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Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks 

and represent a relatively new and very active field of research. VANETs will enable in 

the near future applications that will dramatically improve roadway safety and traffic 

efficiency. There is a need to increase traffic efficiency as the gap between the traveled 

and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem 

tries to dynamically distribute vehicles efficiently on the road network and in accordance 

with their origins and destinations. We present a novel dynamic decentralized and 

infrastructure-less algorithm to alleviate traffic congestions on road networks and to fill 

the void left by current algorithms which are either static, centralized, or require 

infrastructure. The algorithm follows an online approach that seeks stochastic user 

equilibrium and assigns traffic as it evolves in real time, without prior knowledge of the 



vi 

traffic demand or the schedule of the cars that will enter the road network in the future. 

The Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant 

Colony Optimization for VANETs follows a metaheuristic approach that uses reports from 

other vehicles to update the vehicle’s perceived view of the road network and change route 

if necessary. To alleviate the broadcast storm spontaneous clusters are created around 

traffic incidents and a threshold system based on the level of congestion is used to limit 

the number of incidents to be reported. Simulation results for the algorithm show a great 

improvement on travel time over routing based on shortest distance. As the VANET 

transceivers have a limited range, that would limit messages to reach at most 1,000 meters, 

we present a modified version of this algorithm that uses a rebroadcasting scheme. This 

rebroadcasting scheme has been successfully tested on roadways with segments of up to 

4,000 meters. This is accomplished for the case of traffic flowing in a single direction on 

the roads. It is anticipated that future simulations will show further improvement when 

traffic in the other direction is introduced and vehicles travelling in that direction are 

allowed to use a store carry and forward mechanism. 
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1. INTRODUCTION

Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETwork 

(MANETs) and represent a relatively new and very active field of research. Some 

particular characteristics of VANETs that make them unique are high-speed mobility, 

driver behavior that is dependent on personality traits, and mobility constraints as cars 

move on roadways with set boundaries. VANETs will enable in the near future 

applications that will dramatically improve traffic flow in the highways and improve 

significantly the associated ecological impact. According to the Federal Highway 

Administration (FHWA) [1], the U.S. highway network was near completion by the late 

1980s; there has been little construction of new roads and highways since the number of 

lane miles has been increased mainly by adding additional lanes to carry more vehicles. 

From 1985 to 2006 the lane miles increased from 8 to 8.4 million while the Vehicle Miles 

Traveled doubled during the same period. From these figures and the familiar transit 

congestions that we face almost daily, we can infer that a new and intelligent approach is 

needed when optimizing road usage. In the United States, the federal Intelligent 

Transportation Systems (ITS), by means of the ITS Joint Program Office (JPO), leads 

research activities that focus on intelligent vehicles, intelligent infrastructure and the 

creation of an intelligent transportation system through integration with and between these 

two components. The ITS JPO is an element of the Research and Innovative Technology 

Administration (RITA), a unit of the U.S. Department of Transportation (DOT). RITA 

coordinates the U.S. DOT research programs. It is in charge of advancing the deployment 
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of cross-cutting technologies to improve the Nation’s transportation system. It is 

mentioned in ITS's Strategic Research Plan, 2010–2014 (Progress Update, 2012) [2] that 

vehicle fuel utilization and the resulting tailpipe emissions are the single largest human-

made source of carbon dioxide, nitrous oxide, and methane. The Texas A&M 

Transportation Institute (TTI) is a higher-education affiliated transportation research 

agency. According to the TTI’s 2012 URBAN MOBILITY REPORT [3], in 2011 losses 

related to traffic congestion are more than $121 billion annually, resulting from 5.5 billion 

lost hours and 2.9 billion gallons of wasted fuel. 

Traffic assignment tries to distribute vehicles efficiently on the road network and in 

accordance with their origins and destinations [4], [5], [6], [7], [8], [9], [10], [11], [12], 

[13], [14], [15], [16], [17], [18]. Ant Colony Optimization (ACO) is a metaheuristic useful 

for obtaining minimum cost paths [19], [20], [21], [22], [23] [24], [25], [26]. This 

metaheuristic has been applied successfully in different branches of engineering [27], [28], 

[29], [30], [31], [32], [33], [34], [35], [36], [37]. ACO has gained popularity recently for 

traffic assignment and many algorithms have been inspired by this metaheuristic [38], 

[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49]. 

The events that will take place in the automotive industry in relation to VANETs and 

its ability to enable the automation of many processes in vehicles will have a technological 

impact of magnitude similar to the deployment of the High Definition Television System. 

However, it will have an unprecedented social impact because of the huge monetary 

savings and the positive impact on the environment due to fuel economy as traffic 

congestions decrease. This would probably be the first area of massive smart interaction 

between humans and machines. It is expected that, by providing solutions in the area of 
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An Ant Inspired Dynamic Traffic Assignment for VANETs: and Early Notification of 

Traffic Congestion and Traffic Incidents, we are helping to pave this road. 

1.1 Traffic Assignment 

There are two different models that can be identified when investigating road network 

transit problems: the transportation planning models and the traffic flow models [13]. The 

first one deals with modeling decisions made by individuals who use the roads and the 

approaches used by researchers to optimize traffic, while the second one deals with 

modeling the physical propagation of traffic flows. When selecting the best routes in 

traffic assignment it is typical to assign a cost based on distance and/or time to the 

different edges and then use a shortest path algorithm such as Dijkstra’s algorithm [50]. 

Wardrop [4], established two equilibrium criteria relating to the traffic flow from a given 

origin to a certain destination by means of a number of available routes: 

1. User equilibrium assignment (UE). The journey times on all the routes actually 

used are equal, and less than those which would be experienced by a single 

vehicle on any unused route. 

2. System Optimum Assignment (SO). The average journey time is a minimum. 

These criteria are also referred to in the literature as deterministic user equilibrium 

assignment (D-UE) and deterministic system Optimum Assignment (D-SO). We could say 

that in D-UE all decisions are made in an egoistic and rational way, and all users have 

knowledge of the paths costs. In D-SO there may be cooperation among individuals, or a 

centralized system may coordinate the route assignment. With the incorporation of 

stochastic approaches to solve this problem, new equilibrium criteria are introduced, the 
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stochastic user equilibrium (S-UE) and the stochastic system Optimum Assignment (D-

SO). In Fig. 1, this classification can be seen. 

 
Fig. 1. Traffic Equilibrium Classification 

The optimization of transportation on a road network is commonly formulated by 

means of two different mathematical formulations, the static traffic assignment (STA), 

and the dynamic traffic assignment (DTA). The STA approach deals with networks in 

equilibrium where the traffic demand and the edge flows are constant over time. On the 

other hand, the DTA deals with the more realistic situation of time-dependant edge flows 

and congestion. 

1.1.1 Static Traffic Assignment.  

Static Traffic Assignment consists of assigning routes to a set of drivers with fixed 

origins and destinations under steady-state flow conditions. A model of the equilibrium 

assignment for both Wardrop's principles, the UE and the SO was first presented by 

Martin Beckmann, Bartlett McGuire and Christopher Winsten (BMW) [5]. This solution 

became a standard in transportation planning since it was introduced. Currently, as new 

approaches have emerged, solutions based on dynamic traffic assignment have become 

available for dealing with congestion and variable conditions.  
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1.1.2 Dynamic traffic assignment

Dynamic Traffic Assignment refers to a broad variety of problems that deals with time-

varying flows and originated with the seminal works of Yagar in 1971 [6], [7], and 

Merchant and Nemhauser in 1978 [8], [51]. These models aim at representing in time 

harmony the interaction between route choices, traffic flows, and cost metrics in [14]. 

DTA problems can be classified as [8]: Mathematical programming formulations, 

Optimal control formulations, variational inequalities formulations, and Simulation-based 

models [8]. The first three types of approaches suffer from problems induced by the 

inability of these algorithms to model human behavior. These may result in artificial 

delays at junctions in order to optimize traffic flow [8], [15], and first in, first out (FIFO) 

violations, where vehicles are forced to overtake other vehicles that departed earlier in 

order to optimize the traffic flow [8], [16], [15]. These problems are not consistent with 

traffic realism [8]. Simulation-based models utilize traffic flow propagation models to 

model the critical constraints that regulate traffic flow even though the problem 

abstraction could be analytical. The simulation is used as an approach to produce realistic 

solutions that satisfy the FIFO constraint and prevent the artificial delays. Among the 

simulation-based models, computational intelligence approaches have gained popularity 

recently. We briefly describe them in the next section.

1.1.3 Computational Intelligence Approaches to the DTA. 

Much effort has been dedicated to these stochastic approaches based on nature-inspired 

methodologies. A new equilibrium criterion is needed in this area, the stochastic user 

equilibrium (S-UE). For the traffic flow from a given origin to a certain destination by 

means of a number of available routes, in S-UE no user believes he can improve his 
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journey time by unilaterally changing routes [9]. Achieving UE in this type of method is 

in general a very difficult task unless some simplifications are made, like in the Stochastic 

Network Loading (S-N-L) type of problems, which assumes that the measured travel times 

are independent from the edge flows [9]. Social insects exhibit efficient behaviors for path 

selection [20], and recent computational intelligence approaches based on ant inspired 

algorithms do not require these assumptions [12], [18], [38], [39], [40], [41], [42], [43], 

[52]. 

1.2 The Traffic Assignment Problem in VANETs 

For a long time the predominant methods to assign traffic have focused on static 

models. There is a need for DTA algorithms for VANETs, but, at the same time, these 

dynamic models present unique complexities. The solutions to the DTA problem, at any 

given time, may include the cars on the road as well as those which will enter the road 

network in the future, or probably reschedule the departure time of the system's users [14]. 

The inclusion of the cars that will enter the road could be approximated considering past 

experience but would be inaccurate and alone would not solve the case of special events or 

accidents. To compensate for this, some algorithms may include feedback from the system 

to reroute some of the vehicles. Rescheduling users' departure time may be impractical 

because most of the traffic flow is due to activities with fixed schedules, like work or 

school. 

As mentioned in Section 1.1.2, realistic solutions to traffic assignment may be 

compromised by the analytical models and algorithms, which introduce artificial delays in 

junctions and FIFO violation. The use of Simulation-based models is justified as these 

models closely represent the critical constraints that regulate traffic flow.  



7 

1.3 Motivation 

VANET technologies will enable real-life traffic assignment in the near future. Traffic 

flow optimization has been studied since 1850 [53] and used to plan and design road 

networks, but a real-time system that takes vehicle interactions in real time has never been 

implemented. Incorporating wireless technology and information systems for traffic 

control purposes has been an area of research since the 1970s [54]. In this period, a large 

effort was dedicated to The Comprehensive Automobile Traffic Control System (CACS) 

by the Japanese government. Nowadays, communication standards have been adopted and 

the cost of technology has dropped, making feasible the implementation of VANET 

systems [55]. Nevertheless, VANETs systems are still under development and traffic 

assignment algorithms are still in their infancy. 

There is a disproportionate increase of the vehicle miles travelled, which has doubled in 

recent years, compared to a modest 5% increase of the highway lane miles added. Traffic 

assignment aims at distributing routes to vehicles to improve travel time. Traffic 

assignment is a relatively new and active field of research that involves human behavior 

that is difficult to model and approaches that sometimes produce unrealistic solutions. 

