You are here
A Computational Study on Different Penalty Approaches for Constrained Optimization in Radiation Therapy Treatment Planning with a Simulated Annealing Algorithm
- Date Issued:
- 2016
- Summary:
- Intensity modulated radiation therapy (IMRT) is a cancer treatment method in which the intensities of the radiation beams are modulated; therefore these beams have non-uniform radiation intensities. The overall result is the delivery of the prescribed dose in the target volume. The dose distribution is conformal to the shape of the target and minimizes the dose to the nearby critical organs. An inverse planning algorithm is used to obtain those non-uniform beam intensities. In inverse treatment planning, the treatment plan is achieved by using an optimization process. The optimized plan results to a high-quality dose distribution in the planning target volume (PTV), which receives the prescribed dose while the dose that is received by the organs at risk (OARs) is reduced. Accordingly, an objective function has to be defined for the PTV, while some constraints have to be considered to handle the dose limitations for the OARs.
Title: | A Computational Study on Different Penalty Approaches for Constrained Optimization in Radiation Therapy Treatment Planning with a Simulated Annealing Algorithm. |
![]() ![]() |
---|---|---|
Name(s): |
Mohammadi Khoroushadi, Mohammad Sadegh, author Kalantzis, Georgios, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Physics |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2016 | |
Date Issued: | 2016 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 69 p. | |
Language(s): | English | |
Summary: | Intensity modulated radiation therapy (IMRT) is a cancer treatment method in which the intensities of the radiation beams are modulated; therefore these beams have non-uniform radiation intensities. The overall result is the delivery of the prescribed dose in the target volume. The dose distribution is conformal to the shape of the target and minimizes the dose to the nearby critical organs. An inverse planning algorithm is used to obtain those non-uniform beam intensities. In inverse treatment planning, the treatment plan is achieved by using an optimization process. The optimized plan results to a high-quality dose distribution in the planning target volume (PTV), which receives the prescribed dose while the dose that is received by the organs at risk (OARs) is reduced. Accordingly, an objective function has to be defined for the PTV, while some constraints have to be considered to handle the dose limitations for the OARs. | |
Identifier: | FA00004765 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2016. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Image-guided radiation therapy. Radiation--Dosage. Mathematical optimization. Evolutionary programming (Computer science) Medical physics. Medical radiology--Data processing. |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004765 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |