You are here
Ecomorphology of Shark Electroreceptors
- Date Issued:
- 2006
- Summary:
- Sharks possess an electrosensory system which allows the detection of electric fields . How this system varies among related taxa and among species inhabiting different environments remains unexplored. Electroreceptor number was quantified for representative species of related taxa (genera, families, orders) from different environments (pelagic, coastal, deepwater) and taxa from similar environments to determine potential phylogenetic constraint or evolutionary convergence. Coastal open water sharks possess the greatest number of electroreceptors; deepwater sharks the least. Pelagic and coastal benthic sharks retain comparable electrosensory pore numbers despite inhabiting vastly different environments. Electrosensory pores were primarily located in ventral distributions, except among coastal open water sharks which possess roughly even distributions around the head. Among related species and genera, pore numbers and distribution are comparable, with greater variation among higher taxa. Results implicate evolutionary convergence as the primary influence in electroreceptor development, while phylogenetic constraint establishes similar base values for number and distribution.
Title: | Ecomorphology of Shark Electroreceptors. |
338 views
52 downloads |
---|---|---|
Name(s): |
Cornett, Anthony D. Kajiura, Stephen M., Thesis advisor Florida Atlantic University, Degree grantor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2006 | |
Date Issued: | 2006 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 111 p. | |
Language(s): | English | |
Summary: | Sharks possess an electrosensory system which allows the detection of electric fields . How this system varies among related taxa and among species inhabiting different environments remains unexplored. Electroreceptor number was quantified for representative species of related taxa (genera, families, orders) from different environments (pelagic, coastal, deepwater) and taxa from similar environments to determine potential phylogenetic constraint or evolutionary convergence. Coastal open water sharks possess the greatest number of electroreceptors; deepwater sharks the least. Pelagic and coastal benthic sharks retain comparable electrosensory pore numbers despite inhabiting vastly different environments. Electrosensory pores were primarily located in ventral distributions, except among coastal open water sharks which possess roughly even distributions around the head. Among related species and genera, pore numbers and distribution are comparable, with greater variation among higher taxa. Results implicate evolutionary convergence as the primary influence in electroreceptor development, while phylogenetic constraint establishes similar base values for number and distribution. | |
Identifier: | FA00000737 (IID) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
Includes bibliography. Thesis (M.S.)--Florida Atlantic University, 2006. Charles E. Schmidt College of Science |
|
Subject(s): |
Sharks--Ecology Sharks--Morphology Echolocation (Physiology) Aquatic animals--Physiology Senses and sensation Adaptation (Biology) |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00000737 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |