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ABSTRACT
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Quantum optics is a subsect of quantum mechanics focused on exploring the

properties of light due to its dual nature as both a particle and a wave. One such

property that has been of particular interest recently is that of light’s momentum,

specifically its linear and orbital-angular momentum (OAM). Light carrying both

types of momentum are of particular interest to the life sciences due to the linear

momentum of light’s ability to directly manipulate particles and orbital-angular

momentum’s potential to unravel DNA spirals. Light carrying orbital-angular

momentum has also shown promise in information technology as a new means

of sending large amounts of data over long distances. This thesis will provide

background on the quantum optics of particle manipulation and the results from

experimental studies performed on this topic. The results show evidence of light

with both types of momentum being created and used to manipulate particles to

different degrees.
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Chapter 1

Introduction

1.1 Modern Optical Theory

The modern understanding of light and optics originated in the early twentieth

century. In 1901, while studying the radiation emitted from a black body, Max

Planck realized that the energy emitted from a black body could be properly

explained if the energy was quantized. Expanding on this, in 1905, Albert Einstein

theorized that the energy of all radiation could be quantized to individual points

in space. These light quanta not only carried energy but also momentum. Since

momentum is a property of particles, this was the birth of the idea of the particle

of light, now known as the photon [1].

Einstein’s particle nature of light would later be experimentally verified by

Arthur Compton [1]. In his experiment, he shot a beam of light through a sample of

carbon and noticed upon exiting the light had a longer wavelength. He concluded

that this was possible because the light consisted of particles that were losing

momentum to the object and therefore had lower energy and longer wavelength

[2]. With this experiment, the photon was experimentally verified, leading to the

dual particle/wave nature of light.
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1.2 Light’s Momentum

With the verification that light could indeed be classified as a particle, much

more attention was given to the momentum light carried. Traditionally, while

theory stated light could have three types of momentum, only two of these types

were actually observable. The first of these was spin angular momentum. This

type of momentum is associated with the spin value that every particle has. The

spin value of light is derived from its circular polarization and can come in one of

two values. The angular momentum contribution from spin is ~ × σ where ~ is

the reduced Planck’s constant and σ is an integer value that depends on how the

light is polarized: σ = 1 for left-handed circular polarization and σ = −1 for right

handed circular polarization [3].

The second traditional momentum was linear momentum associated with the

particle’s propagation through space. For massive particles, this momentum is

found through the equation p = mv where m is the mass of the particle and v

is its velocity. Photons, however, are massless particles and move at a constant

speed (c) known as the speed of light. As such a new momentum relation had to

be formulated. The momentum of light was found by Einstein to be related to

its wavelength through the relation p = h/λ where h is Planck’s constant and λ

is the wavelength of the light [4]. Beams of light carrying this momentum have a

distribution given by the equation

E(r, z) =
w0

w
· exp

(
−r2

w2
− ikz − iπr2

λR
+ iφ0

)
(1.1)

The terms in this equation are as follows: w0 is the beam waist radius, w is the

beam radius and has a value of w = w0[1 + ( λz
πw2

0
)2]1/2, r is the perpendicular

distance from the axis of propagation, i is the imaginary number, k is the wave
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number with value k = 2π
λ

, λ is the wavelength, R is the radius of curvature, and

φ0 is the Gaussian beam phase shift.

Equation 1.1 is a solution to the differential equation

∂2ψ

∂r2
+

1

r

∂ψ

∂r
− 2ik

∂ψ

∂r
= 0 (1.2)

known as the axially symmetric paraxial wave equation in cylindrical coordinates.

The derivation of equation 1.1 is well known and is introduced in most entry level

optics classes. As such, the full derivation is omitted. To see the full derivation

of this equation, please see [7]. Equation 1.1 is known as the Gaussian beam

equation and beams of light that are characterized by it are known as Gaussian

beams. Most standard laser beams are Gaussian beams.

A third type of momentum associated with light was finally observed in 1992.

A group of scientists discovered that if a beam of light was phase shifted to have a

certain phase dependence, it would carry orbital angular momentum (OAM). Light

beams carrying this type of momentum have an azimuthal phase dependency of

e−i`φ where ` is the OAM quantum number and can take any positive or negative

integer value, and φ is an angle and the azimuthal coordinate in the beams cross

section [3]. The characteristic equation for beams carrying this type of momentum

is

E(r, φ, z) =

[
2p!

π(p+m)!

]1/2
1

w(z)

[√
2r

w(z)

]m
Lpm

(
2r2

w2(z)

)
·

exp

[
−r2

w2(z)
− ikz − iπr2

λR(z)
− i (2p+m+ 1)φ0(z)

]
· exp (imϕ) (1.3)

where p and m are the indices of the Laguerre polynomials. This is another,
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albeit higher order, solution to the paraxial wave equation in cylindrical coor-

dinates. Again, for the full derivation refer to [7]. This equation is known as

the Laguerre-Gaussian beam equation as it carries in it the Laguerre polynomials

as well as all of the characteristics of the standard Gaussian beam. To create

a Laguerre-Gaussian beam, one must start with a standard Gaussian beam and

phase shift it.