For many years the only methods available were intended for the STA and used to 

predict the dynamic road traffic. It was not until the 1970s that DTA started to be studied 

formally. Different analytical approaches have been proposed, but the mathematical 

solutions they provide usually suffer from deficiencies introduced by the methods 

themselves where unrealistic solutions are generated by the algorithms when minimizing 

travel costs. 
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On the other hand, approaches based on simulations are of interest as they are able to 

better model the constraints that lead to realistic solutions. Some of the simulation 

approaches have been based on ACO, which is also a relatively new field of research. 

However, most of these approaches have been intended for the static traffic assignment 

and, therefore, they would not provide accurate results in the presence of unanticipated 

conditions, such as accidents or short term road works. Other ACO approaches are based 

on the existence of infrastructure support, which limits the application of the algorithm to 

cases where a costly infrastructure is already in place. 

Common difficulties that algorithms solving traffic assignment in VANETs face 

include the broadcast storm that happens when new messages are broadcasted and many 

vehicles attempt to retransmit the message. This situation results in unnecessary use of the 

communication channels. Another issue found in these networks is fragmentation, even in 

the presence of infrastructure. Many algorithms base their operation on the complete 

knowledge of the traffic demand, a situation that is difficult to implement in the real 

world. Any algorithm attempting to solve DTA in VANETs should be able to operate in 

the presence of partial information. 

There is a need for algorithms for the dynamic traffic assignment problem that 

produces realistic solutions. Algorithms of this kind should avoid the broadcast storm and 

should be able to operate under complete or partial knowledge of the road network 

conditions and be able to operate with or without infrastructure support. 

1.4 Problem Statement 

We aim at generating an online DTA algorithm in VANETs. Traffic assignment is a 

very important problem as miles traveled increase faster than lane miles and intelligent 
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wirelessly connected systems appear to be the immediate solution, if not the only one. Just 

in the U.S., from 1985 to 2006 the Vehicle Miles Traveled has doubled while the lane 

miles have just increased from 8 to 8.4 million [1]. The need for incorporating wireless 

technology and information systems for traffic control has been recognized since the 

1970s [54], when a large effort was dedicated to improving road traffic by the Japanese 

government and the need for a two-way communication link was recognized as inevitable. 

Nowadays, communication standards have been adopted and the cost of technology has 

dropped, making the implementation of VANET systems feasible [55]. Finding solutions 

to the traffic assignment problem in VANET environment involves unique challenges as 

these networks face big challenges including [56]: 

1. Rapid changes in topology, 

2. Frequent fragmentation, even in the presence of supporting infrastructure, 

3. Small effective network diameter (Diameter for which 90% of the included 

nodes are connected), 

4. Potential large scale, 

5. Variable network density, and  

6. Topology affected the by drivers' behavior. 

Existing DTA algorithms do not meet this challenges adequately. Analytical algorithms 

present FIFO violations and artificial delays at intersections. Algorithms based on 

simulations are very important since they are able to produce realistic solutions. An 

important group of simulated algorithms, ant inspired algorithms, are intended to obtain 

minimum cost paths. They have been used for traffic assignment. All these  methods have 
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mostly been intended for the STA or used in the centralized approach. Centralized 

algorithms for VANETs require the existence of an infrastructure that may not always be 

available, suffers from great computational complexity, and may still be subject to 

fragmentation. In conclusion, a desirable property of the needed DTA algorithms is that 

they should be distributed. Lastly, very few DTA algorithms exist specifically designed 

for VANETs due to the additional challenges imposed by this technology. 

1.5 Contributions 

We introduce a reactive ant inspired algorithm that works in presence of partial road 

network knowledge with or without infrastructure support. The algorithm is inspired by 

ACO in which scent marks (pheromones) are used to signal the quality of paths and 

evaporation to control the persistence of these marks. We summarize our contributions 

as: 

1. We contribute a chapter on Swarm Intelligence-Inspired Routing Algorithms 

for Ad Hoc Wireless Networks [20]. In this chapter Swarm-intelligence 

inspired routing algorithms are introduced as an alternative for classical routing 

algorithms in ad hoc wireless networks. We present the biological principles 

that inspire these algorithms, and introduce some important swarm intelligence 

algorithms. 

2. We contribute extensions to trafficmodeler to allow importing Open Street 

Maps (OSM) and make rapid VANET simulations [57]. Trafficmodeler [58] is 

a program intended for modeling traffic demand which is included in the 

Simulation of Urban MObility (SUMO) distribution [59]. OSM is a 

collaborative project to create a free editable maps of the world [60]. 
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3. We contribute extensions to the Open Source vehicular network simulation 

framework Veins [61] to allow for traffic rerouting on VANET simulations (W. 

Arellano, I. Mahgoub, and M. Ilyas, "Veins extensions to implement a message 

based algorithm for Dynamic Traffic Assignment in VANETs simulations." In 

High-capacity Optical Networks and Emerging/Enabling Technologies 

(HONET), 2014 11th Annual, pp. 29-35. IEEE, 2014) [62]. 

4. We contribute a DTA algorithm inspired by ants behavior that minimizes the 

broadcast storm as it uses speed thresholds to initiate the traffic report activities 

and uses a system of on the fly clusters formation of limited duration. In this 

system, cluster heads are in charge of the information gathering and message 

broadcasting [63]. This is the first ant algorithm that uses pheromones to mark 

the bad paths. 

We continue in the next section with the organization of this document. 

1.6 Organization 

The rest of this document is organized as follows: In Section 2 we present a traffic 

assignment overview. In Section 3 we introduce ant colony optimization. Section 4 

introduces aggregation. In Section 5 we present a literature survey. Section 6 introduces 

our algorithm. In Section 7 we extend the algorithm for larger networks. Finally, in 

Section 8 we present our conclusions and indicate future work to continue this project. 
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2. TRAFFIC ASSIGNMENT OVERVIEW

When optimizing the flow of vehicles on road networks we need to consider models to 

represent these networks and specific kinds of mathematical problems. When we optimize 

traffic flow in road networks we are dealing with transportation planning models and the 

important associated traffic assignment problems. Traffic assignment is an active field of 

research and new approaches are frequently found. In the next sections we briefly 

introduce transportation planning models that are commonly used in this field, the 

associated traffic assignment problems, the traffic flow models usually considered to test 

the quality of the proposed solutions, and, in particular, the microscopic simulation models 

which are the preferred approach when working with VANETs. 

2.1 Transportation Planning Models 

The need to travel of households in transportation systems arises from decisions about 

their needs to participate in spatially separated social, economical, and cultural activities. 

The ensemble of these activities is called the activity system [13]. Even though there are 

transportation planning models that can be used to model the growth and layout of urban 

areas, we are centered in the day to day traffic on well-established road networks. There 

are two widely used approaches for this purpose, Trip-based transportation planning 

models and Activity-Based Transportation Models. Even though both models start from a 

population activity knowledge, in the first case, when the trips are generated, the links to 
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activity, behavior, and time are lost [64] and limitations are imposed on the model [65]. 

We now proceed to explain the main models in use. 

2.1.1 Trip-based transportation planning models. 

The application of this model is nearly universal [64]. Travel has usually been modeled 

as origin-destination (OD) trips even though, in theory, it has always been considered as 

derived from the demand for activity participation [64]. The link between travel and 

activities was first introduced in [66], where the authors developed a four step model that 

was later institutionalized in the Federal-Aid Highway Act of 1962 [67]. The next four 

sections outline the four step model. 

2.1.1.1 Trip Generation. In this step trip ends are separated into productions and 

attractions generated at the zone, household, or individual level for different trip purposes. 

Usually, three or more different trip purposes are used with popular home-based work 

trips (HBW), home-based other trips (HBO), and non-home-based trips (NHB). The trip 

productions and attractions are computed using regression analysis or similar techniques 

from the absolute counts of trips departing and arriving at each zone and the system's 

activity characteristics, translating an activity-based system description into a trip-based 

one. Productions generated at the household level and attractions at the zone level are used 

frequently, time dependence can be reintroduced by computing productions and attractions 

for specific periods of time [64]. 

2.1.1.2 Trip distribution. The objective of this step is to link all trip origins 

(productions) to destinations (attractions) and obtain a complete OD table or matrix. In 

this matrix, element 𝑜𝑑𝑖𝑗  corresponding to the intersection or row i and column j 
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represents the number of trips from origin 𝑂𝑖 and destination 𝐷𝑗  [13]. To obtain OD some 

network attributes, typically, inter-zonal travel times are required [64]. In general, the 

process of obtaining the OD is underdetermined as the number origin-destinations 

𝑐 = 𝑛(𝑛 − 1) where n is the number of zones but the number of links is usually 𝑂(𝑛) 

[68]. This implies that an infinite number of solutions may exist [69]. Probably the most 

popular method to compute OD is the production-constrained gravity-model [64] in which 

the association of origin destinations are obtained from productions, attractions, and an 

impedance function that can be estimated from empirical or intuitive methods with friction 

factors being the most popular. Friction factors are exponential or gamma functions 

obtained from travel frequencies from household surveys. 

2.1.1.3 Mode Choice. After the origin-destination matrix is obtained, the next step 

consists of selecting the different modes of transportation to be used by the users of the 

transportation system. Examples of transportation modes include: private, public, 

vehicular, railroad, etc [13]. In other words, the OD is decomposed according to the 

different transportation modes. To accomplish this process discrete choice theory is a 

frequent choice. Mode choice could be combine with trip distribution but, in this case, an 

adjusted gravity model and an impedance function are used [13]. 

2.1.1.4 Traffic assignment. The final step of the four step model is the traffic 

assignment. In this context, routes are defined as a sequence of links or roads between an 

origin and a destination and the trips are also known as travel or traffic demand. Traffic 

assignment is the process of assigning the traffic demand to the routes. Some 

implementations of the four step method include iterations and feedback from this stage to 
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steps b) and c). Interestingly the UE equilibrium has been related to Nash Equilibrium in 

Non-Cooperative games [70], [17]. 

2.1.2 Activity-Based Transportation Models.  

In the Trip-based transportation planning models, trips are generated independent of 

individual activities and their associated relationship with space and time and without 

choice alternatives [65]. This obviously imposes serious limitations to how accurate these 

models represent traffic demand. Independently of these limitations, the first ideas on 

Activity-Based Transportation Models originated in the 1970s [65] and were first 

introduced as a comprehensive study in 1983 [71]. The Activity-Based Transportation 

Models do not have an explicit step-by-step procedure similar to the four step model. 

However, some ingredients are now recognized [13], [72]: 

2.1.2.1 Generation of Activities. This process has required the replacement of the 

traditional travel diary surveys with activity-based surveys. There is a need for precise 

definitions of terms, as proposed in [72], for journey as a tour starting and ending at the 

relevant location for a person, with tour sequence of trips starting and ending at the same 

location, where trips are continuous sequences of stages between two activities, and stages 

are vehicle motions including the idle time during and immediately before the stage. 

Reference [72] also proposes characterizing activities by kind, purpose (what the person 

hopes to achieve), moral meaning, project (greater context), duration, effort, 

expenditure/income, and urgency.  

2.1.2.2 Modeling of Household Choices. Activity-based models consider the 

household members interactions and their impact on their travel behavior. The purpose is 

to model whole daily activity chains. Destinations and mode choices are combined with 
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low-level decisions, such as parking choices or high-level decisions such as car ownership 

and place of residence [72]. 

