You are here

Phantom Study Incorporating A Diode Array Into The Treatment Planning System For Patient-Specific Quality Assurance

Download pdf | Full Screen View

Date Issued:
2016
Summary:
The purpose of this research is to accurately match the calculation environment, i.e. the treatment planning system (TPS) with the measurement environment (using a 2-D diode array) for lung Stereotactic Body Radiation Therapy (SBRT) patient-specific quality assurance (QA). Furthermore, a new phantom was studied in which the 2-D array and heterogeneities were incorporated into the patient-specific QA process for lung SBRT. Dual source dual energy computerized tomography (DSCT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam dose distributions were compared to the measured distributions. Composite and individual fields were analyzed for normally incident and planned gantry angle deliveries. The distributions were compared using γ-analysis for criteria 3% 3mm, 2% 2mm, and 1% 1mm. The Monte Carlo calculations for the DSCT modeled phantoms (incorporating the array) showed an increase in the passing percentage magnitude for 46.4 % of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm. The Monte Carlo calculations gave no agreement for the same γ-analysis criteria using the SECT. Pencil beam calculations resulted in lower passing percentages when the diode array was incorporated in the TPS. The DSCT modeled phantoms (incorporating the array) exhibited decrease in the passing percentage magnitude for 85.7% of the fields at 3% 3mm, 82.1% at 2% 2mm, and 71.4% at 1% 1mm. In SECT modeled phantoms (incorporating the array), a decrease in passing percentage magnitude were found for 92.9% of the fields at 3% 3mm, 89.3% at 2% 2mm, and 82.1% at 1% 1mm. In conclusion, this study demonstrates that including the diode array in the TPS results in increased passing percentages when using a DSCT system with a Monte Carlo algorithm for patient-specific lung SBRT QA. Furthermore, as recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.
Title: Phantom Study Incorporating A Diode Array Into The Treatment Planning System For Patient-Specific Quality Assurance.
162 views
84 downloads
Name(s): Curley, Casey Michael, author
Leventouri, Theodora, Thesis advisor
Ouhib, Zoubir, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Physics
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 171 p.
Language(s): English
Summary: The purpose of this research is to accurately match the calculation environment, i.e. the treatment planning system (TPS) with the measurement environment (using a 2-D diode array) for lung Stereotactic Body Radiation Therapy (SBRT) patient-specific quality assurance (QA). Furthermore, a new phantom was studied in which the 2-D array and heterogeneities were incorporated into the patient-specific QA process for lung SBRT. Dual source dual energy computerized tomography (DSCT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam dose distributions were compared to the measured distributions. Composite and individual fields were analyzed for normally incident and planned gantry angle deliveries. The distributions were compared using γ-analysis for criteria 3% 3mm, 2% 2mm, and 1% 1mm. The Monte Carlo calculations for the DSCT modeled phantoms (incorporating the array) showed an increase in the passing percentage magnitude for 46.4 % of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm. The Monte Carlo calculations gave no agreement for the same γ-analysis criteria using the SECT. Pencil beam calculations resulted in lower passing percentages when the diode array was incorporated in the TPS. The DSCT modeled phantoms (incorporating the array) exhibited decrease in the passing percentage magnitude for 85.7% of the fields at 3% 3mm, 82.1% at 2% 2mm, and 71.4% at 1% 1mm. In SECT modeled phantoms (incorporating the array), a decrease in passing percentage magnitude were found for 92.9% of the fields at 3% 3mm, 89.3% at 2% 2mm, and 82.1% at 1% 1mm. In conclusion, this study demonstrates that including the diode array in the TPS results in increased passing percentages when using a DSCT system with a Monte Carlo algorithm for patient-specific lung SBRT QA. Furthermore, as recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.
Identifier: FA00004744 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cancer--Radiotherapy.
Lungs--Cancer--Treatment.
Monte Carlo method.
Proton beams.
Image-guided radiation therapy.
Ion bombardment.
Medical physics.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004744
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004744
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.