1.3 Using Light’s Momentum

The importance of light’s momentum has been demonstrated its involvement

in many recent experiments. In 1970, a group of researchers led by Arthur Ashkin

used light to trap a dielectric particle, leading to the creation of what is now

referred to as optical tweezers [8]. Researchers in the life sciences would later

apply optical tweezers with linear momentum to use trapping and experimenting

on cells. One such example of this was an experiment done by Zhang and Liu

who were able to trap and manipulate biological cells in ways such as stretching

and organizing them [9]. In another experiment [10], optical tweezers using OAM

photons have been shown to have the capacity to impart a torque on DNA strands,

allowing “the study of DNA transcription under torsion”.

Photons carrying OAM also have a potential use in information technology.

Data transmission with light involves sending different streams of data over distinct

basis states so that the data will not be corrupted. While light beams traditionally

could only be created with two angular momentum basis states, corresponding to

the two values of spin, the addition of OAM has the potential to add an infinite

amount of states corresponding to the fact the quantum number ` can take any

positive or negative integer value. Indeed, an experiment done by Bzinovic et. al

showed that this was the case by using OAM states and achieving data transfer

rates as high as 400 gigabits-per-second [11].
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Due to the importance of both light’s linear and orbital-angular momentum,

the goal of the experiment on which this thesis was based was to create separate

beams carrying both types of momentum and then use those beams to manipu-

late particles. In order to explain fully the experiment, this thesis will start by

explaining the theory behind the major pieces of equipment used. This will be

followed by a detailed explanation of the set-up and processes used to create the

experiment. The results from the experiment will then be presented and analyzed

with the final conclusions to follow.
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Chapter 2

Experimental Equipment

In order to achieve the phase change necessary for creating a Laguerre-Gaussian

beam mode as well as trapping and observing particles, two pieces of high tech

equipment were needed: a spatial light modulator (SLM) and optical tweezers.

2.1 Spatial Light Modulators

A beam of photons does not just come out of a laser with the required azimuthal

phase dependence needed for it to carry orbital angular momentum. The beam

must first be passed through a diffraction grating or hologram to change its phase

dependency. These holograms are generated by “recording [. . . ] the interference

pattern made between a plane wave and the beam that one seeks to produce” [4]

which, in this situation, is the Laguerre-Gaussian beam. This interference pattern

looks like a normal diffraction grating, except for the middle part where a fork

appears. This fork changes depending on the value of the quantum number `.

As the equations for both plane waves and Laguerre-Gaussian beams are al-

ready known, a computer can easily take the two equations and find the inter-

ference between them, producing the needed hologram. This is a code that has

been written in many ways across a variety of different programming languages.
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For this thesis, two Matlab codes were found and tested to produce the required

holograms. The full codes can be found in Appendix C of this thesis [5][6].

The problem arises, however, in getting the beam to pass through the holo-

gram. From the computer, the hologram must be printed onto some medium

transparent to light. The medium must also not cut the intensity of the beam

by much so as to preserve the beam’s capability to influence matter. Because of

this, in the past, plastic and glass were used as mediums due to the fact that they

had the desired qualities. Holograms were directly printed onto slides of these

materials which were then added to experimental setups just like a diffraction

grating.

Producing beams with such holograms, however, was highly inefficient in ac-

tual experiments due to the myriad amount of parameters that needed to be

controlled. Such parameters include every aspect of the hologram itself including

what quantum number ` is being produced, how far apart the black and white

fringes are, and how thick the black lines are compared to the white lines. Each

of these parameters can have a great effect on the beam produced and changing

them is important to achieving the optimal beam required for the experiment.

With printing on glass and plastic, however, changing these parameters was not

feasible. This is because if one wanted to change these parameters, one must print

out a whole new set of slides, which would require a significant amount of excess

time and money.

Spatial Light Modulators are the answer to the limitations of old methods of

producing holograms. An SLM is a small electronic device that connects to a

computer through a VGA cable. On the SLM itself there is a small LCD in front

of a mirror. When connected to a computer, the SLM acts as a second monitor,

displaying on the LCD screen whatever is displayed on the computer. The SLM

interprets anything white as blank space and takes whatever is displayed in solid
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colors on the computer and puts the image on its own LCD. This eliminates the

need to make many different slides as all one has to do is produce a new image on

the laptop and the SLM will change its LCD accordingly.

Once the hologram is displayed on the SLM, the laser beam simply needs to

be aligned with the square LCD. The beam will then be reflected off the mirror

behind the LCD and pass through the hologram where it will be phase shifted to

a Laguerre-Gaussian beam. If the beam produced does not exactly match what

was expected, the hologram on the computer can be moved around, shrunk, or

expanded until a perfect beam is achieved. As Miles Padgett puts it, “These

devices (SLMs) produce reconfigurable, computer-controlled holograms that allow

a simple laser beam to be converted into an exotic beam with almost any desired

phase and amplitude structure.” [4, 36]

2.2 Optical Tweezers

In order to trap and observe the particles optical tweezers are employed. Op-

tical tweezers utilize a modified high powered microscope and a laser. The laser

is shot through an aperture on the side where it will be redirected by a series of

mirrors down the path of sight to the tray where the sample is arranged.