2.1.2.3 Scheduling of Activities. Nowadays, the Scheduling of Activities includes 

elements for long-term commitments of the household and its members to their life style 

and to each other, medium-term calendar of each person including household tasks 

assigned to them and their personal activity demands, and a daily calendar with the 

discrete scheduled events for each person. The scheduling process works from the daily 

calendar but is able to interchange events with the medium-term calendar and produce 

changes to the long-term commitments on a one-off basis. The scheduling process 

provides activity formulation for emotional and physiological needs and ultimately would 

include day-to-day learning. [72].  

2.2 Traffic Assignment Problems 

As we mentioned before, the optimization of transportation on a road network is 

commonly formulated by means of two different mathematical formulations: the static 

traffic assignment, and the dynamic traffic assignment. DTA deals with the more realistic 

situation of time dependant link flows and congestion. Ignoring these time dependencies 

may originate inconsistencies like the Smeed's paradox, in which vehicles departing on 

high-flow conditions can arrive later than vehicles that departed later on a low-flow 

condition [73]. 
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2.2.1 The Static Traffic Assignment.  

The Static Traffic Assignment, consists of assigning routes to a set of drivers with fixed 

origins and destinations under steady-state flow conditions. Reference [13] indicates that 

different approaches can be used to solve the static traffic assignment:  

1. An all-or-nothing assignment (AON) in which all drivers choose the same 

cheapest route is based on all drivers having perfect knowledge of the link's 

impedances and that these are constant. 

2. A stochastic assignment is possible when drivers have imperfect knowledge of 

the constant link's impedances and these are chosen using probability 

distribution functions after which an AON is performed. The method can be 

iterated until certain criterion is met.  

3. An equilibrium assignment incorporates the concept that an increase in the 

traffic flow on the links changes the link impedances, which may change the 

cheapest routes.  

4. A stochastic equilibrium assignment is also possible similar to as explained in 

2. when the drivers have imperfect knowledge of the road network status. 

As mentioned before, a model of the equilibrium assignment for both Wardrop's 

principles, the UE and the SO was first presented by BMW  [5]. In [74] this approach is 

compared with the more recent model presented by Nesterov and De Palma (NdP) [75]. 

Following the descriptions in [74], [76], [77], in the next three sections we will proceed to 

formally define the equilibrium assignment problem and briefly describe the models of 

BMW and NdP. 
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2.2.1.1 Nonlinear Programming. Many important contributions to the STA 

problem have been done in the context of the nonlinear programming problem (NLP). In 

general, an optimization problem deals with minimizing or maximizing a real objective 

function 𝑓(𝑥1,  𝑥2,   ∙  ∙  ∙  ∙  ∙  ∙  ,  𝑥𝑛) by finding the values of 𝑛 real variables 𝑥1, 𝑥2,∙ ∙ ∙

 ∙ ∙ ∙ , 𝑥𝑛 within a certain feasible region [78]: 

Maximize or minimize 𝑓(𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛),  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. ):  

  

    𝑔𝑖(𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛) ≤ 𝑏𝑖 for 𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚 

The problem is called a nonlinear programming problem (NLP) if the objective 

function 𝑓 and/or any of the 𝑔𝑖  functions that define the feasible region are nonlinear. 

Within the general case of the nonlinear programming problem, if the objective function 𝑓 

is convex or concave and all the 𝑔𝑖 functions are convex, the problem is called convex and 

any local maximum or minimum of 𝑓  must be global and, in general, optimization is 

easier. One important case of NLP is that where: 

Maximize or minimize 𝑓(𝒙),  𝒙 = 𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛,  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝑠. 𝑡. ): 

    𝑔𝑖(𝒙) = 𝑏𝑖 for 𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚 

In this case, expressions can be found for the maxima or minima by means of 

Lagrange’s theorem. We define the Lagrange function ℒ = 𝑓(𝒙) + ∑ (λ𝑗𝑔𝑗(𝒙) − 𝑏𝑖)
𝑚
𝑗=1  

where coefficients λ𝑗 are the Lagrange multipliers. The theorem states that the solution to 

the original problem can be obtained by solving the system of equations: 
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𝜕

𝜕𝑥𝑖
ℒ = 0,  𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑛 

𝑔𝑖(𝒙) = 𝑏𝑖 for 𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚. 

By means of Lagrange’s theorem the problem was transformed from a constrained 

optimization into a system of 𝑛 + 𝑚 equations, which usually is simpler to solve. 

A generalization of Lagrange’s multipliers was introduced by Kuhn and Tucker [79]. 

They presented some necessary conditions for a feasible solution 𝒙  of an inequality 

constrained optimization problem to be optimal. Now these conditions are also known as 

the Karush–Kuhn–Tucker (KKT) conditions because it was later discovered that Karush 

proved these conditions earlier in a different context [80]. The Karush–Kuhn–Tucker 

conditions can be stated as: 

Maximize or minimize 𝑓(𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛),  𝑠. 𝑡.:  

 𝑔𝑖(𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛) ≥ 0𝑓𝑜𝑟𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚   

 ℒ = 𝑓(𝒙) + ∑ (λ𝑗𝑔𝑗(𝒙) − 𝑏𝑖)𝑚
𝑗=1 

 
𝜕

𝜕𝑥𝑖
(ℒ) ≤ 0𝑥𝑖 ≥ 0𝑥𝑖

𝜕

𝜕𝑥𝑖
(ℒ) = 0𝑓𝑜𝑟  𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑛 

 𝜆𝑗 ≥ 0,    λ𝑗𝑔𝑗(𝒙) = 0, 𝑓𝑜𝑟  𝑗 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚 

Note that 𝑔𝑖(𝑥1, 𝑥2,∙ ∙ ∙ ∙ ∙ ∙ , 𝑥𝑛) ≥ 0 for 𝑖 = 1,∙ ∙ ∙ ∙ ∙ ∙ , 𝑚 can be obtained from (1) if 

the constant 𝑏𝑖  is absorbed by 𝑔𝑖  and the inequality is rearranged (the mathematical 

expressions for 𝑔𝑖 for each case are different). To conclude this section, we would like to 
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mention that in the BMW model [5], the optimality of the UE was guaranteed thanks to 

the existence of the Karush–Kuhn–Tucker conditions [80]. We will present BMW’s model 

in Section 2.2.1.3. 

2.2.1.2 Equilibrium Assignment. The goal of the equilibrium assignment is to 

allocate routes on the road network to a set of drivers with fixed origins and destinations, 

in order to obtain either UE or SO states. We will start defining some nomenclature. We 

represent the road network with a graph 𝑮 = (𝑵, 𝑨) where vector N represents the nodes 

(intersections) and vector A represents the arcs (roads). For each arc 𝑎 ∈ 𝑨 we define the 

capacity, 𝑐𝑎 as the maximum number of cars that that can cross 𝑎 in a given period of time 

and the free travel time, 𝑡𝑎̅ as the minimum travel time required when traversing 𝑎 at the 

maximal allowed speed. We define the capacity vector and the free travel time as: 

 𝒄 ≔ (𝑐1 , 𝑐1 ,⋅ ⋅ ⋅ ⋅ ⋅ , 𝑐|𝐴|) ∈ ℝ|𝐴|

 𝑡𝑎̅ ≔ (𝑡1̅ , 𝑡2̅ ,⋅ ⋅ ⋅ ⋅ ⋅ , 𝑡|̅a|) ∈ ℝ|𝐴|  ∀𝑎𝑖 ∈ 𝑨

The goal of the equilibrium assignment is to allocate routes on the road network to a set 

of drivers with fixed origins and destinations, in order to obtain either UE or SO states. 

The current state of the network is represented by a flow vector, 𝒇 , representing the 

number of vehicles entering the arcs per unit of time, and a travel time vector, 𝒕 , 

representing how long it takes traverse the arcs:  

 𝒇 ≔ (𝑓1 , 𝑓1 ,⋅ ⋅ ⋅ ⋅ ⋅ , 𝑓|𝐴|) ∈ ℝ|𝐴|

 𝒕 ≔ (𝑡1 , 𝑡1 ,⋅ ⋅ ⋅ ⋅ ⋅ , 𝑡|𝐴|) ∈ ℝ|𝐴|
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We represent with 𝑶𝑫 ⊂ 𝑵 × 𝑵 the set of fixed origins and destinations of the road 

network. For each origin destination pair 𝒌 ∈ 𝑶𝑫, 𝑑𝑘 > 0 represents the fixed trip rate of 

drivers per unit of time traveling from the origin of 𝒌 to its destination. Let us denote with 

𝑹𝒌, the set of all routes or paths that connect the origin of 𝒌 with its destination. A route 

𝒓 ∈ 𝑹𝒌 is a vector 𝒓 ∈ ℝ|𝑨| with coordinates equal to 0 for each arc that does not belong to 

the route or to an integer indicating the number of times each arc is used otherwise (values 

greater than 1 indicate the presence of loops). Vector 𝒇𝒌 ∈ ℝ|𝑨| , represents the flow on 

pair 𝒌, vector 𝒇𝒓
𝒌 ∈ ℝ|𝐴| represents the flow on route 𝒓 of 𝒌, and finally, vector 𝒇𝒂

𝒌 ∈ ℝ|𝐴|, 

represents the flow of 𝒌 on arc 𝑎. In other words, vectors 𝒇𝒌, 𝒇𝒓
𝒌, and 𝒇𝒂

𝒌 have as many 

components as arcs present in the road network. The values of the components of 𝒇𝒓
𝒌 are 

either the constant flow value 𝑑𝑘
𝑟 , on route 𝑟, if the corresponding arc belongs to 𝑟, or 0 

otherwise. The values of the components of 𝒇𝒂
𝒌   are all 0 except for the component 

corresponding to arc 𝑎, which equals the flow in that arc due to 𝒌. If we denote by 𝒇𝒂 the 

total flow on arc 𝑎, we can express the road network flow as: 

 𝒇 = ∑ 𝒇𝒌
𝒌∈𝑶𝑫 = ∑ 𝒇𝒂𝑎∈𝐴  

Where 𝒇𝒌 can be obtained: 

 𝒇𝒌 = ∑ 𝒇𝒓  
𝒌

𝑟∈𝑹𝒌
 

with 𝒇𝒂  
𝒌 expressed as: 

 𝒇𝒂  
𝒌 = ∑ 𝟏𝒂(𝒇𝒓  

𝒌 ∘ 𝟏𝒂){𝑟∈𝑹𝒌,𝒂∈𝒓} = ∑ 𝟏𝒂𝑑𝑘
𝑟

{𝑟∈𝑹𝒌,𝒂∈𝒓}  
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where 𝟏𝒂 ≔ (𝜈1, 𝜈2,∙ ∙ ∙ ∙ ∙ ∙, 𝜈|𝐴|) ∈ ℝ|𝑨|  where 𝜈𝑖 = 1  if 𝑖 = 𝑎  and 𝜈𝑖 = 0  otherwise. 

Finally, 

 𝒇𝒂 = ∑ 𝒇𝒂  
𝒌

𝒌∈𝑶𝑫 = ∑ ∑ 𝟏𝒂𝑑𝑘
𝑟

{𝑟∈𝑹𝒌,𝒂∈𝒓}𝒌∈𝑶𝑫   ∀𝑎 ∈ 𝐴 

We can now define a feasible static traffic assignment as a solution (𝒇, 𝒕) that allocates 

the drivers on the routes constrained to their fixed flows from their origins to their 

destinations and the flows in any route being positive. We will conclude this section by 

summarizing the models of BMW and NdP. BMW’s model was the first model to 

represent the static traffic assignment under SO and UE equilibriums, and it has been 

predominant for the STA but has been recently challenged by the model of NdP.  

