-key

cryptography to provide message authentication by proving that a message was sent

indeed from the sender who claims to have sent it [dig, Sta06]. The sender encrypts the

message using his private key to sign it. In this case, the signature has at least the same

length as the message. However, this approach wastes bandwidth and time. Thus, we

need to reduce the length to the message before signing it. This can be done producing a

digest through hashing. When the receiver gets the signed message, he verifies the

signature by decrypting it using the sender’s public key, thus proving that the message

was encrypted by the sender. Also, digital signatures provide message integrity by

verifying whether a message was modified during its transmission. Digital signatures can

also protect the integrity and verify the origin of a digital document, e.g. a certificate, or

of programs. Digital signatures provide also non-repudiation, the sender cannot deny

having sent the message he signed. In several countries, including the U.S., digital

signatures have legal validity.

 58

An emerging use of web services that exchanges XML messages also can be target of

attacks. Some security standards have been developed to reduce security risks. XML

Signature is one of the basic standards in securing web services. This standard is a joint

effort between the World Wide Web Consortium (W3C) and Internet Engineering Task

Force (ITEF). XML Signature defines how to digitally sign an entire XML message, part

of an XML message, or an external object. XML Signature also includes hashing, but the

pattern name follows the name of the standard. Because of the nature of XML

documents, we need to convert the documents into a canonical form before we apply

digital signatures. Note that XML Signature solves the same problem as the Digital

Signature with Hashing pattern but in a more specialized context.

In this section, we present here two patterns: XML Signature and Digital Signature with

Hashing patterns. The XML Signature pattern, a specialization of the Digital Signature

with Hashing, is used to secure XML messages. We assume the reader is a designer

intending to use message authentication in her design or a user intending to sign

documents and who have a basic knowledge of cryptography and UML. We provide a

solution with sufficient detail so as it can be used as a guideline for design of signature

systems and for users of signed documents.

5.1 Digital Signature with Hashing

5.1.1 Intent

 59

Digital Signature with Hashing allows a principal to prove that a message was originated

from it. It also provides message integrity by indicating whether a message was altered

during transmission.

5.1.2 Example

Alice in the Sales department wants to send a product order to Bob in the production

department. The product order does not contain sensitive data such as credit card number,

so it is not important to keep it secret. However, Bob wants to be certain that the message

was created by Alice so he can charge the order to her account. Also, because this order

includes the quantity of items to be produced, an unauthorized modification to the order

will make Bob manufacture the wrong quantity of items. Eve can intercept the messages

and may want to do this kind of modification.

5.1.3 Context

Participants of electronic transactions that need to exchange documents or messages

through insecure networks and need to prove their origin and integrity. Stored legal

documents need to be kept without modification and indicating their origin. Software

send by a vendor through the Internet requires to prove their origin.

We assume that a principal possesses a key pair: a private key that is secretly kept by the

principal and a public key that is in a publicly-accessible repository. We assume that

there is a mechanism for the generation of these key pairs and for the distribution of

public keys.

 60

5.1.4 Problem

In many applications we need to verify the origin of a message (message authentication).

Since an impostor may assume the identity of a principal, how do we verify that a

message came from a particular principal? Also, messages that travel through insecure

channels can be captured and modified by attackers. How do we know that the

message/document that we are receiving has not been modified?

The solution for these problems is affected by the following forces:

• For legal or business reasons we need to be able to verify who sent a particular

message. Otherwise, we may not be sure of its origin and the sender may deny

having sent it (repudiation). We assume the sender has signed the message to

prove she is its author.

• Messages may be altered during transmission, so we need to verify that the data is

in its original form when it reaches its destination.

• The length of the signed message should not be significantly larger than the

original message; otherwise we would waste time and bandwidth.

• Producing a signed message should not require a large computational power or

take a long time.

5.1.5 Solution

Apply properties of public key cryptographic algorithms to messages in order to create a

signature that will be unique for each sender. The message is first compressed (hashed) to

a smaller size (digest), and then it is encrypted using the sender’s private key. When the

signed message arrives at its target, the receiver verifies the signature using the sender’s

 61

public key to decrypt the message, if it produces a readable message, it could only have

been sent by this sender. The receiver then generates the hashed digest of the received

message and compares it to the received hashed digest, if it matches the message has not

been altered.

This approach uses public key cryptography where one key is used for encryption and the

other key for decryption. For digital signatures (SIG), we encrypt (E) the hash value of a

message (H(M)) using the sender’s private key (PrK): SIG = EPrK (H(M))

We recover the hash value of the message (H(M)) by decrypting (D) the signature (SIG)

using the sender’s public key (PuK). If this produces a legible message, we can be

confident that the sender created the message. Finally, we calculate the hash value of the

message as H(M) = DPuK(SIG) .If this value is the same as the message digest obtained

when the signature was decrypted, then we know that the message has not been modified.

It is clear that the sender and receiver should both use the same encryption and hashing

algorithms.

Structure

Figure 8 describes the class diagram for the Digital Signature Pattern.

A Principal may be a process, a user, or an organization that is responsible for sending or

receiving messages. This Principal may have the roles of Sender or Receiver. A Sender

may send a plain Message and/or a SignedMessage to a receiver.

The KeyPair entity contains two keys: public and private, that belong to a Principal. The

public key is registered and accessed through a repository, and the private key is kept

secret by the owner. In a Public Key system, one key is normally used for encryption,

while the other is used for decryption. PublicKeyRepository is a repository that contains

public keys that can be available to anyone. The PublicKeyRepository may be located in

the same local network as the principal or in an external network.

 62

 63

The Signer creates the SignedMessage that includes the Signature for a specific

message. On the other side, the Verifier checks that the Signature within the

SignedMessage corresponds to that message.

The Signer and Verifier use the DigestAlgorithm and SignatureAlgorithm to create and

verify a signature respectively. The DigestAlgorithm is a hash function that condenses a

message to a fixed length called a hash value or message digest. The SignatureAlgorithm

encrypts and decrypts messages using public/private key pairs.

Figure 11

Class Diagram for Digital Signature Pattern

 64

 65

Dynamics

We describe the dynamic aspects of the Digital Signature Pattern using sequence

diagrams for the use cases sign a message and verify a signature.

Sign a message (Figure 9):

Summary: A Sender wants to sign a message before sending it

Actors: A Sender

Precondition: A Sender has a public/private pair key

Description:

g) A Sender sends the message and its private key to the signer.

h) The Signer calculates the hash value of the message (digest) and returns it to the

Signer.

i) The Signer encrypts the hash value using the sender’s private key with the

Signature Algorithm. The output of this calculation is the digital signature value.

j) The Signer creates the Signature object that contains the digital signature value.

k) The Signer creates the SignedMessage that contains the original message and the

Signature.

Postcondition: A SignedMessage object has been created.

Figure 12

Sequence Diagram for signing a message

Verify a Signature (Figure 10):

Summary: A receiver wants to verify that the signature corresponds to the received

message.