Once the beam is set up correctly and is passing through the prepared sample,

there are two different ways in which the beam can trap the particles, depending

on the size of the particle itself. For particles with dimensions larger than the

wavelength, the mechanics behind optical tweezers can be explained fully using

ray optics [12]. For particles with dimensions smaller than the laser’s wavelength,

the force of the trap can only be understood “in terms of the electric field near the

trapped particle” [12]. As the only particles used in this experiment were larger

than the wavelength of light used (micrometer sized particles versus a nanometer

beam), the ray optics approach is sufficient for the present work.
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To see how ray optics traps a particle, imagine first that a particle is within the

radius of the beam but is displaced a certain distance ∆x to the left from the center

of the beam. If the center of the beam is where the intensity is the strongest, as it

should be for a Gaussian beam, at this position rays of light entering the particle

are more intense to the right than they are to the left. As these light rays enter

the particle, they are refracted out in a direction towards the center of the particle

in the x direction. This means that if a ray enters on the left side of the particle, it

will be bent slightly to the right upon exiting and vice versa for a particle entering

on the right side.

As light can also be thought of as a particle, this change in direction is equiv-

alent to a change in momentum. Since a change in momentum over time is equal

to a force through the equation ~F = ∆~p/∆t, the photon exerts a reactive force

on the particle opposite to the direction of its change in momentum. Looking

at individual rays again, if the light entered on the left side and is bent right, it

would exert a force on the particle to the left. Likewise, a ray of light entering on

the right would exert a force to the right.

Going back to the original displaced particle example, adding up the forces of

all the rays entering the particle would result in a net force pushing the particle to

the left. This is because when displaced to the left, the less intense rays entering

the particle on the left carrying smaller momentum would produce a lesser force

than the more intense rays on the right carrying greater momentum. The forces

from the right rays completely dominate the forces from the left rays, causing the

particle to move to the right. Once the particle reached the center, however, it

would stop moving completely as it is at this point that the intensity of the rays

entering the left side would be completely equal to the intensity entering the right

side. It is at this point that the particle is trapped in the lateral direction. For

tweezers using beams with OAM, the explanation is similar, but the center of the
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beam trap is moving around in a circle of constant radius. The trapped particle,

therefore, follows the trap and starts to move in a similar circle.
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Chapter 3

Experimental Set-Up

To achieve all the goals set for this project, it was necessary to split the exper-

iment into three stages, each with its own material set-up and end goal. The first

phase was dedicated to understanding how to use optical tweezers with traditional

linear momentum and then trapping and manipulating a particle with this kind of

momentum. The experiment then advanced to testing the SLM to produce pho-

tons with orbital angular momentum and measuring the intensity of light after

passing through many different holograms to find the best one for the experiment.

Finally, the third phase involved adding the SLM to the previous optical tweezers

set-up and trapping a micro-particle with OAM photons.

3.1 Achieving Linear Momentum Trapping

As laser beams naturally carry linear momentum, the set-up for achieving

trapping with this kind of beam was the simpler of the two particle trapping set-

ups. For this experiment a green 532 nm laser was used. This was set up on the left

side of the optics bench and set to shine into the aperture of the optical tweezers.

As the aperture needed to be saturated with light, however, two more pieces of

equipment were added between the laser and the optical tweezers. The first item

11



Figure 3.1: The set-up used for the linear momentum particle trapping phase of
the experiment

added was a beam expander of variable magnification. For this experiment, it

was set to 10x magnification. With this added, the laser beam was able to fill

the whole aperture of the optical tweezers. An aperture was then added after the

beam expander to cut off any light not needed to fill the aperture.

Once the beam was correctly positioned to shine straight through the aper-

ture and down to the sample tray of the optical tweezers, a sample of particles

was prepared on a glass slide and placed on the tray. For this experiment, the

sample consisted of particles of polystyrene diluted with water. These particles

were chosen due to their ease of acquisition and the fact that they are partially

transparent to light. Different samples of these particles were made, some being

more diluted or concentrated than others. The experiment also made use of three

different sizes of particles: 0.5 micrometers, 1 micrometer, and 2 micrometers.

In order to record the motion of the particles under the influence of the beam,

one of the eyepieces on the optical tweezers was replaced by a 1024 × 770 pixel

resolution video camera that was connected to a computer. The computer had

video recording software capable of making .wmv files that would be necessary

for the later data analysis. With the sample set up and the camera and optical

tweezers focused and ready to record, attention would turn to the computer, where
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a preview of the recording would show a magnified version of the particles under

the focus of the tweezers. If there were no particles in view, the tray the sample

was sitting on would be manipulated using the knobs on the sides of the tray.

The next step was determining when to start the recording. As the purpose

of the experiment was to measure the trapping force of the laser and thereby

measure the momentum change the light imparts to the particle, it was important

to not start the recording when the particle was already trapped. Because of this,

it was necessary to start recording before the trapping occurred and then wait

for the random Brownian motion of the particle to bring it near the trap. Once

the particle actually was trapped, the recording stopped and the video file was

transferred to the data analysis computer.