2.2.1.3 Beckmann, McGuire and Winsten Model. In this model it is assumed 

that the travel time on arc 𝑎, 𝑡𝑎, depends only on 𝒇𝒂 and that it is defined by a continuous, 

convex, nonnegative, non-decreasing latency function 𝑙𝑎(∘). The cost of traveling on an 

arc 𝑎 is defined as 𝑓𝑎𝑙𝑎(𝑓𝑎). To take into consideration the capacity limit 𝑐𝑎 , function 

𝑙𝑎(∘) is chosen in a way that penalizes capacity violations (still this may permit solutions 

where the capacities are violated). The static traffic assignment is the solution (𝒇, 𝒍(𝒇)) 

where 𝒍 ≔ (𝑙𝑎1
 , 𝑙𝑎1 ,⋅ ⋅ ⋅ ⋅ ⋅ , 𝑙𝑎|𝐴|

) ∈ ℝ|𝐴|  ∀𝑎𝑖 ∈ 𝑨 is optimized to produce either SO or 

UE. 

1. SO optimization. The convex problem of optimizing the total travel time 

∑ 𝑓𝑎𝑙𝑎𝑎∈𝐴 , is solved: 

 𝑚𝑖𝑛𝑓   ∑ 𝑓𝑎𝑙𝑎𝑎∈𝐴 (𝑓𝑎)
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 ∑ 𝑑𝑘
𝑟

𝒓∈𝑹𝒌
= 𝑑𝑘 

 𝑓𝑟
𝑘 > 0  ∀𝑘 ∈ 𝑂𝐷

 𝒇𝒂 = ∑ 𝒇𝒂  
𝒌

𝒌∈𝑶𝑫 = ∑ ∑ 𝟏𝒂𝑑𝑘
𝑟

{𝑟∈𝑹𝒌,𝒂∈𝒓}𝒌∈𝑶𝑫   ∀𝑎 ∈ 𝐴

Where 𝑑𝑘
𝑟  represents the flow of vehicles from origin destination pair 𝒌 traveling on 

route 𝒓. Usually the Bureau of Public Road (BPR) function for the latency is used [81]: 

 𝑙𝑎(𝑓𝑎) = 𝑡𝑎 (1 + 𝛼 (
𝑓𝑎

𝑐𝑎
)

𝛽

) 

In this function, parameters 𝛼  and 𝛽  determine the penalty for overflowing the arc 

capacity. The original values provided in this publication were 𝛼 = .15 and 𝛽 = 4. 

1. UE optimization. The convex problem of optimizing the travel time of the 

individual vehicles is solved. We define 𝑙𝑟(𝑓) = ∑ 𝑙𝑎(𝑓𝑎)𝑎∈𝒓  as the travel time of 

vehicles on route 𝒓 ∈ 𝒌 .  The problem consists of finding 𝒓  such that 𝑙𝑟 <

𝑙𝑞  ∀𝑟. 𝑞 ∈ 𝑹𝒌. It can be shown that this is equivalent to optimizing the following 

convex problem: 

 𝑚𝑖𝑛𝑓   ∑ ∫ 𝑙𝑎(𝑥)𝑑𝑥
𝑓𝑎

0𝑎∈𝐴 

 ∑ 𝑑𝑘
𝑟

𝒓∈𝑹𝒌
= 𝑑𝑘 

 𝑓𝑟
𝑘 > 0  ∀𝑘 ∈ 𝑂𝐷
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 𝒇𝒂 = ∑ 𝒇𝒂  
𝒌

𝒌∈𝑶𝑫 = ∑ ∑ 𝟏𝒂𝑑𝑘
𝑟

{𝑟∈𝑹𝒌,𝒂∈𝒓}𝒌∈𝑶𝑫   ∀𝑎 ∈ 𝐴

The last constraint is a link route formulation of the problem that BMW originally 

presented as link node representation with an independent formulation of the node 

conservation of flow similar to Kirchhoff’s current law [80]. It was within this 

representation that BMW formulated the conditions that would guarantee a unique optimal 

solution based on the KKT conditions. In the original notation, 𝑥𝑖𝑗,𝑞 represents the flow 

from node 𝑖 to node 𝑞. The flow going to node 𝑞 from node 𝑖 equals the flow from node 𝑞 

to node 𝑖 plus the flow originating in node 𝑖 to node 𝑞: 

 ∑ 𝑥𝑖𝑗,𝑞𝑗 = ∑ 𝑥𝑗𝑖,𝑞𝑗 + 𝑥𝑖,𝑞  

 Under UE drivers select the lowest cost route from node 𝑖 to node 𝑞 with cost 𝑦𝑖,𝑞. 

It holds that if drivers take an alternate route that includes adjacent node 𝑗 the cost will 

satisfy: 

 𝑦𝑖,𝑞 ≤ 𝑦𝑖𝑗 + 𝑦𝑗,𝑞

where 𝑦𝑖𝑗 is the cost of traveling in arc (𝑖, 𝑗). Under the assumption of UE, if 𝑥𝑖𝑗,𝑞 > 0 

then 𝑦𝑖,𝑞 = 𝑦𝑖𝑗 + 𝑦𝑗,𝑞 and, if   𝑥𝑖𝑗,𝑞 = 0 then 𝑦𝑖,𝑞 < 𝑦𝑖𝑗 + 𝑦𝑗,𝑞. This means that under this 

equilibrium, drivers would never take a route with higher cost than an existing alternative, 

and we can conclude that, under UE, the constraint  𝑥𝑖𝑗,𝑞(𝑦𝑖,𝑞 − 𝑦𝑖𝑗 − 𝑦𝑗,𝑞) = 0 always 

holds. When applying KKT to the UE problem of maximizing −
1

2
∑ ℎ𝑖𝑗(𝑥𝑖𝑗)𝑥𝑖𝑗𝑖𝑗  (the 

optimization consisted on maximizing a negative cost), where 𝑦𝑖𝑗 = ℎ𝑖𝑗(𝑥𝑖𝑗)  is the 

capacity function, BMW found that the interpretation of the KKT conditions involved 
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ℎ′𝑖𝑗(𝑥𝑖𝑗) in the necessary conditions of the optimal solution. They simplified the problem 

by introducing an equivalent artificial function that would cancel ℎ′𝑖𝑗(𝑥𝑖𝑗) [80]: 

 𝑚𝑎𝑥𝑥𝑖𝑗,𝑞≥0  −
1

2
∫ ℎ𝑖𝑗(𝑥)

𝑥𝑖𝑗

0
𝑑𝑥

The 
1

2
 is used in both cases because of the way flow was defined including traffic in 

both directions. Essentially, with some style changes, this is the SO optimization that we 

presented at the beginning of this section.  

2.2.1.4 Nesterov and De Palma Model. This new model tries to address some 

problems that may arise in the BMW model [82]. The BMW model assumes that the cost 

of traveling on an arc 𝑎 is 𝑓𝑎𝑙𝑎(𝑓𝑎) with 𝑙𝑎(∘) a non-decreasing function. This may lead to 

a number of contradictions such as: 

1. The formulation with function 𝑙𝑎(∘)  allows for solutions that exceed the 

capacity of the road. 

2. The contradiction that a small 𝑓𝑎 can arise from two different conditions, low 

traffic or congested road  

To address the problems mentioned above, the model presented by NdP basically 

changes two concepts of the BMW model: First, there are no congestions and the travel 

time on any arc 𝑎 equals the free travel time, 𝑡𝑎 = 𝑡𝑎̅. Second, the cost of traveling on arc 

𝑎 is equal to 𝑓𝑎𝑡𝑎. The SO formulation for this model is very similar to that of the BMW 

model, but with the new cost formulation: ∑ 𝑓𝑎𝑡𝑎̅𝑘∈𝑂𝐷 . The UE equilibrium is more 

complicated as the existence of the solution is not directly guaranteed as with the BMW 

model but needs to be determined with the Lagrange multipliers. 
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To conclude this section, we note the extraordinary contribution of Martin Beckmann, 

Bartlett McGuire and Christopher Winsten, who first modeled the STA setting a model 

that has been the standard up to today. Nesterov and De Palma presented some valid 

criticism and formulation that may contribute to future development. We cannot conclude 

this section without mentioning the algorithm of Marguerite Frank and Philip Wolfe, the 

Frank-Wolf algorithm (FW) [83]. Le Blanc et.al [84] utilized the algorithm in a small city 

network after which the method became a standard for 30 years [85]. The algorithm 

suffers from low convergence but is highly efficient in memory usage. This is a typical 

algorithm using link-based aggregation over the origin destination pairs, these algorithms 

convey the highest level of aggregation and solve the traffic assignment using the total 

traffic flow for each link. Other methods have been proposed using route-based 

approaches, which are less memory efficient but present high accuracy in reasonable 

amounts of time. Fewer approaches have been developed on an origin-based approach; of 

these the Bar-Gera Algorithm has represented a breakthrough of great importance in the 

field [85]. The Bar-Gera algorithm offers highly accurate solutions with reasonable use of 

time and memory. The key point of the Bar-Gera algorithm is its capacity to disaggregate 

cyclic traffic flows which results in an algorithm with complexity that grows linearly with 

the network size and provides the same level of detail as route aggregation. Currently, as 

new approaches have emerged, solutions based on dynamic traffic assignment have 

become available for dealing with congestion and variable conditions. In the next section 

we will proceed to present the most important types of these algorithms. 
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2.2.2 The Dynamic Traffic Assignment.  

The dynamic traffic assignment refers to a broad variety of problems dealing with time-

varying flows that originated with the seminal works of Yagar in 1971 [6], [7], and 

Merchant and Nemhauser in 1978 [51], [8]. These models aim at representing the 

interaction between route choices, traffic flows, and time and cost metrics in coherent 

fashion with time flow [14]. A literature review on the DTA is presented in [8]. This 

document indicates that in the general DTA problems, if traffic dynamics and driver 

behavior are modeled accurately, then the existence, uniqueness and stability of the 

solution cannot be guaranteed. The authors also propose a DTA taxonomy and state that, 

due to the complexities indicated earlier, great effort is dedicated to heuristic approaches. 

We proceed next to summarize the mentioned taxonomy.  