Actors: A Receiver

Precondition: None

Description:

i) A Receiver retrieves the sender’s public key from the repository.

j) A Receiver sends the signed message and the sender’s public key to the verifier.

k) The verifier decrypts the signature using the sender’s public key with the

Signature Algorithm.

l) The verifier calculates the digest value of the message.

m) The verifier compares the outputs from step c) and d).

 66

n) The verifier sends an acknowledgement to the receiver that the signature is valid.

Alternate Flows:

• The outputs from step c) and d) are not the same. Then, the verifier sends an

acknowledgement to the receiver that the signature failed.

Postcondition: The signature has been verified.

Figure 13

Sequence Diagram for verifying a signature

5.1.6 Implementation

• Use the Strategy Pattern [Gam94] to select different hashing and signature

algorithms. The most widely used hashing algorithms are MD5 and SHA1. Those

and others are discussed in [Sta06].

 67

 68

• A good hashing algorithm produces digests that are very unlikely produced by

other meaningful messages, meaning that it is very hard for an attacker to create

an altered message with the same hash value. The message digest should be

encrypted after being signed to avoid man-in-the-middle attacks, where a person

who captures a message could reconstruct its hash value.

• Two popular digital signature algorithms are RSA [RSA], and Digital Signature

Algorithm (DSA) [Fed00, Sta06].

• The designer should choose strong and proven algorithms to prevent attackers

from breaking them. The cryptographic protocol aspects, e.g. key generation, are

as important as the algorithms used.

• The sender and receiver should have a way to agree on the hash and encryption

algorithms used for a specific set of messages. XML documents indicate which

algorithms they use and pre-agreements are not necessary.

• Access to the sender’s public key should be available from a public directory or

from certificates presented by the signer.

• Digital signatures can be implemented in different applications such as in email

communication, distribution of documents over the Internet, or web services. For

example, one can sign email’s contents or any other document’s content such as

PDF. In both cases, the signature is appended to the email or document. When

digital signatures are applied in web services, they are also embedded within

XML messages. However, these signatures are treated as XML elements, and they

have additional features such as signing parts of a message or external resources

which can be XML or any other data type.

 69

• When certificates are used to provide the sender’s public key, there must be a

convenient way to verify that the certificate is still valid [SOA01].

• There should be a way to authenticate the signer software [dig]. An attacker who

gains control of a user’s computer could replace the signing software with his

own software.

5.1.7 Known Uses

Digital Signatures have been widely used in different products.

• Adobe Reader and Acrobat [Ado05] have an extended security feature that allows

users to digitally sign PDF documents.

• CoSign [Arx] digitally signs different types of documents, files, forms, and other

electronic transactions.

• GNuPG [Gnu] digitally signs e-mail messages.

• Java Cryptographic Architecture [Sunb] includes APIs for digital signature.

• Microsoft .Net [Mic07] includes APIs for asymmetric cryptography such as

digital signature.

• XML Signature [W3C08] is one of the foundation web services security standards

that defines the structure and process of digital signatures in XML messages.

5.1.8 Consequences

This pattern presents the following advantages:

• A principal’s private key is used to sign the message. The signature is validated

using its public key, which proves that the sender created and sent the message.

 70

• When a signature is validated using a principal’s public key, the sender cannot

deny that he created and sent the message. If a message is signed using another

private key that does not belong to the sender, the validity of the signature fails.

• If the proper precautions are followed (See 2.6), any change in the original

message will produce a digest value that will be different from the value obtained

after decrypting the signature using the sender’s public key.

• A message is compressed into a fixed length string using the hash algorithm

before it is signed. As a result, the process of signing is faster, and the signed

message is much shorter.

• The available algorithms that can be used for digital signatures do not require

very large amounts of computational power and do not take large amounts of

time.

The pattern also has some (possible) liabilities:

• We need a well established Public Key Infrastructure that can provide reliable

public keys. Certificates issued by some certification authority are the most

common way to obtain this [Sta06].

• Both the sender and the receiver have to previously agree what signature and

hashing algorithms they support. This is not necessary in XML documents

because they are self-describing.

• Cryptographic algorithms create some overhead (time, memory, computational

power), which can be reduced but not eliminated.

• Users must implement properly the signature protocol.

 71

• There may be attacks against specific algorithms or implementations [dig]. These

are difficult to use against careful implementations.

• This solution only allows one signer for the whole message. A variant or

specialization, such as the XML Signature pattern, allows multiple signers.

• Digital signatures do not provide message authentication and replay attacks are

possible [SOA01]. Nonces or time stamps could prevent this type of attacks.

5.1.9 Example Resolved

Alice and Bob agree on the use of a digital signature algorithm, and Bob has access to

Alice’s public key. Alice can then send a signed message to Bob. When the message is

received by Bob, he verifies whether the signature is valid using Alice’s public key and

the agreed signature algorithm. If the signature is valid, Bob can be confident that the

message was created by Alice. If the hash value is correct Bob also knows that Eve has

not been able to modify the message.

5.1.10 Related Patterns

• Encryption/Decryption using public key cryptography [Bra98]

• Generation and Distribution of public keys [Leh02]

• Certificates [Mor06] are issued by a Certificate Authority (CA) that digitally signs

them using its private key. A certificate carries a user’s public key and allows

anyone who has access to the CA’s public key to verify that the certificate was

signed by the CA.

 72

• Strategy Pattern [Gam94], defines how to separate the implementation of related

algorithms from the selection of one of them.

5.2 XML Signature

5.2.1 Intent

XML Signature allows a principal to prove that a message was originated from it. It also

provides message integrity by defining whether a message was altered during

transmission. The XML Signature standard [W3C08] describes the syntax and the

process of generating and validating digital signatures for authenticating XML

documents. XML Signature also provides message integrity. It requires canonicalization

before hashing and signing.

5.2.2 Example

Alice in the Sales department wants to send product orders to Bob in the production

department. The product orders are XML documents and do not contain sensitive data

such as credit card number, so it is not important to keep them secret. Each order must be

signed by Alice’s supervisor Susie to indicate approval. Bob wants to be certain that the

message was created by Alice so he can charge the order to her account and also needs to

know that the orders are approved. Because the orders include the quantity of items to be

produced, an unauthorized modification to an order will make Bob manufacture the

wrong quantity of items. Eve can intercept the messages and may want to do this kind of

modification.

 73

5.2.3 Context

Users of web services send and receive SOAP messages through insecure networks such

as the Internet and need to prove their origin and integrity. During their transmission

these messages can be subject to a variety of attacks.

We assume that a principal possesses a key pair: a private key that is secretly kept by the

principal and a public key that is in a publicly-accessible repository. We assume that

there is a mechanism for the generation of these key pairs and for the distribution of

public keys.

5.2.4 Problem

In many applications we need to verify the origin of a message (message authentication).

Since an impostor may assume the identity of a principal, how do we verify that a

message came from a particular principal? Also, messages that travel through insecure

channels can be captured and modified by attackers. How do we know that the

message/document that we are receiving has not been modified?

• For legal or business reasons we need to be able to verify who sent a particular

message. Otherwise, we may not be sure of its origin and the sender may deny

having sent it (repudiation). We assume the sender has signed the message to

prove she is its author.

• Messages may be altered during transmission, so we need to verify that the data is

in its original form when it reaches its destination.