The analysis computer had a couple of different programs on it that were

needed to complete the data analysis. The first program was the VeryDOC Video

to GIF Converter. The purpose of this program is to take the previously recorded

video and convert it into a sequence of images frame by frame. These images

would then be loaded into the Able Particle Tracker, a program that can detect

a particle in an image and then track its position through the following sequence

of images. Once finished tracking the particle, the program would then produce a

notepad document with a list of the x and y coordinates of the particle in pixels

in every frame. This data would then be copied over to an Excel document where

it could be manipulated freely.

Within the Excel sheet, various formulas were to convert the x and y coordi-

nates to a radius. The radius was converted to micrometers from pixels using a

previously determined conversion factor of 13.5 pixels/µm. This conversion factor

was calculated using calibration tools included with the microscope. The velocity

of the particle was determined using the traditional v = ∆r/∆t formula with the

change in radius coming from the collected data and the change in time coming
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from the amount of frames per second within the video. The exact frame at which

the particle was trapped was then determined based on when the particle expe-

rienced the greatest velocity. A few frames before and after this frame would be

taken and then the average velocity of these frames would be calculated.

After finding the average velocity of the trap, another equation has to be used

to find the force of the light on the particle that is also experiencing Brownian

motion. This equation is the Langevin equation,

m~̈r = −γ~̇r + ~F (~r) + σξ(t) (3.1)

where m is the mass of the system determined from the density equation with the

density of polystyrene being 1.05g/cm3, ~̈r and ~̇r are the acceleration and velocity

of the particle, respectively, γ is the scalar friction constant, ~F (~r) is the total force

on the particle, σ is the amplitude of the fluctuating force, and ξ(t) is the equation

governing the fluctuations of the random force [13]. The γ term can be found using

the equation γ = 6πηa, where η is the viscosity of the liquid, in this case water,

and a is the radius of the particle. The σξ(t) is found using experimental data.

For this particular experiment, early data showed that |γ~̇r| � |m~̈r|, allowing

equation 3.1 to be rewritten as

γ~̇r = ~F (~r) + σξ(t). (3.2)

Now the equation can be solved for the force by subtracting the experimentally

determined σξ(t) , (found by recording the motion of a particle without a beam of

light acting on it and finding the average force from many of such recordings) from

the γ~̇r term. Finally, with this force found, the change in momentum imparted to
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the particle by the light is found through the simple relation of ~F ×∆t = ∆~p.

3.2 Verifying the Laguerre-Gaussian Phase

Shift

Figure 3.2: The set-up used to calibrate the SLM.

Before going through the process of adding the SLM to the previous set-up,

it was important to determine that the SLM was working properly and was able

to produce the necessary phase shift. To do this, an entirely different set up was

built on the second optics bench in the lab. In this set up, a lower powered 543

nm laser was set up on the left side of the bench. The SLM was then set up in

the path of the laser to reflect the light at a 90◦ angle so that the beam would hit

a piece of cardboard set up for easy viewing of the beam.

After checking to make sure the beam was hitting the LCD part of the SLM,

the computer hooked up to the SLM was turned on and a hologram was projected

onto the LCD. The hologram needed to achieve the Laguerre-Gaussian phase shift

was moved around in the paint program, corresponding to it being moved around

on the SLM, until it was positioned just right for the beam to be passing through

it. The correct position could be determined by examining the light after it was
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reflected off the SLM and projected onto the cardboard. Once the first-order

diffracted maxima had a doughnut shape with the hole exactly in the middle, the

hologram was positioned correctly.

It was at this time that the hologram to be used in the final part of the experi-

ment was chosen. The first decision was to use either a binary or blazed diffraction

grating. Binary gratings feature a sharp transition between the black and white

portions of the grating and produce a diffraction pattern that has equal intensities

of light on both sides of the central diffraction maximum. Binary gratings have

more smooth transitions from white to black through the use of various shades of

gray. These gratings have diffraction patterns where the intensity of the light on

one of the sides of the maximum is greater than the other side.

Figure 3.3: The two types of gratings tested in this experiment. On the left is a
blazed grating and on the right is a binary. Both of these gratings correspond to
the OAM quantum number value of ` = 1.

Different settings for the code that generated the grating were also tested to

find the values that gave the greatest intensity and best shape for the diffraction

pattern. The number of lines within the forked part of the grating was one of these

with higher values giving lower intensities but better shapes with more defined

holes. Other parameters included the total size of the hologram (with smaller

sizes giving greater space between maxima) and width of the black lines compared

to the white lines (with more white giving greater intensity but a less defined

diffraction pattern). With all these parameters in mind, the best hologram was
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chosen and the SLM was moved to the previous set up for the final phase of the

project.

3.3 Achieving OAM Trapping

For the final phase of the experiment, the experimental set-up was nearly

identical to the first phase. The biggest change was that the SLM had to be

added to the set-up, which meant that the laser had to be re-positioned so that

when the light was reflected off the screen of the SLM, it would pass through into

the microscope. A second aperture was also added to the set-up after the SLM

and before the beam expander. This was used to make sure only the light from

one of the rings of the diffraction pattern entered the microscope.

The data collection and analysis segment was also nearly identical to what

occurred with linear momentum. The video was recorded and analyzed in the

same way and all the previously used formulas were applied again to determine

the force and momentum transferred to the particle. The force actually calculated,

however, was different from the first experiment. While the linear momentum test

was focused on the trapping force, this test focused on the force that was causing

the particle to spin. As such, the video was not started until a particle was actually

trapped so that only the orbiting force was calculated. With this force, the orbital

momentum could then be calculated. An additional calculation was performed this

phase in order to find the torque on the particle through the formula ~τ = ~r × ~F .

17



Figure 3.4: The set-up used for the OAM particle trapping phase of the experi-
ment.
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Chapter 4

Results

As the data for this thesis included over forty videos and excel documents, not

all of the data has been included. Only certain key graphs and data points as well

as some averages needed to explain the results can be found in the appendices.

The full results of this experiment can be reviewed on the computer in the optics

lab on the Boca Raton campus of FAU.

With regards to the first phase of the project, the goal was consistently met

with polystyrene particles of size 1 and 2µm. It was discovered early on that

the camera did not have high enough resolution for the subsequent programs to

analyze the 0.5µm particles. As such, all subsequent tests were done with the

larger particle sizes.

Around ten tests were done for each size of particle. Once all of the videos were

analyzed, the exact moment of trapping was found in each video’s corresponding

excel document. From each test, the data from the trap and a few frames before

and after the trap were taken and added to an average document. From here, the

average force for all tests for each particle was found. The graphs of these average

documents are included in Appendix A. For the 1µm particle, the average force

of the trap was found to be 2.30× 10−13N and for the 2µm particle it was found

to be 1.86×10−13N . After subtracting out the Brownian motion force, which had
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Figure 4.1: The top image is the diffraction pattern produced by a binary grating
while the bottom is the pattern produced by a blazed grating.

a value of 3.27 × 10−14N for the 1µm particles and 7.02 × 10−14N for the 2µm

particles, the two forces were calculated to be 1.97× 10−13N and 1.15× 10−13N ,

respectively. As can be seen from the graph for this test in Appendix A, there was

a definite trapping force which confined the particle to a certain location.

Moving onto the SLM calibration phase of the experiment, the choice of grat-

ing between binary and blazed was determined by the intensity of the diffraction

pattern each one produced. It was initially believed that the blazed grating would

produce a higher intensity due to the fact that the grating was designed to con-

centrate all the light from one side of the pattern into a single point.

Actual tests showed, however, that the binary grating gave an intensity of

223.0mW/m2 on one side of the diffraction maximum and 232.5mW/m2 on the

other. In contrast, the blazed grating gave an intensity of 50.9mW/m2 and

82.8mW/m2 on the respective sides. While the blazed grating gave a much greater

difference in intensities between sides, it cut down on the intensity of the whole

system by a large amount. It was determined that this was due to the fact that

the light had to pass through so much more of semi-transparent grey on the blazed

compared to the binary grating where the totally transparent white bands were

much larger.

With the binary grating chosen, determining the best value for ` was next.
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After examining a couple of different gratings with different values of `, it was

decided that the ` = 1 grating was the most effective. This is because although

higher values of ` gave more distinct doughnut holes in the ring patterns, the holes

started to become more elliptical with those higher values. The intensity of the

light was also highest for this value. As such, the grating used for the final phase

of the experiment was an ` = 1 binary one.

The OAM experimental phase involved over forty different recordings. Unfor-

tunately, the 2µm particles were too big to be caught by the force of the trap

so all tests were done with the 1µm particles. Another major obstacle was that

none of the videos showed evidence of any kind of circular motion on the particle’s

behalf. This was further confirmed by the data analysis that showed, for the most

part, that the particle was not restricted from the center of the trap. There were

a few tests that showed an empty center that the particle was restricted from

accessing and their graphs and some data points are included in Appendix B, but

these were far from the norm. For the particles that did show some semblance of

circular motion, the average trapping force was found to be 1.25 × 10−14N and

the torque imparted on them was 6.18× 10−21Nm.
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Chapter 5

Conclusion

Referring back to the main goals of the experiment, success was achieved with

all but one of them. A photon carrying linear momentum was shown to exert a

trapping force on the order of 10 to 100 femto-Newtons. While this force definitely

seems small, it is important to remember that particles that are experiencing the

force are also very small. Trapping particles with linear momentum, therefore, is

viable and, due to the sheer number of tests that were successful, is easy to achieve

with the right equipment.

Similarly, creating the right types of laser beams for the different momenta was

also consistently done. Producing Gaussian laser beams is very simple due to the

fact that most laser beams are naturally Gaussian. With the help of the SLM,

creating Laguerre-Gaussian beams also becomes easier. Not having to constantly

switch slides of different gratings in a set-up to change one small parameter speeds

up the process a great deal.

As for the OAM particle trapping goal, as stated before there was no sense

of the particle experiencing circular motion, neither from the video nor from the

data. After doing some further research and tests, it was speculated that this was

due to two reasons. The first is that the particles used were too large to feel a

force from the trap. A smaller particle would not need as great a force to move it
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around, so making use of smaller particles would be greatly beneficial. As stated

before, however, the video camera used for this experiment did not have a high

enough resolution to distinguish particles smaller than 1µm. This means that any

future experiments will have to utilize a higher resolution camera. Unfortunately,

for this experiment, there was neither the time nor the funding to find such a

camera.