2.2.2.1 Mathematical Programming Formulations, Merchant and Nemhauser 

Mathematical programming formulations refer to optimization problems where a 

function 𝑓(𝑥1, 𝑥2,∙  ∙  ∙  ∙  ,   𝑥𝑛)  is maximized or minimized constrained to the variables 

belonging to a subset of the domain of 𝑓, Ω = (𝑥1, 𝑥2,∙  ∙  ∙  ∙  ,   𝑥𝑛) ⊆ ℝ𝑛 [86]. The work 

of Merchant and Nemhauser falls under this category. They formulated a discrete-time 

nonlinear, non-convex programming approach for the SO case of multiple origins and a 

single destination. We proceed now to describe their model. The road network is 

represented with a graph 𝑮 = (𝑵, 𝑨) where vector 𝑵 represents the nodes (intersections) 

and vector 𝑨 represents the arcs (roads). Time is divided into discrete intervals numbered 

𝑖 = 0, 1,  ∙  ∙  ∙  𝐼, the number of vehicles in a particular arc 𝑗 ∈ 𝑨 during time interval 𝑖 is 

denoted by 𝑥𝑖𝑗 , and the cost of traveling on arc 𝑗  at time interval 𝑖  is ℎ(𝑥𝑖𝑗) . The 

optimization problem consists of: 
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 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ℎ𝑖𝑗(𝑥𝑖𝑗)𝑎
𝑗=1

𝐼
𝑖=1 

with the following constraints: 

 𝑥𝑖+1,𝑗 = 𝑥𝑖𝑗 − 𝑔𝑗(𝑥𝑖𝑗) + 𝑑𝑖𝑗 ,  𝑖 = 0,  1,  ∙,  ∙,  ∙,  ∙  𝐼 − 1,  ∀ 𝑗 ∈ 𝑨

∑ 𝑑𝑖𝑗 = 𝐹𝑖(𝑞) + ∑ 𝑔𝑗(𝑥𝑖𝑗),  𝑗∈𝐵(𝑞)𝑗∈𝐴(𝑞)  𝑖 = 0,  1,  ∙,  ∙,  ∙,  ∙  𝐼 − 1,  ∀ 𝑞 ∈ 𝑵

 𝑥0𝑗 = 𝑅𝑗 ≥ 0 (𝑔𝑖𝑣𝑒𝑛),   ∀ 𝑗 ∈ 𝑨

 𝑑𝑖𝑗 ≥ 0,  𝑖 = 0,  1,  ∙,  ∙,  ∙,  ∙  𝐼 − 1,  ∀ 𝑗 ∈ 𝐴

 𝑥𝑖𝑗 ≥ 0,    𝑖 = 0,  1,  ∙,  ∙,  ∙,  ∙  𝐼 − 1,  ∀ 𝑗 ∈ 𝐴

where 𝑗 and 𝑞 represent generic arcs and nodes respectively. 𝑔𝑗(𝑥𝑖𝑗) represents the exit 

capacity of arc 𝑗. 𝑑𝑖𝑗 is the control variable that limits the access of vehicles to arc 𝑗 at 

time interval 𝑖. 𝐹𝑖(𝑞) represents the external input to node 𝑞 at time interval 𝑖. 𝐴(𝑞), 𝐵(𝑞) 

are the set of outgoing arcs and the set of incoming arcs at node 𝑞. 

By means of a piecewise linear approximation of the model, the authors reduced the 

computational complexity and, by placing some restrictions on the cost function, they 

guarantee achieving a global minimum [51]. 

 

2.2.2.2 Optimal Control Formulations. The discrete-time mathematical program 

is replaced by a continuous-time optimal control formulation with constraints that are 
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analogous to those for the mathematical programming formulations, but defined in 

continuous-time. The OD trip rates and link flows are represented as continuous functions 

of time. It is assumed that OD trip rates are known.  

2.2.2.3 Variational Inequalities Formulations. Variational Inequalities (VI) is a 

recent mathematical field with application originally in partial differential equations 

mechanics. Those VI were infinite dimensional [87]. After the application by Dafermos to 

traffic equilibrium [88], the field was unveiled to applications in economics, management 

science, operations research, and engineering, specifically in transportation [87]. In [89] 

the finite dimensional variational inequality problem 𝑉𝐼(𝐹, 𝐾) is defined as: 

To find a vector 𝑥∗ ∈ 𝐾 ⊂ ℝ𝑛 such that 

 〈𝐹(𝑥∗)𝑇 , 𝑥 − 𝑥∗〉 ≥ 0, ∀𝑥 ∈ 𝐾

where 𝐹 is a continuous function from 𝐾 to ℝ𝑛, 𝐾 is a given closed convex set, and 〈∙ , ∙〉 

is the inner product of an n-dimensional Euclidean space. A geometric interpretation of 

this definition indicates that 𝐹(𝑥∗)𝑇 is orthogonal to the feasible set 𝐾 at the point 𝑥∗. It 

can be demonstrated that the VI formulation allows for unified treatment of equilibrium 

and optimization problems [89], such as those encountered in traffic assignment. 

2.2.2.4 Simulation-based models. This type of approach uses traffic flow 

propagation models to model the critical constraints that regulate traffic. The traffic 

simulation is used as an approach to produce realistic solutions that satisfy the FIFO 

constraint and prevent the artificial delays that affect the analytical formulations. We 

propose a classification for simulation-based approaches in the next section. 
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2.2.2.5 Classification of Simulation-Based Models. Suton [90] and Schmitt and 

Jula [91] present taxonomies for the DTA. In this section we present a taxonomy of 

simulation-based models traffic assignment algorithms. In Fig. 2 we introduce the 

classification for simulation-based models, which we proceed to explain next. 

 

Fig. 2. Taxonomy of Simulation-Based DTA algorithms 

 

2.2.2.5.1 Rule Based Approaches. In this type of simulation, vehicles possess a set 

of decision rules that can produce route changes according to the varying road conditions.  
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2.2.2.5.2 Brute Force Approaches. This type of algorithm runs the complete 

simulation in an iterative way, updating the link costs with the simulation results at each 

new iteration. These costs are used to produce traffic assignment. 

2.2.2.5.3 Game Theory Approaches. This category groups algorithms inspired by 

game theory. Of particular interest are those based on Non-Cooperative Game Theory 

(NCGT). 

2.2.2.5.4 Computational Intelligence Approaches. Computational intelligence 

attempts to solve complex problems by means of nature-inspired methodologies and the 

design of intelligent agents.  

2.2.2.5.5 Approximations to Analytical Algorithms. Algorithms of this type use 

solutions by approximation to analytical formulations. Examples of this type include 

methods of successive approximations, such as the Method of Successive Averages 

(MSA) [92], [93]. 

2.2.2.5.6 Network State Reaction Approaches. Reactive route guidance 

algorithms are based solely on the current conditions of the network. The system aims at 

equal travel conditions for the routes in each OD for the current conditions. 

2.2.2.5.7 Network State Prediction Approaches. This type of approach tries to 

anticipate the network state from history.  

2.2.2.5.8 Centralized Approaches. A centralized system gathers information from 

the road network and makes the route selection for the vehicles. 
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2.2.2.5.9 Decentralized Approaches. The route choices are the result of 

interactions among the vehicles and the individual vehicles are the ones making those 

decisions. 

2.2.2.5.10 Approaches with Infrastructure Support. In this type of approach, an 

infrastructure of devices along the road network is required to collect traffic information. 

2.2.2.5.11 Approaches with No Infrastructure Support. In this type of approach, 

the traffic information is gathered by means of vehicle interactions only. 

2.3 Traffic Flow Propagation Models 

These models try to represent the physical propagation of traffic flows. They can be 

classified according to different criteria such as: scale of the independent variables 

(continuous, discrete, semi-discrete); level of detail (submicroscopic, microscopic, 

mesoscopic, macroscopic); representation of the processes (deterministic, stochastic);  

operationalization (analytical, simulation); scale of application (networks, stretches, links, 

and intersections) [94]. Of special interest is the level of detail classification, which we 

describe next. 

2.3.1 Microscopic Simulation Models.  

In these models the movement of each individual vehicle is described. The interaction 

of vehicles characteristics and driver behaviors are modeled in great level of detail in 

space and time. Chains of driver’s decisions describe vehicle actions, such as lane 

changing. There is a large number of simulators of this kind; [95] identified 58 and 

analyzed 32 of them. 
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2.3.2 Submicroscopic Simulation Models.  

These models are similar to microscopic simulation models, but, additionally, specific 

parts of the vehicles and the associated control behavior like changing gears are modeled 

in correspondence to the surrounding conditions [94]. 

2.3.3 Mesoscopic Simulation Models.  

These models describe traffic flow at medium level of detail. The behavior rules, like 

acceleration and lane changing, are specified at individual level but in a more aggregated 

form (e.g. using probability distribution functions). The vehicles and drivers behavior are 

not traced at the individual level. Three popular mesoscopic simulation models are 

headway distribution models, cluster models, and the gas-kinetic continuum models. 

2.3.4 Macroscopic Simulation Models.  

In this type of simulators, individual vehicle maneuvers are not explicitly represented. 

Traffic is described at a high level of aggregation without distinguishing its individual 

constituents [94]. 

2.4 Microscopic Simulation Models 

Many models have been developed to represent the behavior of individual vehicles in a 

road network traffic simulation. There are different approaches to Microscopic Simulation 

Models. Among them we can mention: 

1. Car following Models. We present some of the most important models of this 

kind. One of the earliest car following models is that of Pipes see [13], [96] and 

references therein. In this model, the acceleration of a car following a car in 

front is represented by the following equation: 
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
𝑑𝑣𝑖(𝑡)

𝑑𝑡
=

𝑣𝑖(𝑡)−𝑣𝑖+1(𝑡)

𝑇


where 𝑣𝑖(𝑡) and 𝑣𝑖+1(𝑡) represent the speeds of the following and leading cars, 

respectively, and 𝑇  is a relaxation parameter. This differential equation 

represents a stable system where the following car has a stronger acceleration 

when the speed  difference between the two cars is large. Seeking more realistic 

representations, this approach was followed by several models including the 

General Motors nonlinear model or Gazis-Herman-Rothery (GHR) model [97]: 


𝑑𝑣𝑖(𝑡+𝜏)

𝑑𝑡
= λ𝑣i

𝑚(𝑡)
𝑣𝑖(𝑡)−𝑣𝑖+1(𝑡)

(𝑥𝑖(𝑡)−𝑥𝑖+1(𝑡))𝑙

in this equation, 𝑙 and 𝑚 are model parameters, 𝜏 was introduced in an earlier 

model to destabilize car platoons and 𝑥𝑖(𝑡) − 𝑥𝑖+1(𝑡), the distance between the 

cars, was introduced to avoid collisions, see [13] and references therein.  

Gipps introduced a model based on the desirable properties of mimicking the 

real behavior of traffic, with parameters associated with obvious characteristics 

of drivers (explanatory basis), and with good behavior when the interval of 

successive recalculations of speed and position is equal to the reaction time 

[98]. We conclude this section with the model developed by Krauβ [99]. This 

model is highly efficient computationally and closely represents real life traffic. 

Under this model, each vehicle will compute a desired speed 𝑣𝑑𝑒𝑠  as the 

minimum from the maximum allowed speed 𝑣𝑚𝑎𝑥 , the current speed 𝑣 

increased with the acceleration 𝑎(𝑣) required to approach the preceding vehicle 

or a safe speed 𝑣𝑠𝑎𝑓𝑒 computed according to surrounding condition: 
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 𝑣𝑑𝑒𝑠 = min (𝑣𝑚𝑎𝑥, 𝑣 + 𝑎(𝑣)Δ𝑡, 𝑣𝑠𝑎𝑓𝑒)

On each computing cycle, every vehicle will select a random speed around 

the desired speed, update position and calculate a new safe speed according to 

the following assignments: 

 𝑣 ← 𝑚𝑎𝑥(0, 𝑟𝑎𝑛𝑑(𝑣𝑑𝑒𝑠 − 𝑎Δ𝑡, 𝑣𝑑𝑒𝑠))

 𝑥 ← 𝑥 + 𝑣Δ𝑡

 𝑣𝑠𝑎𝑓𝑒 ← 𝑣𝑝 + 𝑏(𝑣)
𝑔−𝑣𝑝Δ𝑡

𝑣̂+𝑏(𝑣̂)Δ𝑡


where 𝑣𝑝 is the speed of the predecessor car, 𝑏(𝑣) is the stopping acceleration 

and 𝑣 =
𝑣+𝑣𝑝

2
. We choose SUMO [100] as our microscopic traffic simulator; 

SUMO uses Krauβ even though it allows for user implementations of other Car 

following Models. 