 74

• The length of the signed message should not be significantly larger than the

original message; otherwise we would waste time and bandwidth.

• Producing a signed message should not require a large computational power or

take a long time.

• We need to express a digital signature in a standardized XML format, so

interoperability can be ensured between applications.

• There may be situations where we want to ensure proper origin or integrity in

specific parts of a message. For example, an XML message can travel through

many intermediaries that add or subtract information, so if we sign the entire

message, the signature would have no meaning. Thus, we should be able to sign

portions of a message.

5.2.5 Solution

Apply cryptographic algorithms to messages in order to create a signature that will be

unique for each message. First, the data to be signed may need to be transformed before

applying any digest algorithm. The series of XML elements (that includes other

subelements) is canonicalized before applying a signature algorithm. Canonicalization is

a type of transform algorithm that converts data into a standard format, to remove

differences due to layout formatting. This process is required because XML is a flexible

language where a document can be represented in different ways that are semantically

equal. Thus, after calculating the canonical form, both the sender and the receiver will

sign and verify the same XML data respectively. After applying a canonicalization

 75

algorithm, the result value is digested and then encrypted using the sender’s private key.

Finally, the signature, in XML form, is embedded in the message.

In the other side, the receiver verifies the signature appended in the signed message. The

verification process has two parts: reference verification and signature verification. In the

reference verification, the verifier recalculates the digest value of the original data. This

value is compared with the digest value included in the signature. If there is any

mismatch, the verification fails. In the signature verification, the verifier calculates the

canonical form of the signed XML element, and then applies the digest algorithm. This

digest value is compared against the decrypted value of the signature. The decryption is

done using the sender’s public key.

There are three types of XML Signature: enveloped, enveloping and detached signature.

In an enveloped signature, the signature is a child element of the signed data. For

example, when you sign the entire XML message, the signature is embedded within the

message. An enveloping signature is a signature where the signed data is a child of the

signature. You can sign elements of a signature such as the Object or KeyInfo element. A

detached signature is calculated over external network resources or over elements within

the message. In the latter case, the signature is neither an enveloped nor an enveloping

signature.

 76

Structure

Figure 11 describes the structure of the XML Signature Pattern. Note that the upper part

of this figure is almost the same as Figure 1.

A Principal may be a process, a system, a user, or an organization that sends and

receives XMLMessages and/or SignedXmlMessages. This principal may have the roles

of Sender and Receiver.

Both an XMLMessage and a SignedXMLMessage are composed by XML elements, but

this is only shown in the SignedXMLMessage. Each XMLElement may be a

SingleElement that does not have any children or be a Composite element which is

composed by other XML elements.

The XMLSigner and the XMLVerifier create and verify a Signature, respectively. A

Signature element is an XML element that has two required children: SignedInfo and

SignatureValue and two optional children: KeyInfo and Object.

The SignedInfo element is the one that is actually signed. It contains one or more

Reference elements, the canonicalization algorithm identifier, and the signature

algorithm identifier. The Canonicalization algorithm is used to convert the SignedInfo

element into a standard form before it is signed or verified. The Signature algorithm

includes also a digest algorithm that is applied after calculating the canonical form of the

Signed Info in both process creation and verification of XML signatures.

 77

Each Reference element includes a Uniform Resource Identifier (URI), a hash value

(DigestValue), the digest algorithm identifier (DigestMethod), and an optional list of

Transform elements. The URI is a pointer that identifies the data to be signed. It can

point to an element inside an XML message, an element inside the Signature element

such as Object or KeyInfo, or resources located in the Internet. The DigestValue contains

a hash value after applying the digest algorithm to the data pointed by its URI. If the

Transform element exists, it includes an ordered list of transform algorithms that are

applied to the data before being digested.

The SignatureValue element includes the value of the digital signature.

If the KeyInfo is present, it indicates the information about the sender’s public key that

will be used to verify the signature. This flexible element may contain certificates, key

names, and other public keys forms. Additional information about this element can be

found in [W3C08].

The optional Object element may contain SignatureProperties and/or a Manifest. The

SignatureProperty identifies properties of the signature itself such as the date/time when

the signature was created. The Manifest element includes one or more Reference

elements same as the Reference element within the SignedInfo. They are semantically

equal; however, each Reference in the SignedInfo has to be validated in order to consider

a valid signature. On the other hand, the list of Reference elements within the Manifest is

validated.

 78

The sender and receiver must use the same hash, signature, and canonicalization

algorithms. XML documents are self-descriptive and indicate this information so the

sender only needs to find the corresponding algorithms.

Dynamics

We describe the dynamic aspects of the XML Signature Pattern using sequence diagrams

for the use cases sign different XML elements of an XML message and verify an XML

signature with multiple references.

Sign an XML message (Figure 12):

Summary: A sender wants to sign specified XML elements of an XML message.

Actors: A sender

Precondition: A sender has a private/public key pair.

Description:

a) A sender requests the signer to sign different XML elements of a message.

b) The signer calculates the digest value over the XML element.

c) The signer creates the <Reference> element including the digest value and using

the digest algorithm.

d) Repeat steps b) and c) for each XML element to be signed.

e) The signer creates the <SignedInfo> that includes the Reference elements, the

canonicalization algorithm identifier, and the signature algorithm identifier.

f) The signer applies the canonicalization algorithm to the <SignedInfo> element.

 79

g) The signer signs the output from step f). First, it applies the digest algorithm, and

then it encrypts the digest using the sender’s public key. The output is the

signature value.

h) The signer creates the <SignatureValue> element that includes the signature

value.

i) The signer created the <KeyInfo> element that holds the sender’s public key that

will be used to verify the signature.

j) The signer creates the <Signature> element that includes the <SignedInfo>, the

<SignatureValue>, and the <KeyInfo> elements.

k) The signer creates the SignedXMLMessage that includes the Signature and the

XMLMessage.

Alternate Flows: None

Postcondition: The specified elements of the document have been signed

Figure 14

Class Diagram for XML Signature Pattern

 80

Figure 15

Sequence Diagram for signing an XML message

Verify an XML signature with multiple references (Figure 13):

Summary: A receiver wants to verify the signature of a received document.

Actors: A Receiver

Precondition: None

Description:

h) A receiver requests to verify the signature that is included in the

SignedXMLMessage.

 81

 82

i) The verifier obtains the signature elements such as the <SignedInfo> which

includes the <Reference> elements, the <SignatureValue>, and the <KeyInfo>

elements.

j) The verifier calculates the digest value over the XML element that is pointed

(URI) in the <Reference> element using the digest algorithm specified in the

<Reference> element as well.

k) The verifier compares the output from step c) against the digest value specified in

the Reference element.

l) Repeat step c) and d) for each <Reference> included in the <SignedInfo>

element.

m) The verifier canonicalizes the <SignedInfo> element using the canonicalization

method specified in the <SignedInfo>.

n) The verifier digests the output from step f) using the digest algorithm specified in

the Signature Algorithm.

o) The verifier decrypts the signature value using the sender’s public key

(<KeyInfo>).

p) The verifier compares the outputs from step f) and h).

q) The verifier sends an acknowledgement to the receiver that the signature is valid.

