You are here

Studies of Site-Specific Dynamics of Aβ Amyloid Formation and Effect of Macromolecules on Aβ Amyloidogenesis

Download pdf | Full Screen View

Date Issued:
2016
Summary:
The aim of this dissertation was 1) to explore early stage aggregation kinetic behavior of Amyloid-β 1-40 (Aβ1-40) by incorporation of unnatural amino acid pcyanophenylalanine as a site-specific fluorescence reporter, 2) to explore the effect of macromolecules on the aggregation of Aβ1-40. Chapter One provides an introduction of Alzheimer’s disease as an amyloidogenic disease, amyloidogenic peptide and amyloid formation. Details were shown about the research progress of Aβ1-40 aggregation and Aβ1-40’s interaction with polyelectrolytes, and how treatments studies were designed. In Chapter two, using Aβ1-23 as a model molecule, the distinct site-specific dynamics was identified, during amyloid formation, and the structural characteristics of amyloid fibrils were defined by using an unnatural amino acid, p-cyanophenylalanine, as a sensitive fluorescent and Raman probe. The results reveal distinct local environmental changes of specific residues during the aggregation of Aβ1-23. The results also suggest that an edge-to-face aromatic interaction between the F4 and F19 residues from the adjacent in-register β-strands plays a key role in the conformational conversion to form and stabilize β-sheet structure. In Chapter Three, p-cyanophenylalanine was incorporated in the full sequence of Aβ1-40. Site-specific information from p-cyanophenylalanine fluorescence was studied and summarized. In Chapter Four, the inhibiting effect of an anionic polyelectrolyte poly(4- styrenesulfonate) (PSS) on the aggregation of Aβ1-40 peptide was reported. The results demonstrate the strong inhibition potential of PSS on the aggregation of Aβ1-40. Additional studies indicate that the presence of both aliphatic backbone as well as aromatic side chain group in PSS is essential for its inhibition activity. In Chapter Five, it was investigated the effect of two polyelectrolytes, chitosan (CHT) and N-trimethyl chitosan chloride (TMC), on the aggregation of Aβ1-40. Results show that both CHT and TMC exhibit a concentration-dependent decrease of amyloid aggregation suggesting their application as amyloid assembly inhibitors. Their binding mechanism was investigated by computational modeling which shows that Aβ1-40 monomer was primarily stabilized by electrostatic interactions with charged amine and quaternary amines of CHT and TMC respectively. Chapter Six, describes all experimental procedures and instrument setup in detail.
Title: Studies of Site-Specific Dynamics of Aβ Amyloid Formation and Effect of Macromolecules on Aβ Amyloidogenesis.
111 views
31 downloads
Name(s): Liu, Haiyang, author
Du, Deguo, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Chemistry and Biochemistry
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 155 p.
Language(s): English
Summary: The aim of this dissertation was 1) to explore early stage aggregation kinetic behavior of Amyloid-β 1-40 (Aβ1-40) by incorporation of unnatural amino acid pcyanophenylalanine as a site-specific fluorescence reporter, 2) to explore the effect of macromolecules on the aggregation of Aβ1-40. Chapter One provides an introduction of Alzheimer’s disease as an amyloidogenic disease, amyloidogenic peptide and amyloid formation. Details were shown about the research progress of Aβ1-40 aggregation and Aβ1-40’s interaction with polyelectrolytes, and how treatments studies were designed. In Chapter two, using Aβ1-23 as a model molecule, the distinct site-specific dynamics was identified, during amyloid formation, and the structural characteristics of amyloid fibrils were defined by using an unnatural amino acid, p-cyanophenylalanine, as a sensitive fluorescent and Raman probe. The results reveal distinct local environmental changes of specific residues during the aggregation of Aβ1-23. The results also suggest that an edge-to-face aromatic interaction between the F4 and F19 residues from the adjacent in-register β-strands plays a key role in the conformational conversion to form and stabilize β-sheet structure. In Chapter Three, p-cyanophenylalanine was incorporated in the full sequence of Aβ1-40. Site-specific information from p-cyanophenylalanine fluorescence was studied and summarized. In Chapter Four, the inhibiting effect of an anionic polyelectrolyte poly(4- styrenesulfonate) (PSS) on the aggregation of Aβ1-40 peptide was reported. The results demonstrate the strong inhibition potential of PSS on the aggregation of Aβ1-40. Additional studies indicate that the presence of both aliphatic backbone as well as aromatic side chain group in PSS is essential for its inhibition activity. In Chapter Five, it was investigated the effect of two polyelectrolytes, chitosan (CHT) and N-trimethyl chitosan chloride (TMC), on the aggregation of Aβ1-40. Results show that both CHT and TMC exhibit a concentration-dependent decrease of amyloid aggregation suggesting their application as amyloid assembly inhibitors. Their binding mechanism was investigated by computational modeling which shows that Aβ1-40 monomer was primarily stabilized by electrostatic interactions with charged amine and quaternary amines of CHT and TMC respectively. Chapter Six, describes all experimental procedures and instrument setup in detail.
Identifier: FA00004769 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Alzheimer's disease--Research.
Alzheimer's disease--Pathogenesis.
Molecular biology.
Molecular dynamics.
Prions.
Amyloid beta-protein.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004769
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004769
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.