2. Lane Changing Models. Another important aspect of Microscopic Simulation 

Models is that of lane changing. An excellent review and taxonomy of Lane-

Changing Models is presented in [101]. In this publication, they indicate that 

this important maneuver can be considered a moving obstruction. According to 

[101], for the case of microscopic simulation models, the lane changing models 

can be divided into, rule, discrete choice, artificial intelligence, and incentive, 

based models. Rule based models use fixed, deterministic rules (avoiding 

obstacles, speed gaining, etc) to trigger rule lane changes. A gap acceptance 
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model is then used to determine if the existing gap should be accepted. In 

discrete choice base models, three steps are followed: 1) checking lane 

changing necessity, 2) choice of target lane, and 3) gap acceptance. The 

decisions at each step are usually based on logit or probit models depending on 

the step. Artificial intelligence based models rely on artificial intelligence 

approaches, such as artificial neural networks or fuzzy logic. In incentive based 

models, the decision of changing lines is intended to maximize driver benefits. 

The lane changing model used by SUMO is an incentive based models that 

considers lane changing when the lane in use cannot lead to the destination or 

when benefits can be obtained by lane changing. 

3. Other models. There are other microscopic models like the optimal velocity 

models, in which the vehicle speed is not only a function of 𝑣𝑝 but also of the 

space headway ℎ𝑠  between vehicles. Psycho-physiological spacing models 

based on perception thresholds that make cars appear larger when they are 

closer, which trigger actions to slowdown or overtake. These two systems 

present the inconvenience of either being unrealistic or difficult to calibrate. 

Another approach is the traffic cellular automata, which  uses discrete time and 

space where roads are divided in slots of certain length where vehicles fit. This 

approach is efficient for computer simulations, can represent real-life traffic 

phenomena and can be set to include learning and psychological aspects. More 

details about these approaches can be found in [13]. 
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3. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a relatively new metaheuristic based on the social 

behavior of ants. These insects are very efficient in finding the best path/food-source 

combination. Their interesting methods are based on individuals with simple behaviors 

that interchange information indirectly by means of chemical compounds (pheromones) 

they use to mark their paths. Ant colony optimization was introduced by M. Dorigo and 

colleagues [19], [20], [21], [22], [23]. According to [23], this new metaheuristic was 

greatly inspired by the behavior of real ants [24], [25], [26]. Great effort has been 

dedicated to ACO applications in computer science and engineering. Several ACO 

algorithms have been proposed for the Traveling Salesman Problem (TSP) [27], [28]. 

ACO approaches for the Job Shop Scheduling Problem (JSSP) and the Flexible Job Shop 

Scheduling Problem (FJSSP) have applications in controlling mechanical engineering 

machines [29], [30]. ACO algorithms have been used in civil engineering for economic 

optimization of reinforced concrete [31]. Research in Ant Colony Optimization has also 

been conducted in digital image processing [32], electrical engineering where a system has 

been proposed for environmental/economic dispatch [33], and as well as several routing 

protocols in computer engineering [34], [35]. More information on ACO applications can 

be found in [36], [37]. 

When natural ants are faced with a food source that can be reached only by crossing 

one of two bridges of different length, as illustrated in Fig. 3, they usually choose the 

shortest bridge. At the beginning some ants may use the shortest bridge and others may 
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choose the longest one. As the ants walk they drop pheromones to mark the path. Because 

the ants that started the shortest way will arrive earlier at the food source and will return 

following the scent on the trail they used while they drop more pheromone on it, the scent 

on the shortest trail will increase faster. For the ants starting the process, the stronger scent 

will orient them towards the shortest path. The process is a little bit more complex and is 

affected by factors such as evaporation, drop frequency modulated by the quality of the 

food source, system feedback, and sensor imperfection, among others. Evaporation is an 

important component that helps minimizing the impact of wrong decisions and may also 

decrease interest on a route in case of food depletion.  

Long path

Short Path

FoodNest

 
Fig. 3. Path selection of ants.  

The path selection mechanism has inspired software approaches with artificial ants for 

problems where a minimum cost path solution is required both in communications and in 

road networks [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], 

[48], [49]. The artificial ants travel the network and update the nodes information with 

artificial pheromone that can be sensed by other ants to make routing decisions. It is 

common that artificial ants mark the information of the arcs they visited only on the way 

back to the source according to equation (1). In this equation, the pheromone 
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concentration from node 𝑖 to node 𝑗 at node 𝑖, 𝜏𝑖𝑗, is updated by the traveling ant 𝑘 with 

pheromone deposit Δ𝜏𝑘 after evaporation factor 𝜌 is applied. 

 𝜏𝑖𝑗 ⟵ 𝜌𝜏𝑖𝑗 +  Δ𝜏𝑘 
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4. AGGREGATION

We can divide the process of road traffic congestion alleviation into an on-demand 

Traffic Assignment Problem (TAP) and the Data Aggregation mechanism that will trigger 

the DTA. In this section, we review some useful concepts for any aggregation algorithm. 

Enabling vehicles to have real-time access to traffic data is a challenging task due to 

some of the problem characteristics, such as high mobility, dynamic topologies, 

potentially unbounded network sizes, and bandwidth constraints. The potentially 

unbounded network size and bandwidth limitation call for schemes where some form of 

data compression is used and for efficient algorithms that work on a self-organized, self-

monitored and decentralized fashion. Under this circumstances, data aggregation becomes 

very handy. Data aggregation can be considered a subset of information fusion, that aims 

at reducing, or summarizing, the handled data volume [102]. VANETs are a fairly new 

field of research but fortunately they share the need for data aggregation with the more 

established field of Wireless Sensor Networks (WSN) in which important research on the 

area has been done. Aggregation is also needed in WSNs, although for the different reason 

of energy preservation.  

Data aggregation is common to database management where some typical aggregate 

functions are: AVERAGE: Returns the average value from a set of numbers, COUNT: 

Returns the number of element in a set, DISTINCT COUNT: returns the number of 

unique values in a set, FIRST: Returns the first element in a list, LAST: Returns the last 

element in a list, MAX: Returns the largest value in a set of numbers, MIN: Returns the 
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smallest value in a set of numbers, RANGE: Returns the difference between the maximum 

and the minimum in a set of numbers, SUM: Returns the sum of element in a set of 

numbers, MODE: returns the value that appears most often in the set of data, among 

others.  

We now proceed to present the definition of aggregation functions and some special 

types of these functions as they were formally defined in [102]. 

To ease the understanding of the definition we first make a brief review of important of 

multiset concepts.  

1. A multiset or bag is a generalization of the concept of set in which elements are 

allowed to appear more than once. 

2. The multiplicity n of an element m in a multiset M is the number of times m is 

contained in M. 

3. A sub-multiset is a generalization of the concept of sub-set. In a sub-multiset M 

of a multiset X, elements in M are allowed to appear more than once but they 

cannot exceed the multiplicity they had in the original set X. 

4. The multiset sum 𝑀 = 𝑋⨄𝑌 of multisets X and Y, is a multiset composed only 

of elements of X and Y, that contains all the elements in X and all the elements 

in Y, and that the multiplicity n of an element m of M satisfies 𝑛 =  𝑛𝑋 + 𝑛𝑌, 

where 𝑛𝑋  and 𝑛𝑌  are the multiplicities of the element m in X and Y, 

respectively. 

5. The support set of a multiset is the set of its different elements. 
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4.1 Aggregation function  

The concept of multiset is handy when defining aggregation as repetitions may be 

present and order is irrelevant. An aggregation function f may be defined as a function that 

maps a multiset of elements from a domain I into an output domain O: 

 𝑓: 𝑁𝐼 → 𝑂   

The fact that the input is a multitset implies that the input may have repeated elements 

and that the order of the input elements is irrelevant. 

4.2 Decomposable Functions 

The concept of decomposable functions is of great importance in distributed systems. 

When an aggregation function is decomposable, it is possible to subdivide the input 

multiset into several sub-multisets, obtain partial results by applying the aggregation to 

these sub-multisets and then, combine the partial results to obtain the same result as if the 

aggregation function was applied to the original multiset. A special case of decomposable 

aggregation functions is that of self-decomposable aggregation functions. We now proceed 

to present definitions for self-decomposable aggregation functions and decomposable 

aggregation functions as they were introduced in [102]. 

4.2.1 Self-decomposable aggregation function. A self-decomposable aggregation 

function f is an aggregation function that for any non-empty multisets X and Y and a 

merge operator ⋄ satisfies the following property [102]: 

 𝑓(𝑋⨄𝑌) = 𝑓(𝑋) ⋄ 𝑓(𝑌) 

Functions MIN, MAX, SUM and COUNT are self- decomposable. 
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4.2.2 Decomposable aggregation function. A decomposable aggregation function f is 

an aggregation function that, for a certain self-decomposable function h, and a function g, 

satisfies: 

 𝑓 = 𝑔 ∘ ℎ 

Examples of this type of functions are AVERAGE and RANGE. 

4.2.3 Duplicate-insensitive aggregation function. A duplicate-insensitive aggregation 

function is an aggregation function satisfying 𝑓(𝑀) = 𝑓(𝑆)  for all multisets M with 

support set S. Otherwise, the function is called duplicate-sensitive.  

There is a huge amount of different approaches on distributed data aggregation 

algorithms, each with different levels of performance, and taxonomy is of main 

importance when creating new algorithms. When doing aggregation in distributed systems 

like VANETs, aggregation is much easier if the aggregation function is decomposable and 

duplicate-insensitive. DISTINCT COUNT and MODE are non-decomposable, but 

duplicate-insensitive and duplicate-sensitive, respectively. Non-decomposable functions 

require the whole set of data available at the moment of computation. Aggregation 

functions that are both self-decomposable and duplicate-insensitive allow for the use of 

idempotent binary operators that could be applied successively by different nodes to the 

elements of the multiset.  

4.3 Taxonomy of Distributed Aggregation Algorithms. 

Reference [102] presents a taxonomy of distributed aggregation algorithms based on 

communication and computation perspectives. The first perspective relates to routing 
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protocols and network topology while the second perspective refers to the aggregation 

functions computed by the algorithm. 

4.3.1 Communication Perspective: According to this taxonomy, the communication 

perspective is divided according to the routing protocols into structured, unstructured, and 

hybrid classes. Structured algorithms rely on a predefined network topology, such as the 

categories of hierarchy (tree) or ring, while unstructured algorithms operate without a 

predefined network topology. Categories in this class include flooding/broadcast, 

random walk and gossip. Finally, hybrid approaches employ a combination of both 

approaches. Fig. 4 illustrates the Communication Perspective Taxonomy. 

 
Fig. 4. Communication Perspective Taxonomy 

4.3.2 Computation Perspective: This perspective, on the other hand, consists of the 

following categories: hierarchical, averaging, sketches, digests, deterministic and 

samples. These categories are intrinsically organized by the underlying aggregation 

functions: Decomposable Functions, Complex Functions (allows the computation of any 

aggregation function), and Counting (restricted to the estimation of the COUNT function). 

Hierarchical algorithms allow the computation of any decomposable function. Averaging 

approaches allow for the computation of duplicate-sensitive decomposable functions 

based on the AVERAGE. Sketches algorithms allow for the computation of duplicate-
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sensitive decomposable functions based on the SUM. Digests allow the computation of 

more complex aggregation functions, like quartiles and produce a digest that summarizes 

the system data distribution. Sampling algorithms allow the implementation of the 

COUNT based on probabilistic approaches. Fig. 5Fig. 5 illustrates the Computation 

Perspective Taxonomy. 

 

Fig. 5. Computation Perspective Taxonomy 

4.4 Some examples of VANET aggregation algorithms. 

4.4.1 Cluster-Based Accurate Syntactic Compression of Aggregated Data in 

VANETs. In the Cluster-Based Accurate Syntactic Compression of Aggregated 

Data in VANETs (CASCADE) [103] each vehicle periodically broadcasts its primary 

record. The primary record consists of timestamp (8 bytes) - the time the record was 

generated, location (16 bytes) - latitude and longitude, speed (1 byte) - in meters/second, 

acceleration (1 byte) - in meters/second
2
, heading (1 byte) - in degrees from North (0-360), 

altitude (2 bytes) - in meters above sea level. Primary Records can be re-broadcasted 

backwards for up to 1.5 km. The primary records representing vehicles ahead of the 

current vehicle comprise the local view. The local view is divided into 12 clusters with 

dimensions of 16 m x 126 m. An aggregated cluster record is formed by concatenation of 

Compact Data Records. A Compact Data Record represents vehicles in a cluster using the 
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differences between the vehicle data and overall cluster data; a compression ratio of at 

least 86% is achieved in this scheme. Aggregated cluster records are broadcasted 

periodically and are used by receiving vehicles to form an extended view. 

4.4.2 Clustered Gathering Protocol. The Clustered Gathering Protocol (CGP) [104] is 

a Hierarchical and Geographical Data Collection algorithm with infrastructure support for 

VANETs. In this algorithm, the road is divided into equal length clusters. Data collected 

by vehicles is aggregated and sent to service providers by means of Road Side Units 

(RSU). The process begins with the cluster head election. Each node is the cluster head 

until it gets a CH_ANNOUNCE message from another node or the cluster head election 

period ends. Nodes calculate a random back-off time to announce that they are cluster 

head to their neighbors by using a CH_ANNOUNCE message. This random back-off time 

is a function of the distance from the car to the end of the segment, which favors cars that 

are about to enter the segment. During data collection, each node waits a random bounded 

back-off time. At the end of the back-off time, a node sends a Request to Send (RTS) to 

the cluster head, the cluster head acknowledges the reception by sending a Clear to Send 

(CTS), and the node sends its data to the cluster head. 

4.4.3 Secure Distributed System inspired by Ant Colonies for Road Traffic 

Management in Emergency Situations. In this algorithm [105], the vehicles can 

use the information of previous vehicles to dynamically decide the best path. The 

algorithm uses generation points at cross road locations. The generation points signal 

vehicles to send a message with the location ID. These messages are processed similarly 

to the ants’ pheromones in an ant colony. Ant pheromones are substances with scent, 

which ants use to mark spots they have crossed. The pheromones scent intensity naturally 
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decreases over time and increases every time a new deposition occurs. The pheromones 

intensity is used by ants to detect highly used paths. In a similar form, the Secure 

Distributed System inspired by Ant Colonies for Road Traffic Management in Emergency 

Situations uses it to detect highly used roads chose less congested alternatives at junctions. 

4.5 Ant Aggregation 

The algorithm that we propose uses two independent aggregation mechanisms, the 

pheromone drop aggregation and the perceived edge costs aggregation. 

4.5.1 Pheromone Drop Aggregation 

Our algorithm is based on the propagation of pheromone drops, which are a function of 

the aggregated average speed of the vehicles. This aggregation process is based on 

clusters that form around accidents. The cluster's members average speeds are used to 

compute pheromone intensity. The aggregation function that computes the pheromone 

drops is decomposable as it is obtained by summing individual contribution (self-

decomposable aggregation function). The sum is later divided by the COUNT of the 

reports to obtain the aggregated average speed. The aggregated average speed is then 

used in a function to compute the pheromone drops. This whole process complies with the 

definition of a decomposable aggregation function. The aggregation process is not 

duplicate-insensitive and for that reason we need to form clusters and avoid secondary 

request messages so that the drop contains no duplicates. This aggregation process 

emulates the contribution of several ants when they pass over the same spot dropping 

pheromone. 
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4.5.2 Perceived Edge Costs Aggregation 

Vehicles in a cluster near an accident report the incident in traffic incident messages. 

Vehicles store traffic congestion in a perceived edge cost memory. When a vehicle 

receives a traffic incident message, the pheromone drop on that message is stored in the 

perceived edge cost memory of that vehicle as an indication of the traffic congestion on 

the associated edge. If a second traffic incident message for the same edge is received, the 

pheromone drop of the new message is aggregated (SUM) with the content already in 

memory. This aggregation process is self-decomposable (SUM) but it is not duplicate-

insensitive, as if two different drops contain duplicated information contributions from the 

same vehicle on the same road segment, they will affect the aggregation twice. Duplicates 

are not avoided here, though, a feature that emulates multiple drops of a single ant in the 

same spot to indicate different quality levels of the food source.  
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5. LITERATURE SURVEY

Traffic assignment is the process of assigning the traffic demand to the routes on a road 

network. As early as 1850 geographer Johann Georg Kohl analyzed the case of balancing 

traffic on a two-node, two-route network [53]. Wardrop [4], shows that the distribution of 

vehicles on a road is simultaneously random in space and time and finds two frequency 

distributions, one associated with successive vehicles passing a point and the other with 

successive vehicles along a road at an instant. Wardrop also derives a formula for the 

frequency with which vehicles would overtake one another when there is no interference 

with overtaking. He defines capacity and establishes the connection between delay and 

capacity in relation to traffic signals, also showing that the shortest practicable traffic light 

cycle does not necessarily result in the minimum average delay. Wardrop's main 

contributions to traffic assignment are the two equilibrium criteria he introduced. These 

are included in the problem statement of almost every traffic assignment problem ever 

since. The two equilibrium criteria for the traffic flowing from a set origins to a set of 

destinations are: user equilibrium assignment (UE) and system Optimum Assignment (SO), 

depending if we optimize from the user’s or system’s point of view. These criteria are also 

referred as deterministic user equilibrium assignment (D-UE) and deterministic system 

Optimum Assignment (D-SO). Traffic assignment is commonly modeled by means of two 

different mathematical formulations, the static traffic assignment and the dynamic traffic 

assignment, depending if traffic flow is constant or time dependent.  
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5.1 Seminal works 

5.1.1 Static Traffic Assignment works 

An STA model of the equilibrium assignment for both Wardrop's principles, the UE 

and the SO, was first presented by Martin Beckmann, Bartlett McGuire and Christopher 

Winsten (BMW) [5]. This solution became a standard in transportation planning since it 

was introduced. In the BMW model, the optimality of the UE was guaranteed thanks to 

the existence of the Karush–Kuhn–Tucker conditions [79], [80], a generalization of 

Lagrange’s multipliers that introduce some necessary conditions for a solution of an 

inequality constrained optimization problem to be optimal. For more details on STA, 

BMW, and KKT, please refer to Section 2.2.1. Marguerite Frank and Philip Wolfe 

presented an algorithm for quadratic programming [83]. In [84] the algorithm is adapted 

for the traffic assignment problem and tested in a small city network after which the 

method was named as the Frank-Wolfe algorithm and became a standard for the next 30 

years [85]. The algorithm suffers from slow convergence but is highly efficient in memory 

usage as it uses aggregation based on the road network links over the origin destination 

pairs, which conveys the highest level of aggregation. Many methods have been proposed 

using route base aggregation approaches that are less memory efficient. Fewer approaches 

have been developed on an origin-based aggregation approach, of this the Bar-Gera 

Algorithm has represented a breakthrough of great importance in the field [85]. Currently 

as new approaches have emerged, solutions based on dynamic traffic assignment have 

become available for dealing with congestion and variable conditions. In [75] the solutions 

that exceed the capacity of the road and ambiguity of low flow due to low traffic or 

congested road are addressed in a new model. The SO formulation for this model is very 
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similar to that of the BMW model. The UE presents complications as the existence of the 

solution is not directly guaranteed as in BMW model, but needs to be determined with the 

Lagrange multipliers. 

5.1.2 Dynamic Traffic Assignment Works 

DTA originated from the seminal works of Yagar in 1971 [6], [7], and Merchant and 

Nemhauser in 1978 [51], [8]. The first dealt with UE using a numeric approach extending 

traffic estimation methods in [106]. In 1996, a closed expression for the method of Yagar 

was presented in [107]. The second work was the first attempt to formulate DTA as a 

mathematical problem, and was limited to the D-SO, fixed demand, single destination case 

[8]. Achieving UE analytically is, in general, a very task unless some simplifications are 

made. The Stochastic Network Loading (S-N-L) type of problems, assumes that the 

measured travel times are independent from the link flows [9]. According to the authors, 

S-N-L problems can be approached with analytical methods such as [10] or by stochastic 

simulation like in [11]. 

DTA problems approaches can be classified as: Mathematical programming 

formulations, Optimal control formulations, variational inequalities formulations, and 

Simulation-based models [8].  

5.2 Mathematical Programming Formulations.  

Under this category we have the work of Yagar [6], which is the earliest known DTA 

method [7], and it is an UE approach based on an extension of the method of Homburger 

[106] by incorporating queues. Homburger described a procedure in which at every time 

slice, as large a fraction as possible of the whole demand matrix is assigned to the network 

before the link costs are updated. The link costs are updated, new paths are found, and 
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additional demand is assigned. The procedure continues until all the demand on a traffic 

slice is assigned. In this procedure, once a link reaches capacity, it is removed from the 

available links for assignment. Yagar extended this method by not removing the links that 

reach capacity and by including deterministic queues that would model a bottleneck at the 

downstream [107]. When updating the link costs, this method takes into consideration the 

cost of queuing. Even though Yagar presented a numerical method, it can be formulated 

mathematically [107]. The work of Merchant and Nemhauser also falls under this 

category. They formulated a discrete-time, non-convex nonlinear programming approach 

for the SO case of multiple origins and a single destination with a link exit function to 

propagate traffic [51]. We present more details on this algorithm in Section 2.2.2.1. This 

problem is later reformulated as a well-behaved convex nonlinear program by 

manipulation of the exit functions [108]. This publication includes extensions for multiple 

destinations even though not all of these cases yield convex programs. Multiple 

destinations require explicit FIFO constraints that, in general networks would not allow 

convex formulation of the problem. On the other hand, if these FIFO constraints are not 

used, the solutions would result in unrealistic traffic patterns [8]. In [107] a general and 

necessary condition to maintain DTA equilibrium based on assigning traffic to the 

different routes in proportion to their outflows is presented. Interestingly, if this condition 

is met, FIFO constraints are satisfied. Unfortunately, meeting this condition is not an easy 

task as it is based on outflows and it does not consider accidents or in link delays. It also 

requires information on links that may be far away and difficult to reach. Lastly, as we 

mentioned before, mathematical programming formulations also suffer from artificial 

delays at junctions. 
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5.3 Optimal Control Formulations 

In this type of approach the there is an assumption that the OD trip rates are known; 

trip rates and link flows are assumed to be continuous functions of time. One example of 

this type of formulation is in the work of Friesz et.al [109]. In this work, the authors 

present optimal control formulations for the dynamic traffic assignment of the UE and SO 

assignments; they are referred to as the Dynamic User Optimization (DUO) and the 

Dynamic System Optimization (DSO). Remarkably, they present the first generalization 

of the BMW equivalent optimization for the static assignment as an optimal control 

formulation. Another example of this type of formulation is presented in [110]. In this 

publication, the use of elastic demand is considered, which leads to the implicit 

consideration of departure choices [8]. In [111] the links exit flows functions, which in 

previous works were defined as functions of the number of vehicles on the links, are 

replaced with control variables. This allows for generalization of the static UE, which 

otherwise could be difficult for non-linear exit functions. Optimal control formulations 

suffer from similar problems as the mathematical program formulations, such as FIFO 

violations, unrealistic traffic patterns, and artificial delays at junctions. 