Alternate Flows:

• If the values compared in step d) are not the same, then the signature is

invalid.

• If the outputs in the step i) are not the same, then the validation fails.

Postcondition: The signature is validated.

Figure 16

Sequence Diagram for verifying an XML signature

5.2.6 Implementation

• Identifiers of algorithms used to create a signature are attached along with the

signature, so they also should be protected from being modified by attackers.

• XML documents may be parsed by different processors, and also XML allows

some flexibility without changing the semantic of the message. Thus, we need to

convert the data to be signed to a standard format.

 83

 84

• All the signers of a given document should have the same level of trust to avoid

misleading the receivers about the trust of the whole message. Allowing untrusted

signers might give them a better chance to attack the message.

• Use the Strategy Pattern [Gam94] to select different hashing and signature

algorithms. The most widely used hashing algorithms are MD5 and SHA1. Two

popular digital signature algorithms are RSA [RSA] and Digital Signature

Algorithm (DSA) [Fed00].

• If needed the data to be signed needs to be transformed using transformation

algorithms before producing a digest. For instance, if the object to be signed is an

image, it needs to be converted into text.

• It is recommendable the use of certificates issued by an Certification Authority

that are trusted by the sender and the receiver.

5.2.7 Known Uses

Several vendors have developed tools that support XML Signature.

• IBM - DataPower XML Security Gateway XS40 [IBM] parses, filters, validates

schema, decrypts, verifies signatures, signs, and encrypts XML message flows.

• Xtradyne – Xtradyne’s WS-DBC [Xtr]. The Web Services Domain Boundary

Controller is an XML firewall that provides protection against malformed

messages and malicious content, XML encryption, XML signature, and

authentication, authorization, and audit.

• Forum Systems - Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.

 85

• Microsoft .NET [Mic] includes API that support the creation and verification of

XML digital signatures.

• Java XML Digital Signature API [Mul07] allows to generate and validate XML

signatures

5.2.8 Consequences

This pattern presents the following advantages:

• A principal’s private key is used to sign the message. The signature is validated

using its public key, which proves that the sender created and sent the message.

• When a signature is validated using a principal’s public key, the sender cannot

deny that he created and sent the message. If a message is signed using another

private key that does not belong to the sender, the validity of the signature fails.

• Any change in the original message will produce a digest value that will be

different from the value obtained after decrypting the signature using the sender’s

public key.

• Before applying any signature algorithm, the data is compressed to a short fixed-

length string. In XML Signature, digest algorithms are used two times; one is

used to digest data to be signed indirectly, and the other digest algorithm is used

to digest the canonical form of the SignedInfo element.

• Any change in the data that was indirectly signed will produce another digest that

will invalidate the signature.

 86

• The available algorithms that can be used for digital signatures do not require

very large amounts of computational power and do not take large amounts of

time.

• An XML signature is an XML element that is embedded in the message. The

XML signature is composed of several XML elements that include information

such as the value of the signature, the key that will be used to verify the signature,

and algorithms used to compute the signature. This standard format helps XML

parsers to better understand signature elements during the validation process.

• This pattern supports also message authentication code (MAC). Both signatures

and MACs are syntactically identical. The difference between them is that

signatures use public key cryptography while MAC uses a shared common key.

• The data being signed is pointed by its URI (Uniform Resource Identifier), so

elements within XML messages and external network resources can be located

using their identifiers.

• The SignedInfo is the element that is actually signed. It includes the references

that point the data being signed along with their digest values, and algorithms

identifiers. Thus, the XML signature also protects the algorithm identifiers from

modification.

• XML Signature uses canonicalization algorithms to ensure that different

representations of XML are transformed into a standard format before applying

any signature algorithm.

• XML documents are self-describing and the sender and receiver don’t need to

agree in advance on the algorithms to be used.

 87

The pattern also has some (possible) liabilities:

• We need a well established Public Key Infrastructure that can provide reliable

public keys. Certificates issued by some certification authority are the most

common way to obtain this [Sta06]. There is a public key standard for XML that

should be used.

• Users must implement properly the signature protocol.

• There may be attacks against specific algorithms or implementations [dig]. These

are difficult to use against careful implementations.

• Signing and verifying XML messages may create a significant overhead.

• The pattern does not describe the complete standard. For example, details of

transforms and key values have been left out for simplicity [W3C08].

5.2.9 Example resolved

Alice and Susie sign each product order sent to Bob. Bob has access to Alice’s and

Susie’s public keys. When the message is received by Bob, he verifies whether the

signatures are valid using Alice’s and Susie’s public keys and the signature algorithm

specified in the order. If the signature are valid, Bob can be confident that the message

was created by Alice and approved by Susie. If the hash value is correct Bob also knows

that Eve has not been able to modify the message.

5.2.10 Related Patterns

• This pattern is a specialization of the Digital Signature with Hashing Pattern.

 88

• WS-Security Pattern [Has09] is a standard for securing XML messages using

XML signature, XML Encryption, and security tokens.

The following specifications are related to XML Signature, but they have not been

expressed as patterns.

• The XML Key Management Specification (XKMS) [W3C01] specifies the

distribution and registration of public keys, which works together with the XML

Signature.

• WS-SecurityPolicy [OAS07] standard describes how to express security policies

such as what algorithms are supported by a web service or what parts of an

incoming message need to be signed or encrypted.

5.3 Summary

We presented two patterns: Digital Signature with Hashing and XML Signature, the latter

a specialization of the first one for a more specific context. Since the XML pattern solves

the same problem it repeats the general aspects of the Digital Signature pattern but

repeating this information allows the XML pattern to be used alone. We showed these

two patterns together to make clearer the logic behind XML Signature, a rather complex

pattern.

 89

6. WS-SECURITY PATTERN

WS-security was originally developed by IBM, Microsoft, VeriSign, and Forum

Sentry, and it was approved as an OASIS standard on July 1, 2006. WS-Security defines

how to secure web services by providing message integrity, message confidentiality, and

message authentication. It describes how to attach XML encryption and XML signature

within SOAP messages. Also, it defines how to embed security tokens e.g. X.509

certificates and Kerberos to SOAP messages. WS-Security is a flexible standard that

support multiple security tokens, multiple encryption technologies, and multiple signature

formats.

WS-Security is an OASIS standard that describes how SOAP messages can be

secured through message integrity, message authentication, and message confidentiality.

WS-Security is a flexible protocol that supports different formats of security tokens,

different encryption technologies, and different signature formats. WS-Security does not

define new security mechanisms, but it leverages existing technologies such as XML

Encryption, XML Signature, and Security Tokens e.g. Kerberos Tickets and X.509

certificates. We describe this standard in the forma of a pattern using a common template.

We describe briefly its two supporting patterns: XML Encryption and XML Signature.

 90

6.1 Intent

The WS-Security standard [OAS06] describes how to embed existing security

mechanisms such as XML Encryption [W3C02], XML digital signature [W3C08], and

security tokens into SOAP messages in order to provide message confidentiality,

integrity, and authentication, as well as non-repudiation.