The other reason that might explain why the OAM trapping was not a success

is that the laser used did not have a high enough intensity. It is easy to see that

a higher intensity will lead to better trapping as a higher intensity means more

photons, and the more photons entering a particle, the greater the force exerted

on it. Through some tests on the intensity on the beam after it entered the

microscope, it was discovered that the intensity was a mere 1.26W/m2. Compared

to the intensity of the beam for the linear momentum trapping which had a value

of 36.64W/m2, it is clear that the intensity was just too low for trapping to occur.

It was discovered that this loss in intensity was due mostly to the addition of the

SLM so there was no way around it. As such, any further tests will also need

a higher intensity laser. Again, acquiring such a laser was not feasible for this

experiment due to the time and funding constraints.
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Appendix A

Linear Momentum Data

The following is the data for the linear momentum tests on 1µm and 2µm

particles. The data shown is an accumulation of samples taken from five different

tests performed on each particle size. The sampling focused on a few points before,

during, and after the trapping occurred for each test. The graphs show that for

both sizes of particles, very far from the trap, the particles experience random

forces, which is attributed to Brownian motion. As the particle gets closer to the

trap, it experiences an increase in force from the light trap, pulling it into the

trap. Once the particle is in the trap, the force becomes nearly zero with some

amount of experimental error.

A.1 One Micrometer Particle

Radius (m) Force (N)

2.13E-8 7.36E-15

3.11E-8 1.10E-14

4.70E-8 -2.60E-14

6.99E-8 3.77E-14
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9.10E-8 8.28E-14

1.16E-7 -2.20E-14

1.31E-7 3.38E-14

1.43E-7 1.55E-14

1.67E-7 -2.78E-14

1.74E-7 -2.98E-14

2.36E-7 3.73E-14

2.37E-7 7.01E-15

2.43E-7 1.47E-14

2.57E-7 3.36E-14

3.12E-7 7.88E-14

5.60E-7 7.21E-14

8.32E-7 2.18E-13

8.42E-7 3.13E-13

8.53E-7 2.54E-13

1.14E-6 2.13E-13

1.41E-6 2.08E-13

1.42E-6 4.63E-13

1.59E-6 2.77E-13

1.60E-6 2.91E-13

1.92E-6 2.23E-13

1.96E-6 1.97E-13

1.97E-6 1.30E-13

1.99E-6 1.32E-13

1.99E-6 2.49E-14

2.13E-6 1.39E-13
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2.21E-6 6.77E-14

2.35E-6 1.18E-13

2.37E-6 3.32E-14

2.41E-6 4.72E-15

2.50E-6 1.95E-13

2.52E-6 3.12E-14

Table A.1: One Micrometer Linear Momentum Data

Figure A.1: One Micrometer Particle Linear Momentum Trapping Force

A.2 Two Micrometer Particle

Radius (m) Force (N)

6.40E-9 -6.98E-14

1.08E-8 -1.38E-14

2.52E-8 -5.83E-14
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3.55E-8 -5.80E-14

5.36E-8 -4.81E-14

8.65E-8 -4.87E-14

1.08E-7 -6.36E-14

1.16E-7 -2.61E-14

1.21E-7 -2.97E-14

1.24E-7 -6.77E-14

1.25E-7 -5.42E-14

1.38E-7 -6.45E-14

1.71E-7 -5.65E-14

1.76E-7 -6.79E-14

1.84E-7 -6.72E-14

2.15E-7 -5.71E-14

2.21E-7 -2.59E-14

6.92E-7 1.76E-13

7.01E-7 1.74E-13

9.73E-7 2.47E-13

1.29E-6 3.13E-13

1.40E-6 2.28E-13

1.61E-6 3.13E-13

1.84E-6 7.59E-14

1.95E-6 7.16E-14

2.18E-6 2.00E-13

2.25E-6 5.87E-14

2.34E-6 -3.39E-14

2.36E-6 -6.05E-14
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2.50E-6 -6.80E-14

2.51E-6 3.51E-14

2.66E-6 -3.33E-15

2.85E-6 6.63E-15

2.94E-6 -3.26E-14

Table A.2: One Micrometer Linear Momentum Data

Figure A.2: Two Micrometer Particle Linear Momentum Trapping Force
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Appendix B

OAM Data

The following is a sampling of data taken from the tests done with orbital-

angular momentum. As stated earlier, the complete data is too large to be included

in this thesis. The tables are just segments of the excel data sheets. The graphs,

however, show the full range of data. The data has been collected from two out of

the total four successful tests in the whole experiment. The first table and set of

graphs is for the fourth test performed and the second table and set of graphs is

for the ninth test performed. The first graph shows the position of the particle in

an x− y plane in all frames recorded and the second graph shows the force on the

particle at a certain radius away from the trap. The position graphs show that

the particle is restricted from entering some circle of a certain radius, hinting at

some kind of circular motion. The force graphs show that the particle does not

experience a force too close or too far away from the trap, suggesting the particle

is being held in a radius range.

B.1 Fourth OAM Test

Time (s) X(m) Y(m) Radius (m) Force (N)
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. . . . . . . . . . . . . . .

