You are here

Synaptic Rearrangements and the Role of Netrin-Frazzled Signaling in Shaping the Drosophila Giant Fiber Circuit

Download pdf | Full Screen View

Date Issued:
2016
Summary:
In the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in Drosophila melanogaster (the giant fiber circuit), we developed tools that enabled us to study the molecular development of this circuit; which consists of a bilaterally symmetrical pair of presynaptic interneurons and postsynaptic motorneurons. In the adult circuit, each presynaptic interneuron (giant fiber) forms a single connection with the ipsilateral, postsynaptic motorneuron (TTMn). Using new tools that we developed we labeled both giant fibers throughout their development and saw that these neurons overgrew their targets and formed overlapping connections. As the circuit matured, giant fibers pruned their terminals and refined their connectivity such that only a single postsynaptic connection remained with the ipsilateral target. Furthermore, if we ablated one of the two giant fibers during development in wildtype animals, the remaining giant fiber often retained excess connections with the contralateral target that persisted into adulthood. After demonstrating that the giant fiber circuit was suitable to study synaptic rearrangement, we investigated two proteins that might mediate this process. First, we were able to prevent giant fibers from refining their connectivity by knocking out highwire, a ubiquitin ligase that prevented pruning. Second, we investigated whether overexpressing Netrin (or Frazzled), part of a canonical axon guidance system, would affect the refinement of giant fiber connectivity. We found that overexpressing Netrin (or Frazzled) pre- & postsynaptically resulted in some giant fibers forming or retaining excess connections, while exclusively presynaptic (or postsynaptic) expression of either protein had no effect. We further showed that by simultaneously reducing (Slit-Robo) midline repulsion and elevating Netrin (or Frazzled) pre- & postsynaptically, we significantly enhanced the proportion of giant fibers that formed excess connections. Our findings suggest that Netrin-Frazzled and Slit-Robo signaling play a significant role in refining synaptic circuits and shaping giant fiber circuit connectivity.
Title: Synaptic Rearrangements and the Role of Netrin-Frazzled Signaling in Shaping the Drosophila Giant Fiber Circuit.
128 views
37 downloads
Name(s): Lloyd, Brandon N., author
Murphey, Rodney K., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 138 p.
Language(s): English
Summary: In the developing CNS, presynaptic neurons often have exuberant overgrowth and form excess (and overlapping) postsynaptic connections. Importantly, these excess connections are refined during circuit maturation so that only the appropriate connections remain. This synaptic rearrangement phenomenon has been studied extensively in vertebrates but many of those models involve complex neuronal circuits with multiple presynaptic inputs and postsynaptic outputs. Using a simple escape circuit in Drosophila melanogaster (the giant fiber circuit), we developed tools that enabled us to study the molecular development of this circuit; which consists of a bilaterally symmetrical pair of presynaptic interneurons and postsynaptic motorneurons. In the adult circuit, each presynaptic interneuron (giant fiber) forms a single connection with the ipsilateral, postsynaptic motorneuron (TTMn). Using new tools that we developed we labeled both giant fibers throughout their development and saw that these neurons overgrew their targets and formed overlapping connections. As the circuit matured, giant fibers pruned their terminals and refined their connectivity such that only a single postsynaptic connection remained with the ipsilateral target. Furthermore, if we ablated one of the two giant fibers during development in wildtype animals, the remaining giant fiber often retained excess connections with the contralateral target that persisted into adulthood. After demonstrating that the giant fiber circuit was suitable to study synaptic rearrangement, we investigated two proteins that might mediate this process. First, we were able to prevent giant fibers from refining their connectivity by knocking out highwire, a ubiquitin ligase that prevented pruning. Second, we investigated whether overexpressing Netrin (or Frazzled), part of a canonical axon guidance system, would affect the refinement of giant fiber connectivity. We found that overexpressing Netrin (or Frazzled) pre- & postsynaptically resulted in some giant fibers forming or retaining excess connections, while exclusively presynaptic (or postsynaptic) expression of either protein had no effect. We further showed that by simultaneously reducing (Slit-Robo) midline repulsion and elevating Netrin (or Frazzled) pre- & postsynaptically, we significantly enhanced the proportion of giant fibers that formed excess connections. Our findings suggest that Netrin-Frazzled and Slit-Robo signaling play a significant role in refining synaptic circuits and shaping giant fiber circuit connectivity.
Identifier: FA00004758 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Drosophila melanogaster--Cytogenetics.
Genetic transcription.
Transcription factors.
Cellular signal transduction.
Cellular control mechanisms.
Cell receptors.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004758
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004758
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.