6.2 Context

Users of web services send and receive SOAP messages through insecure channels such

as the Internet.

6.3 Problem

Sending message through insecure channels expose the messages to a variety of attacks,

including illegal reading or modification, replay, and the sender can deny having sent a

specific message [Sta06]. We have cryptographic solutions for these problems; however,

there are many algorithms and protocols and we need to make a selection self-descriptive.

The solution for this problem is affected by the following forces:

• Interoperability. We need a common format in SOAP messages in order to add

security features, so both senders and receivers can be able to process messages

that contain security features without need for previous agreements.

• Fine degree of protection. SOAP messages may travel in a network environment

through many intermediaries and different users may need access to different

 91

parts of them. We may need to protect different parts of a message in different

ways.

6.4 Solution

Define areas in the message format that specify parameters that specify security

mechanisms such as encryption, digital signatures, and security tokens.

A SOAP message is composed of a body and an optional header. Three major elements

can be embedded within the header of a message: XML Encryption, XML Signature, and

security tokens. If an element within the message is signed, the header can include

information about the signature such as the algorithm, the key, and the value of the

signature. For XML Encryption, the security header can enclose a list of references that

point to the parts of the message that have been encrypted and how.

Structure

Figure 14 describes the structure for WS-Security.

A Principal may be a system, a user, or an organization that sends and receives

XMLMessages. This principal may have the roles of Sender and Receiver. The

SenderEngine includes a Sender and and Encryptor, while the ReceiverEngine includes

a Verifier and a Decryptor.

Security Tokens such as Username/Password, X.509 Certificates, and Kerberos Tickets

are used for authentication and authorization purposes.

 92

XMLMessages are composed of a Body and an optional Header. A Header may contain

a Security Block which may enclose Timestamp, EncryptedKey, ReferenceList,

SignedElement, and SecurityToken elements. Timestamps provide the time of creation

and expiration of a message. EncryptedKey element represents the key used to encrypt

parts or the entire message, and this key is encrypted according to XML Encryption

standard. The ReferenceList element points to the parts of the message that are

encrypted with XML Encryption. The SignedElement holds information about the

signatures generated according to XML Signature standard. The Body is a collection of

Elements, some of which are Encrypted Data. Elements can be structured into

Composite hierarchies.

Figure 17

Class Diagram for WS-Security Pattern

Dynamics

We describe the dynamic aspects of the WS-Security Standard using sequence diagrams

for the use cases: encrypt an element using a symmetric key that is itself encrypted using

a security token and sign an element using a security token.

Encrypt an element using an encrypted key (Figure 15):

 93

 94

Summary: A Sender encrypts an element using a symmetric key that is itself encrypted

using a security token.

Actors: A Sender

Precondition: The sender has a symmetric key for this communication.

Description:

a) A Sender requests to the Encryptor to encrypt an XML element

b) The Encryptor encrypts the XML element using a symmetric key and the

encryption method provided by the sender.

c) The Encryptor creates the SecureXMLMessage that will contain the encrypted

element.

d) The Encryptor replaces the plain XML element with the output from step b).

e) The Encryptor sends the secured XML Message to the sender, who can now sent

it to some Receiver.

Alternate Flows:

Postcondition: The encrypted element is attached to the message.

Figure 18

Sequence Diagram for encrypting a message

Sign an element (Figure16):

Summary: A Sender signs an element.

Actors: A Sender

Precondition: The sender has a private key in some PKI system.

Description:

a) A Sender requests to the Signer to sign an XML element.

b) The Signer signs the XML element using the sender’s private key and the

signature algorithm provided by the sender.

c) The Signer created the Secured XML Message that will contain the digital

signature.

d) The Signer attaches the signature into the security block.

 95

e) The Signer sends the secured XML message to the sender.

Alternate Flows:

Postcondition: The signature has been attached to the header.

Figure 19

Sequence Diagram for signing a XML element

6.5 Implementation

To implement WS-Security standard, the following tasks need to be done:

1. Clients need to have knowledge of cryptographic algorithms such as security

token formats, signature formats and encryption technologies.

 96

 97

2. A message can have multiple headers if they are targeted for different recipients.

In other words, message security information targeted to different recipients must

be in different headers.

6.6 Known Uses

Several vendors have developed products that support WS-Security.

• Xtradyne’s WS-DBC (Web Service Domain Boundary Controller) [Xtr] is an

XML firewall that supports the WS-Security standard and other standards.

• IONA Artix [Ion]

• Forum Systems - Forum Sentry SOA Gateway [For] conforms to XML Digital

Signature, XML Encryption, WS-Trust, WS-Policy and other standards.

6.7 Consequences

This pattern presents the following advantages:

• Using the header of a SOAP message we can specify the security features of a

message such as XML encryption, XML signatures, and security tokens.

• We can specify different parts of a message with different types of encryption,

different keys, or different signatures.

The pattern also has some (possible) liabilities:

• This pattern does not describe details of encryption, digital signatures, or security

tokens. Those require separate standards.

 98

• WS-Security does not tell you whether you should sign or encrypt whole

message, a part of it, or only the header. It is up to the designer to define these

aspects.

• WS-Security is an immature specification which is still changing.

6.8 Related Patterns

• WS-Security uses the XML Digital Signature [Has09a] and XML Encryption

[Has09b] patterns.

• Secure Channel is a way to transport messages providing message authentication,

message confidentiality, and message integrity [Bra98].

6.9 Summary

WS-Security allows for a SOAP message to identify the sender, sign the message, and

encrypt message contents. WS-Security does not invent new security mechanism but

reuse existing specifications such as XML Encryption and XML Signature.

 99

7. CONCLUSION AND FUTURE WORK

We have developed three patterns for web services security standards. However,

we observed that these standards have many details that may confuse the readers. Thus,

we developed also two abstract patterns in order to have a general idea how the protocols

work. We wrote patterns for XML Signature [Has09a], XML Encryption [Has09b], and

WS-Security [Has09c]. XML Encryption is a flexible standard that provides

confidentiality by hiding all or parts of XML messages. Likewise, due to its flexibility,

XML Signature also allows you to sign all or parts of XML messages. WS-Security is a

protocol that provides message authenticity, confidentiality, and integrity by leveraging

XML Encryption, XML Signature, and Security Tokens. While these are not all the

cryptographic standards used in web services, they are the most important.

There is a large number of web services standards and it is hard for users and tool

developers to find the right one. Thus, we need to develop more patterns for these

standards, so we can compare them and understand them better [Fer06]. In order to

provide a broad perspective we enumerated the current standards for web services,

providing references to the complete standard [Fer09].

Future work will include completing our development of other web services

security patterns such as WS-Trust, WS-Federation, WS-SecureConversations, XKMS

(Key Management Specification), and WS-SecurityPolicy.