2 -6.75E-8 -6.50E-8 9.37E-8 4.93E-16

2.02 7.74E-8 -5.06E-8 9.25E-8 0

2.04 7.74E-8 -5.06E-8 9.25E-8 2.44E-14

2.06 6.81E-8 -1.34E-7 1.51E-7 2.57E-15

2.08 5.29E-8 -1.47E-7 1.57E-7 0

2.1 5.29E-8 -1.47E-7 1.57E-7 3.91E-14

2.12 1.23E-7 -2.17E-7 2.49E-7 5.52E-14

2.14 8.54E-8 -8.19E-8 1.18E-7 1.91E-14

2.16 1.19E-7 -1.12E-7 1.64E-7 0

2.18 1.19E-7 -1.12E-7 1.64E-7 4.06E-14

2.2 1.49E-7 -2.13E-7 2.60E-7 7.67E-14

2.22 5.68E-8 5.32E-8 7.78E-8 6.53E-14

2.24 1.37E-7 -1.88E-7 2.33E-7 0

2.26 1.37E-7 -1.88E-7 2.33E-7 6.01E-14

2.28 5.34E-8 7.26E-8 9.02E-8 7.52E-15

2.3 9.27E-8 5.54E-8 1.08E-7 0

2.32 9.27E-8 5.54E-8 1.08E-7 4.81E-14

2.34 1.65E-7 -1.49E-7 2.22E-7 7.48E-14

2.36 9.08E-8 -3.89E-7 4.00E-7 2.69E-14

2.38 1.56E-8 -3.36E-7 3.36E-7 0

2.4 1.56E-8 -3.36E-7 3.36E-7 7.67E-15

2.42 2.38E-8 -3.53E-7 3.54E-7 4.73E-15

2.44 -1.12E-7 -3.48E-7 3.66E-7 0

2.46 -1.12E-7 -3.48E-7 3.66E-7 3.67E-14

2.48 1.63E-7 -2.25E-7 2.78E-7 4.89E-14
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2.5 9.54E-8 -1.31E-7 1.62E-7 3.66E-14

2.52 4.03E-8 6.37E-8 7.54E-8 0

2.54 4.03E-8 6.37E-8 7.54E-8 4.99E-15

2.56 7.28E-8 4.81E-8 8.72E-8 4.24E-14

2.58 1.87E-7 1.30E-8 1.88E-7 0

2.6 1.87E-7 1.30E-8 1.88E-7 3.68E-14

2.62 7.59E-8 6.61E-8 1.01E-7 4.51E-15

2.64 7.48E-8 8.24E-8 1.11E-7 7.93E-15

2.66 7.29E-8 5.70E-8 9.25E-8 0

2.68 7.29E-8 5.70E-8 9.25E-8 9.83E-15

2.7 3.66E-9 -6.91E-8 6.92E-8 1.50E-14

2.72 3.51E-8 -9.86E-8 1.05E-7 1.09E-13

2.74 3.21E-7 1.72E-7 3.64E-7 0

2.76 3.21E-7 1.72E-7 3.64E-7 1.088E-13

. . . . . . . . . . . . . . .

Table B.1: Fourth OAM Test
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Figure B.1: Fourth OAM Test Trapping Positions

Figure B.2: Fourth OAM Test Trapping Force
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B.2 Ninth OAM Test

Time (s) X(m) Y(m) Radius (m) Force (N)

. . . . . . . . . . . . . . .

2.00 1.44E-7 4.22E-8 1.50E-7 1.92E-14

2.02 -1.18E-7 -3.74E-9 1.18E-7 3.21E-14

2.04 -1.16E-7 -1.27E-8 1.16E-7 2.75E-14

2.06 -1.91E-8 -1.03E-7 1.04E-7 2.69E-14

2.08 -1.18E-7 -3.74E-9 1.18E-7 2.45E-14

2.10 -1.37E-7 -3.74E-9 1.37E-7 2.33E-14

2.12 -1.18E-7 2.43E-7 2.70E-7 3.66E-14

2.14 -1.06E-7 -5.83E-9 1.06E-7 2.75E-14

2.16 -1.18E-7 -3.74E-9 1.18E-7 3.27E-14

2.18 -1.18E-7 -3.74E-9 1.18E-7 2.37E-14

2.20 -2.28E-7 1.06E-7 2.52E-7 2.07E-14

2.22 -2.22E-7 -2.65E-8 2.23E-7 2.17E-14

2.24 -1.97E-7 -1.36E-8 1.97E-7 2.30E-14

2.26 -2.04E-7 8.27E-8 2.20E-7 3.04E-14

2.28 -1.94E-7 1.15E-7 2.26E-7 2.07E-14

2.30 -1.97E-7 -1.36E-8 1.97E-7 2.39E-14

2.32 -3.15E-7 -1.03E-7 3.32E-7 3.29E-14

2.34 1.73E-7 3.23E-8 1.76E-7 8.25E-15

2.36 -1.18E-7 -3.74E-9 1.18E-7 3.27E-14

2.38 -1.18E-7 -3.74E-9 1.18E-7 1.39E-14

2.40 1.59E-7 3.22E-8 1.63E-7 1.27E-14

2.42 -1.18E-7 2.43E-7 2.70E-7 3.22E-14

2.44 2.53E-7 9.16E-8 2.69E-7 9.43E-16
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2.46 1.88E-7 1.99E-8 1.89E-7 2.66E-15

