You are here

An Algorithmic Approach to The Lattice Structures of Attractors and Lyapunov functions

Download pdf | Full Screen View

Date Issued:
2016
Summary:
Ban and Kalies [3] proposed an algorithmic approach to compute attractor- repeller pairs and weak Lyapunov functions based on a combinatorial multivalued mapping derived from an underlying dynamical system generated by a continuous map. We propose a more e cient way of computing a Lyapunov function for a Morse decomposition. This combined work with other authors, including Shaun Harker, Arnoud Goulet, and Konstantin Mischaikow, implements a few techniques that makes the process of nding a global Lyapunov function for Morse decomposition very e - cient. One of the them is to utilize highly memory-e cient data structures: succinct grid data structure and pointer grid data structures. Another technique is to utilize Dijkstra algorithm and Manhattan distance to calculate a distance potential, which is an essential step to compute a Lyapunov function. Finally, another major technique in achieving a signi cant improvement in e ciency is the utilization of the lattice structures of the attractors and attracting neighborhoods, as explained in [32]. The lattice structures have made it possible to let us incorporate only the join-irreducible attractor-repeller pairs in computing a Lyapunov function, rather than having to use all possible attractor-repeller pairs as was originally done in [3]. The distributive lattice structures of attractors and repellers in a dynamical system allow for general algebraic treatment of global gradient-like dynamics. The separation of these algebraic structures from underlying topological structure is the basis for the development of algorithms to manipulate those structures, [32, 31]. There has been much recent work on developing and implementing general compu- tational algorithms for global dynamics which are capable of computing attracting neighborhoods e ciently. We describe the lifting of sublattices of attractors, which are computationally less accessible, to lattices of forward invariant sets and attract- ing neighborhoods, which are computationally accessible. We provide necessary and su cient conditions for such a lift to exist, in a general setting. We also provide the algorithms to check whether such conditions are met or not and to construct the lift when they met. We illustrate the algorithms with some examples. For this, we have checked and veri ed these algorithms by implementing on some non-invertible dynamical systems including a nonlinear Leslie model.
Title: An Algorithmic Approach to The Lattice Structures of Attractors and Lyapunov functions.
208 views
58 downloads
Name(s): Kasti, Dinesh, author
Kalies, William D., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Mathematical Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 118 p.
Language(s): English
Summary: Ban and Kalies [3] proposed an algorithmic approach to compute attractor- repeller pairs and weak Lyapunov functions based on a combinatorial multivalued mapping derived from an underlying dynamical system generated by a continuous map. We propose a more e cient way of computing a Lyapunov function for a Morse decomposition. This combined work with other authors, including Shaun Harker, Arnoud Goulet, and Konstantin Mischaikow, implements a few techniques that makes the process of nding a global Lyapunov function for Morse decomposition very e - cient. One of the them is to utilize highly memory-e cient data structures: succinct grid data structure and pointer grid data structures. Another technique is to utilize Dijkstra algorithm and Manhattan distance to calculate a distance potential, which is an essential step to compute a Lyapunov function. Finally, another major technique in achieving a signi cant improvement in e ciency is the utilization of the lattice structures of the attractors and attracting neighborhoods, as explained in [32]. The lattice structures have made it possible to let us incorporate only the join-irreducible attractor-repeller pairs in computing a Lyapunov function, rather than having to use all possible attractor-repeller pairs as was originally done in [3]. The distributive lattice structures of attractors and repellers in a dynamical system allow for general algebraic treatment of global gradient-like dynamics. The separation of these algebraic structures from underlying topological structure is the basis for the development of algorithms to manipulate those structures, [32, 31]. There has been much recent work on developing and implementing general compu- tational algorithms for global dynamics which are capable of computing attracting neighborhoods e ciently. We describe the lifting of sublattices of attractors, which are computationally less accessible, to lattices of forward invariant sets and attract- ing neighborhoods, which are computationally accessible. We provide necessary and su cient conditions for such a lift to exist, in a general setting. We also provide the algorithms to check whether such conditions are met or not and to construct the lift when they met. We illustrate the algorithms with some examples. For this, we have checked and veri ed these algorithms by implementing on some non-invertible dynamical systems including a nonlinear Leslie model.
Identifier: FA00004668 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Differential equations -- Numerical solutions.
Differentiable dynamical systems.
Algorithms.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004668
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.