 100

REFERENCES

[Add06a] W3C, Web Services Addressing 1.0 – Core, 9 May 2006,

http://www.w3.org/TR/ws-addr-core/

[Add06b] W3C, Web Services Addressing 1.0 – SOAP Binding, 9 May 2006,

http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

[Add06c] W3C, Web Services Addressing 1.0 – WSDL Binding, 29 May 2006,

http://www.w3.org/TR/ws-addr-wsdl/

[Add06d] Web Services Addressing 1.0 – Metadata, 4 September 2007.

http://www.w3.org/TR/ws-addr-metadata/

[Ado] Adobe System Incorporated, Digital Signatures,

http://www.adobe.com/security/digsig.html

[Aro05] A. Arora et al., The WS-Management Catalog, June 2005,

http://www.dell.com/downloads/global/corporate/standards/ws_management

_catalog.pdf

[Ato07] OASIS, Web Services Atomic Transaction (WS-AtomicTransaction) Version

1.1, 16 April 2007, http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-

os/wstx-wsat-1.1-spec-os.html

[Arx] Arx, Digital Signature Solution (Standard Electronic Signatures),

 http://www.arx.com/products/cosign-digital-signatures.php

http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-metadata/
http://www.dell.com/downloads/global/corporate/standards/ws_management_catalog.pdf
http://www.dell.com/downloads/global/corporate/standards/ws_management_catalog.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os/wstx-wsat-1.1-spec-os.html
http://www.arx.com/products/cosign-digital-signatures.php

 101

[Avdl04] OASIS, Application Vulnerability Description Language 1.0, May 2004,

http://www.oasis-

open.org/committees/download.php/7145/AVDL%20Specification%20V1.p

df

[Bio03] OASIS, XML Common Biometric Format, August 2003, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xcbf

[Bpel07] OASIS, Web Services Business Process Execution Language Version 2.0, 11

April 2007, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[Bra98] A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language for

cryptographic object-oriented software”, Chapter 16 in Pattern Languages of

Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in

Procs. Of PloP’98, http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/

[Bus07] OASIS, Web Services Business Activity (WS-BusinessActivity) Version 1.1,

12 July 2007, http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-errata-

os.pdf

[Cer06] OASIS, Web Services Security: X.509 Certificate Token Profile 1.1, 1

February 2006, http://www.oasis-

open.org/committees/download.php/16785/wss-v1.1-spec-os-

x509TokenProfile.pdf

[Con07] OASIS, WS-SecureConversation 1.3, 1 March 2007, http://docs.oasis-

open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-

os.html

http://www.oasis-open.org/committees/download.php/7145/AVDL%20Specification%20V1.pdf
http://www.oasis-open.org/committees/download.php/7145/AVDL%20Specification%20V1.pdf
http://www.oasis-open.org/committees/download.php/7145/AVDL%20Specification%20V1.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xcbf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xcbf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://jerry.cs.uiuc.edu/%7Eplop/plop98/final_submissions/

 102

[Con07] OASIS, Web Services Context Specification (WS-Context) Version 1.0, 2

April 2007, http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html

[Coo07] OASIS, Web Services Coordination (WS-Coordination) Version 1.1, 12 July

2007, http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os.pdf

[Cor05] W3C, Web Services Choreography Description Language Version 1.0, 9

November 2005, http://www.w3.org/TR/ws-cdl-10/

[Del07] N. Delessy, E.B.Fernandez, and M.M. Larrondo-Petrie, "A pattern language

for identity management", Procs. of the 2nd IEEE Int. Multiconference on

Computing in the Global Information Technology (ICCGI 2007), March 4-9,

Guadeloupe, French Caribbean.

[dig] Digital signature, http://en.wikipedia.org/wiki/Digital_signature

[Dis05] Microsoft Corporation, Inc., Web Services Dynamic Discovery (WS-

Discovery), April 2005, http://specs.xmlsoap.org/ws/2005/04/discovery/ws-

discovery.pdf

[Dsi07] OASIS, Digital Signature Service Core Protocols, Elements, and Bindings

Version 1.0, April 2007, http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-

spec-v1.0-os.pdf

[ebX05a] ebXML Registry Services and Protocols Version 3.0, 2 May 2005,

http://www.oasis-open.org/specs/#ebxmlrsv3.0

[ebX05b] ebXML Registry Information Model Version 3.0, 2 May 2005,

http://www.oasis-open.org/specs/#ebxmlrsv3.0

http://en.wikipedia.org/wiki/Digital_signature

 103

[Enc02] W3C, XML Encryption Syntax and Processing, 10 December 2002,

http://www.w3.org/TR/xmlenc-core/

[Enu06] W3C, Web Services Enumeration (WS-Enumeration), 15 March 2006,

http://www.w3.org/Submission/WS-Enumeration/

[Eve06] W3C, Web Services Eventing (WS-Eventing), 15 March 2006,

http://www.w3.org/Submission/WS-Eventing/

[Fed99] Federal Information Processing Standards Publication, “Data Encryption

Data (DES),” 25 October 1999, http://csrc.nist.gov/publications/fips/fips46-

3/fips46-3.pdf

[Fed00] Federal Information Processing Standard, “Digital Signature Standard,” 27

January 2000, http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-

change1.pdf

[Fed01] Federal Information Processing Standards Publication, “Advanced

Encryption Standard,” 26 November 2001,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[Fed03a] S. Bajaj et al, WS-Federation: Active Requestor Profile Version 1.0, 8 July

2003, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-

fedact/ws-fedact.pdf

[Fed03b] S. Bajaj et al, WS-Federation: Passive Requestor Profile Version 1.0, 8 July

2003, http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-

fedpass/ws-fedpass.pdf

[Fed06] H. Lockhart et al, Web Services Federation Language (WS-Federation)

Version 1.1, December 2006,

 104

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-

Federation-V1-1B.pdf?S_TACT=105AGX04&S_CMP=LP

[Fer06] E.B.Fernandez and N. Delessy, "Using patterns to understand and compare

web services security products and standards", Proceedings of the IEEE Int.

Conference on Web Applications and Services (ICIW'06), Guadeloupe,

February 2006.

[Fer09] E. B. Fernandez, K. Hashizume, I. Buckley, M. M. Larrondo-Petrie, and M.

VanHilst, "Web services security: Standards and products", to appear in

"Web Services Security Development and Architecture: Theoretical and

Practical Issues", Carlos A. Gutierrez, Eduardo Fernandez-Medina, and

Mario Piattini (Eds.), IGI Global 2009.

[For] Forum Systems, Sentry: Messaging, Identity, and Security,

http://www.forumsys.com/products/soagateway.php

[Gam94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley Professional, 1994

[Gnu] GnuPG, The GNU Privacy Guard, http://www.gnupg.org/

[Has09a] K. Hashizume, E.B.Fernandez, and S. Huang, "Digital Signature with

Hashing and XML Signature patterns", accepted for the 14th European Conf.

on Pattern Languages of Programs, EuroPLoP 2009.

[Has09b] K. Hashizume and E.B.Fernandez, "Symmetric Encryption and XML

Encryption Patterns", sent to the Conference on Pattern Languages of

Programs (PLoP 2009)

 105

[Has09c] K. Hashizume and E. B. Fernandez, “A Pattern for WS-Security”, submitted

for publication.

[IBM] IBM, WebSphere DatatPower XML Security Gateway XS40, http://www-

01.ibm.com/software/integration/datapower/xs40/

[Inf04] W3C, XML Information Set (Second Edition), 4 February 2004,

http://www.w3.org/TR/xml-infoset/

[Ion] IONA Technologies, “Artix and Security.”

www.iona.com/info/aboutus/collateral/Artix%20and%20Security.pdf

[Ker06] OASIS, Web Services Security: Kerberos Token Profile 1.1, 1 February

2006, http://www.oasis-open.org/committees/download.php/16788/wss-v1.1-

spec-os-KerberosTokenProfile.pdf

[Leh02] S. Lehtonen and J. Parssinen. “A Pattern Language for Key Management,”

EuroPlop 2002. http://www.hillside.net/patterns/EuroPLoP2002/papers.html

[Man08] DMTF, Web Services for Management (WS-Management) 1.0, 12 February

2008,

http://www.dmtf.org/standards/published_documents/DSP0226_1.0.0.pdf

[Met06] IBM, Web Services Metadata Exchange (WS-MetadataExchange) 1.1,

August 2006, http://specs.xmlsoap.org/ws/2004/09/mex/WS-

MetadataExchange.pdf

[Mic07] Microsoft Corporation, .NET Framework Class Library, November 2007,

http://msdn.microsoft.com/en-us/library/ms229335.aspx

http://www.iona.com/info/aboutus/collateral/Artix%20and%20Security.pdf

 106

[Mica] Microsoft Corporation, .NET Framework Class Library,

http://msdn.microsoft.com/en-us/library/e970bs09.aspx

[Micb] Microsoft Corporation, .NET Framework Class Library,

http://msdn.microsoft.com/en-us/library/ms229749.aspx

[Mor06] P. Morrison and E.B.Fernandez, "The Credential pattern", Procs. of the

Conference on Pattern Languages of Programs, PLoP 2006, Portland, OR,

October 2006, http://hillside.net/plop/2006/

[Mows06] OASIS, Web Services Distributed Management: Management Web Services

(WSDM-MOWS 1.1), 1 August 2006, http://www.oasis-

open.org/committees/download.php/20574/wsdm-mows-1.1-spec-os-01.pdf

[Mtom05] W3C, SOAP Message Transmission Optimization Mechanism, 25 January

2005, http://www.w3.org/TR/soap12-mtom/

[Mul07] S. Mullan, Programming with the Java XML Digital Signature API, Sun

Microsystems March 2007,

http://java.sun.com/developer/technicalArticles/xml/dig_signature_api/

[Muws06a] OASIS, Web Services Distributed Management: Management Using Web

Services (MUWS 1.1) Part 1, 1 August 2006, http://www.oasis-

open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf

[Muws06b] OASIS, Web Services Distributed Management: Management Using Web

Services (MUWS 1.1) Part 2, 1 August 2006, http://www.oasis-

open.org/committees/download.php/20575/wsdm-muws2-1.1-spec-os-01.pdf

http://hillside.net/plop/2006/

 107

[Nam06] W3C, Namespaces in XML 1.0 (Second Edition), 16 August 2006,

http://www.w3.org/TR/REC-xml-names

[Not06a] OASIS, Web Services Base Notification1.3 (WS-Base Notification), 1

October 2006, http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-

spec-os.pdf

[Not06b] OASIS, Web Services Brokered Notification 1.3 (WS-Brokered

Notification), 1 October 2006, http://docs.oasis-open.org/wsn/wsn-

ws_brokered_notification-1.3-spec-os.pdf

[OAS06] OASIS, Web Services Security: SOAP Message Security 1.1 (WS-Security

2004), 1 February 2006, http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf

[OAS07] OASIS, W-S SecurityPolicy 1.2, 1 July 2007, http://docs.oasis-open.org/ws-

sx/ws-securitypolicy/v1.2/ws-securitypolicy.pdf

[Ope] The OpenSSL Project, OpenSSL, http://www.openssl.org/

[PGP] http://en.wikipedia.org/wiki/Pretty_Good_Privacy

[Pol07a] W3C, Web Services Policy 1.5 – Framework, 4 September 2007,

http://www.w3.org/TR/ws-policy/

[Pol07b] W3C, Web Services Policy 1.5 – Attachment, 4 September 2007,

http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/

[Rei06] B. Reistad et al, Web Services Resource Transfer (WS-RT) Version 1.0,

August 2006,

http://www.openssl.org/
http://en.wikipedia.org/wiki/Pretty_Good_Privacy

 108

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rt/ws-rt-

spec.pdf

[Rel07] OASIS, WS-ReliableMessaging (WS-1 ReliableMessaging) Version 1.1, 14

June 2007, http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-

01.pdf

[Rel04] OASIS, Web Services Reliability (WS-Reliability) 1.1, 15 November 2004,

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-

spec-os.pdf

[Res06a] OASIS, Web Services Resource Framework (WSRF) – Primer v1.2, 23 May

2006, http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

[Res06b] Web Services Resource 1.2 (WS-Resource), 1 April 2006, http://docs.oasis-

open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf

[Res06c] OASIS, Web Services Resource Properties 1.2 (WS-ResourceProperties), 1

April 2006, http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-

spec-os.pdf

[Res06d] OASIS, Web Services Resource Lifetime 1.2 (WS-ResourceLifetime), 1

April 2006, http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-

spec-os.pdf

[Riv78] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman: A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21(2):

120-126 (1978).

 109

[RPo07] OASIS, Web Services Reliable Messaging Policy 2 Assertion (WS-RM

Policy) Version 1, 14 June 2007, http://docs.oasis-open.org/ws-

rx/wsrmp/200702/wsrmp-1.1-spec-os-01.pdf

[RSA] RSA Security, PKCS #1: RSA Cryptography Standard,

http://www.rsa.com/rsalabs/node.asp?id=2125

[Saml05a] OASIS, Assertions and Protocols for the OASIS Security Assertion Markup

Language (SAML) V2.0, 15 March 2005, http://docs.oasis-

open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[Saml05b] OASIS, Bindings for the OASIS Security Assertion Markup Language

(SAML) V2.0, 15 March 2005, http://docs.oasis-

open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

[Saml05c] OASIS, Profiles for the OASIS Security Assertion Markup Language

(SAML) V2.0, 15 March 2005, http://docs.oasis-

open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

[Saml05d] OASIS, Metadata for the OASIS Security Assertion Markup Language

(SAML) V2.0, 15 March 2005, http://docs.oasis-

open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf

[Saml05e] OASIS, Authentication Context for the OASIS Security Assertion Markup

Language (SAML) V2.0, 15 March 2005, http://docs.oasis-

open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

[Saml05f] OASIS, Security and Privacy Considerations for the OASIS Security

Assertion Markup Language (SAML) V2.0, 15 March 2005,

http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf

 110

[Saml06] OASIS, Web Services Security: SAML Token Profile 1.1, 1 February 2006,

http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-

os-SAMLTokenProfile.pdf

[Sch04a] W3C, XML Schema Part 0: Primer Second Edition, 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

[Sch04b] W3C, XML Schema Part 1: Structure Second Edition, 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

[Sch04c] W3C, XML Schema Part 2: Datatypes Second Edition, 28 October 2004,

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[Sec04] OASIS, Web Services Security: SOAP Message Security 1.1(WS-Security

2004), 1 February 2006, http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf

[SecP07] OASIS, WS-SecurityPolicy 1.2, 1 July 2007, http://docs.oasis-open.org/ws-

sx/ws-securitypolicy/v1.2/ws-securitypolicy.html

[Sig08] W3C, XML Signature Syntax and Processing (Second Edition), 10 June

2008, http://www.w3.org/TR/xmldsig-core/

[Spml06] OASIS, Service Provisioning Markup Language (SPML) Version 2, 1 April

2006, http://xml.coverpages.org/SPMLv2-OS.pdf

[SOA01] W3C, SOAP Security extensions: Digital Signature, W3C NOTE 06,

February 2001, http://www.w3.org/TR/SOAP-dsig/

[SOA07c] W3C, SOAP Version 1.2 Part 2: Adjuncts (Second Edition), 27 April 2007,

http://www.w3.org/TR/soap12-part2/

http://www.w3.org/TR/SOAP-dsig/

 111

[Soap07a] W3C, SOAP Version 1.2 Part 0: Primer (Second Edition), 27 April 2007,

http://www.w3.org/TR/soap12-part0/

[Soap07b] W3C, SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), 27

April 2007, http://www.w3.org/TR/soap12-part1/

[Sta06] W. Stallings, Cryptography and network security (4th Ed.), Pearson Prentice

Hall, 2006.

[Suna] Sun Microsystems Inc., Java Cryptography Extension (JCE),

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

[Sunb] Sun Microsystems Inc., Java SE Security,

http://java.sun.com/javase/technologies/security/

[Top06] OASIS, Web Services Topics 1.3 (WS-Topics), 1 October 2006,

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

[Tra06] W3C, Web Services Transfer (WS-Transfer), 27 September 2006,

http://www.w3.org/Submission/WS-Transfer/

[Trus07] OASIS, WS-Trust 1.3, 19 March 2007, http://docs.oasis-open.org/ws-sx/ws-

trust/200512/ws-trust-1.3-os.html

[Uddi05] OASIS, UDDI Version 3.0.2, 3 February 2005, http://uddi.org/pubs/uddi-

v3.0.2-20041019.htm

[Use06] OASIS, Web Services Security: Username Token Profile 1.1, 1 February

2006, http://www.oasis-open.org/committees/download.php/16782/wss-v1.1-

spec-os-UsernameTokenProfile.pdf

 112

[W3C01] W3C, XML Key Management Specification, March 2001

http://www.w3.org/TR/xkms/

[W3C02] W3C, XML Encryption Syntax and Processing, 10 December 2002,

http://www.w3.org/TR/xmlenc-core/

[W3C08] W3C, XML Signature Syntax and Processing (Second Edition), 10 June

2008, http://www.w3.org/TR/xmldsig-core

[Wsci02] W3C, Web Services Choreography Interface (WSCI) 1.0, 8 August 2002,

http://www.w3.org/TR/wsci/

[Wsdl01] W3C, Web Services Description Language (WSDL) 1.1, 15 March 2001,

http://www.w3.org/TR/wsdl

[Wsdl01a] W3C, Web Services Description Language (WSDL) 1.1, 15 March 2001,

http://www.w3.org/TR/wsdl

[Wsdl01b] Web Services Description Language (WSDL) Version 2.0 Part 0: Primer, 26

June 2007, http://www.w3.org/TR/wsdl20-primer/

[Wsdl01c] W3C, Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, 26 June 2007, http://www.w3.org/TR/2007/REC-wsdl20-

20070626/

[Wsdl01d] W3C, Web Services Description Language (WSDL) Version 2.0 Part 2:

Adjuncts, 26 June 2007, http://www.w3.org/TR/wsdl20-adjuncts/

[Wsdl01e] W3C, Web Services Description Language (WSDL) Version 2.0 SOAP 1.1

Binding, 26 June 2007, http://www.w3.org/TR/wsdl20-soap11-binding/

 113

[Xacm05a] OASIS, eXtensible Access Control Markup Language (XACML) Version

2.0, 1 Feb 2005, http://docs.oasis-open.org/xacml/2.0/access_control-xacml-

2.0-core-spec-os.pdf

[Xacm05b] OASIS, Core and hierarchical role based access control (RBAC) profile of

XACML v2.0, 1 Feb 2005, http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

[Xacm05c] OASIS, Hierarchical Resource profile of XACML v2.0, 1 Feb 2005,

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-

spec-os.pdf

[Xacm05d] OASIS, Multilple Resource profile of XACML v2.0, 1 Feb 2005,

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-

spec-os.pdf

[Xacm05e] OASIS, Privacy policy profile of XACML v2.0, 1 Feb 2005,

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

privacy_profile-spec-os.pdf

[Xacm05f] OASIS, SAML 2.0 profile of XACML v2.0, 1 Feb 2005, http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

[Xacm05g] OASIS, XML Digital Signature profile of XACML v2.0, 1 Feb 2005,

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-dsig-profile-

spec-os.pdf

[XIn06] W3C, XML Inclusions (XInclude) Version 1.0 (Second Edition), 15

November 2006, http://www.w3.org/TR/xinclude/

 114

[Xkms05a] XML Key Management Specification (XKMS 2.0) Version 2.0, 28 June

2005, http://www.w3.org/TR/xkms2/

[Xkms05b] XML Key Management Specification (XKMS 2.0) Bindings Version 2.0, 28

June 2005, http://www.w3.org/TR/2005/REC-xkms2-bindings-20050628/

[Xli01] XML Linking Language (XLink) Version 1.0, 27 June 2001,

http://www.w3.org/TR/xlink/

[Xml06] W3C, Extensible Markup Language (XML) 1.1 (Second Edition), 29

September 2006, http://www.w3.org/TR/xml11/

[XQu07] W3C, XQuery 1.0: An XML Query Language, 23 January 2007,

http://www.w3.org/TR/xquery/

[Xtr] Xtradyne, Xtradyne's WS-DBC - the XML/SOAP Firewall for Enterprises,

http://www.xtradyne.de/products/ws-dbc/ws-dbc.htm

[XPa07] W3C, XML Path Language (XPath) 2.0, 23 January 2007,

http://www.w3.org/TR/xpath20/

[XPo03a] W3C, XPointer Framework, 25 March 2003, http://www.w3.org/TR/xptr-

framework/

[XPo03b] W3C, XPointer xmlns() Scheme, 25 March 2003,

http://www.w3.org/TR/xptr-xmlns/

[XPo03c] W3C, XPointer xpointer() Scheme, 19 December 2002,

http://www.w3.org/TR/xptr-xpointer/

[Xrml02] ContentGuard, XrML 2.0, March 2002, http://www.xrml.org/get_XrML.asp

	3.1.1 XML Specifications
	3.1.2 Messaging Specifications
	[Pol07a] W3C, Web Services Policy 1.5 – Framework, 4 September 2007, http://www.w3.org/TR/ws-policy/
	[Pol07b] W3C, Web Services Policy 1.5 – Attachment, 4 September 2007, http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/