2.48 -1.18E-7 -3.74E-9 1.18E-7 4.11E-16

2.5 -1.60E-7 -1.13E-7 1.96E-7 2.76E-14

2.52 -1.45E-7 -1.14E-7 1.85E-7 2.76E-14

2.54 -1.60E-7 -1.13E-7 1.96E-7 3.27E-14

2.56 -1.60E-7 -1.13E-7 1.96E-7 3.27E-14

2.58 -1.60E-7 -1.13E-7 1.96E-7 3.27E-14

2.60 -1.60E-7 -1.13E-7 1.96E-7 4.25E-15

2.62 -1.08E-7 -1.24E-8 1.09E-7 2.88E-14

2.64 -1.18E-7 -3.74E-9 1.18E-7 3.07E-14

2.66 -1.13E-7 -7.94E-9 1.13E-7 2.77E-15

2.68 -1.97E-7 -1.36E-8 1.97E-7 1.34E-13

2.70 -5.78E-7 -1.36E-7 5.94E-7 5.12E-14

2.72 -3.40E-7 -2.01E-7 3.95E-7 5.18E-14

2.74 -1.91E-8 1.94E-7 1.95E-7 3.29E-16

2.76 -1.18E-7 -3.74E-9 1.18E-7 3.29E-16

. . . . . . . . . . . . . . .

Table B.2: Ninth OAM Test
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Figure B.3: Ninth OAM Test Trapping Positions

Figure B.4: Ninth OAM Test Trapping Force

36



Appendix C

Code

C.1 Binary Generating Code

The following is the Matlab code used to generate the ` = 1 binary grating

seen earlier in the text. For the original, unaltered code, please see [5].

c l e a r

R=1; % rad iu s o f curvature o f wavefront

A=1; % ob l i que i n c i d enc e (1=ob l i que 0=c o l l i n e a r ) : s t r a i g h t f r i n g e s

B=0; % expanding (1=yes 0=no ) : c onc en t r i c f r i n g e s

L=1; % t op o l o g i c a l charge

Lambda=0.5; % f r i n g e spac ing

aspect =0.5 ; % f r a c t i o n o f f r i n g e per iod that i s white / c l e a r

r e s =500; % r e s o l u t i o n ( r e s x r e s number data pts c a l c u l a t ed )

range=5; % range ( p l o t t ed in x in y on i n t e r v a l [− range , range ]

param ( : , 1 )=−range : 2 . 0001∗ range / r e s : range ; % l i s t o f x va lue s

param ( : , 2 )=range :−2.0001∗ range / r e s :− range ; % l i s t o f y va lue s

f o r x=1: r e s

f o r y=1: r e s

% wave i n t e r f e r e n c e func t i on

p s i (x , y )=L∗atan (param(y , 2 ) /param(x , 1 ) )−2∗pi ∗param(x , 1 ) /Lambda∗A+ . . .

( ( param(x , 1 ) ) ˆ2+(param(y , 2 ) ) ˆ2) /Rˆ2∗B+pi /2 ;

% transmit tance func t i on ( the one p l o t t ed )

T(x , y )=(1+(cos ( p s i (x , y )+pi ∗(1+param(x , 1 ) /abs (param(x , 1 ) ) ) ∗1/2) − . . .

cos ( aspect ∗ pi ) ∗L) /abs ( cos ( p s i (x , y )+pi ∗(1+param(x , 1 ) / . . .
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abs (param(x , 1 ) ) ) ∗1/2)−cos ( aspect ∗ pi ) ∗L) ∗L) ∗1/2 ;

end

end

contour f (T) % f i l l e d contour p l o t

colormap gray ;

ax i s o f f ;
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C.2 Blazed Generating Code

The following is the Matlab code used to generate the ` = 1 blazed grating

seen earlier in the paper. Again, the code provided is the code with the exact

parameters used in this experiment. The original code can be found at [6].

c l e a r a l l ;

n = 2ˆ10 ; % S i z e o f the array

mask = ze ro s (n) ; % Sets the mask as an array o f a l l z e r o s i n i t i a l l y

I = 1 : n ; % Setup s i z e o f array

x = I−n/2 ;

y = n/2− I ;

[X,Y] = meshgrid (x , y ) ; % I n i t i a t e c a r t e s i a n coo rd ina t e s

theta = atan2 (Y,X) ; % Transforming to po la r coo rd ina t e s

r = sq r t (X.ˆ2 + Y.ˆ2 ) ; %

D = 3∗ pi ;

K = 0 .11 .∗2∗ pi /D; % Grating Constant

L = 1 ; % Sets the value o f L

% This i s where the magic happens . A i s the g ra t ing func t i on

A = ( ( (L .∗ theta ) . / 1 ) − K.∗X) ;

% This g i v e s the mask the blazed appearance due to the modulo func t i on

%mask = (1/ sq r t (2 ) ) .∗ exp(−1 i .∗0 . 1 1∗mod(A,2∗ pi ) ) ;

mask = exp(−1 i .∗0 . 3∗mod(A,2∗ pi ) ) ;

f i g u r e

imagesc ( r e a l (mask ) )

colormap ( gray )

ax i s o f f
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