5.4 Variational Inequalities Formulations 

A dynamic generalization of Wardrop's UE is presented in [112]. The authors first 

analyze the DUE presented in [109] and renamed as Boston Traffic Equilibrium (BTE). 

The designation as BTE arises from the similarities of this model to traffic in the city of 

Boston, where frequent changes in link capacities occur (due to road work, weather, etc.). 

The authors found that when link capacities are more stable and change during certain 

periods of time, a new generalization is needed. This generalization is known as the 
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Simultaneous Route-Departure equilibrium (SRD). It requires the costs for the different 

paths in use, from time of departure to time of arrival, including early/late penalties, to be 

identical and equal to the minimum path cost than can be achieved from all the route and 

departure time choices. In [112] for the first time SRD is formulated as a VI approach. VI 

formulations are, in general, more computational intensive and still suffer from traffic 

realism issues as the Mathematical programming formulations, and the Optimal control 

formulations. It is interesting, though, that this new VI formulation, under certain 

regularity condition preserves the first in, first out discipline. 

5.5 Simulation-based models 

5.5.1 Rule Based Approaches.  

These type of systems base routing decisions on sets of rules. These rules may be 

diverse in nature, like fuzzy logic, risk or bounded-rationality (BR) as described in [113]. 

In [114] a real time, centralized, information system interacts with users of four different 

classes in a simulated environment. The classes considered correspond to SO, UE, BR, 

and PS, where PS users relay on historical or externally specified paths only. In that 

research, SO and UE users outperform BR and PS users with PS performing as the worst. 

In general, rule base system do not adapt well in the presence of new situations.  
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5.5.2 Brute Force Approaches 

This type of algorithm assigns traffic by iteratively running complete simulations and 

updating the link costs at each iteration [8], [115]. An example of this type of algorithm 

can be found in [116]. In this study they used a 5 𝑚𝑖𝑙𝑒𝑠 × 5 𝑚𝑖𝑙𝑒𝑠 of the Dallas-Fort 

Worth area with traffic demand based on data from the North Central Texas Council of 

Governments (NCTCOG) between 5 AM and 10 AM. Traffic is assigned to the road 

network based on initial link costs assigning a fraction of the demand to the lower cost 

routes recalculating the link costs and iterating until the whole demand has been assigned. 

The links costs obtained after the simulation, for 15-minute time slots, are fed back into 

the system, and the process is repeated. They report that the system does not perform well 

under fast changing traffic conditions, and report oscillations in the traffic flow, a 

phenomenon that has been studied in detail in [117]. This type of approach is, in general, 

time consuming and is not based on vehicular communications but in history. 

5.5.3 Game Theory Approaches 

This category groups algorithms inspired by game theory. Non-Cooperative Game 

Theory (NCGT) approaches to traffic assignment often result in elegant models from 

which valuable insight can be obtained [118]. The authors of this work group the NCGT 

approaches to traffic assignment into four categories depending on the players 

participating in the game: 

1. Games against a demon. These are zero sum games in which the gains of one 

player equal the losses of the other. There is only one objective function that a 

driver wants to minimize while the demon wants to maximize it. 
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2. Games among travelers. These games present the competition among users of a 

road system where every user that enters reduces the utility for everybody. 

Wardrop's UE can be modeled as a game in this category. 

3. Games between authorities. This type of game can be use to model situations 

where public transport operators compete to provide services. 

4. Games between travelers and authorities. In this type of game the objectives of 

the travelers are not required to be strictly different from those of the 

authorities. 

As we mentioned before, Wardrop's UE equilibrium has been related to the Nash 

Equilibrium in Non-Cooperative games [70], [17]. In other words, any UE solution to the 

traffic assignment problem could be classified as a game among travelers. In [119], we 

can find a scenario of games between travelers and authorities where three dynamic Non-

Cooperative games between the traffic light system and the users of the road system are 

presented. The objective is to find a mutually consistent optimal traffic light settings and 

user equilibrium. They present a Cournot game where travelers and authorities make 

simultaneous decisions, a Stackelberg game where authorities lead travelers in making 

decisions and a Monopoly game where authorities alone make decisions to obtain a SO.  

5.5.4 Computational Intelligence Approaches 

A Fuzzy Logic Based Traffic Junction Signal Controller (FTJSC) for multiple 

intersections is presented in [120]. This generalized system takes into account the number 

of consecutive junctions, the number of lanes, the lengths of vehicles, and the lengths of 

streets. This controller is better than previous systems as it is able to control multiple 

junctions, integrates each junction status, uses fewer control rules, has a lower inference 
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frequency, and incorporates street lengths. In [121], a centralized artificial neural system 

is introduced. This system takes current information from throughout the traffic system, 

sensor readings, weather, time-of-day, etc., and produces the timings for all signals in the 

networks to optimize the traffic flow. The traffic control function is implemented by a 

neural network for which the internal weights are updated by an on-line training process. 

Simulation results indicate a 10% reduction in waiting time at intersections. An 

evolutionary computation method is presented in [122]; the method is based on three 

different types of agents: heterogeneous travelers, centroids, and links. Centroids refer to 

origin and destination nodes such as residential, neighborhood, or work places. Travelers 

exhibit evolutionary route choices, information is pooled for interchange at centroids, and 

links present flow dependent travel times and costs. Based on the new information 

collected at centroids, travelers make route choices considering their individual value of 

time and the toll charged by each link segment. This system was compared to other UE 

and SUE the model proved to be valid and computationally tractable. In Section 5.5.12 we 

review ACO algorithms, as a special case of  Computational Intelligence Approaches. 

5.5.5 Approximations to Analytical Algorithms 

Algorithms of this type use approximation methods to analytical formulations. Some 

algorithms of this type are based on the method of successive averages applied to the 

fixed-point problem. Link flow or cost could be average resulting in MSA-FA and MSA-

CA algorithms. We can find examples of this type of algorithm in [18] and [123]. In these 

publications the Method of Successive Averages is used to solve the fixed-point travel 

assignment problem. In general, these algorithms may suffer from the rigidity of their 

inspiring analytical model as well from convergence issues [123]. 
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5.5.6 Network State Reaction approaches 

Reactive route guidance algorithms are based solely on the current conditions of the 

network. The system aims at equal travel conditions for the routes of in each OD for the 

current conditions. This type of algorithm usually exhibits less complexity than its 

predictive counterpart [91]. Examples of this type of algorithm include [124] where a 

decentralized reactive feedback system is evaluated. The paper presents a decentralized 

feedback route guidance strategy for complex, meshed traffic networks using simple 

control components of the bang-bang, P, or PI types. These components could be the 

result of a trial-and-error design. The system was simulated for two example networks 

under several scenarios of demand and incident conditions. Even though exclusively based 

on measurable instantaneous travel times no predictions, no demand, and no origin–

destination information, the system is shown to considerably reduce travel delays 

compared to the no-control case 

5.5.7 Network State Prediction Approaches 

This type of system aims at producing equal travel times for the different OD based on 

anticipated traffic conditions [91]. This type of approach tries to anticipate the network 

state from history to provide route guidance. Under this category, we can also find 

DynaMIT [125]. In this publication the authors present a traffic assignment system that 

uses both historical road network information and real-time information. The system uses 

one supply and one demand simulator. The demand simulator estimates the OD flows and 

traveler decisions on departure time, mode, and route choices (the initial OD flows are 

obtained from historical data). The supply simulator then uses the OD flows to map the 

OD flows into link flows and a traffic assignment matrix is generated. The traffic 
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assignment matrix and real-time observations are used to refine the OD flows. This 

process is continued until congruence between the simulators is obtained. As a result of 

this process, predictive status of the network and prescriptive route recommendations are 

presented to the drivers. The guidance is deemed consistent if the drivers' decisions do not 

invalidate the anticipated guidance. 

In order to achieve realistic travel decisions, a mix with reactive approaches is often 

used. One example of this type of mixed approach is presented in [126]. In this publication 

they report the use of Kalman filters to predict time-dependant traffic demand based on 

sensors and historical information, to estimate traffic conditions and provide route 

guidance. In Section 5.5.12.3 ACO Network State Prediction Approaches algorithms [49] 

and [44] are explained. 

5.5.8 Centralized Approaches 

In [121], a centralized artificial neural system is presented; this system is explained in 

Section 5.5.4. An ACO based algorithm for DTA that routes vehicles at intersections is 

presented in [42]; details are provided in section 5.5.12.5. In [46] a centralized system is 

proposed in which ants going from a given origin to a destination select the 5 best routes 

and update their pheromone just in those routes. In case of congestion ants choose 

alternate best routes until the situation is resolved. This algorithm is explained in section 

5.5.12.7. 

 

5.5.9 Decentralized Approaches 

The previously mentioned evolutionary computation method presented in [122] also 

falls under this category. As mentioned before, the method is based on three different 
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types of agents: heterogeneous travelers, centroids, and links, where centroids refer to 

origin and destination nodes. Travelers gain information by travelling, information is 

exchanged at centroids, the information obtained is used to make route decisions. This 

work is explained in 5.5.4. In [48] two strategies to avoid congestion are presented using 

pheromone marks on a decentralized system of servers; this system is explained in Section 

5.5.12.7. [44] presents a DTA approach to anticipatory routing inspired by ACO inspired 

agents representing vehicles and roads. This algorithm is  explained in Section 5.5.12.3. 

5.5.10 Approaches with Infrastructure Support 

All Centralized algorithms require infrastructure support. As mentioned before, [44] 

presents a DTA approach based on ACO inspired agents representing vehicles and roads. 

This system is decentralized but requires infrastructure. In [45] a local control of traffic 

lights is proposed along with an infrastructure support. This is a cell-organized system, 

where vehicles use ACO inspired algorithms for routing. [47] presents a DTA system 

where the road map is divided into zones in a hierarchical way. Vehicles interchange 

information with infrastructure to allow travel time estimation and best route selection by 

ACO. More details on these last two algorithms are presented in section 5.5.12.4 and 

5.5.12.5, respectively. [49] presents an infrastructure-supported dynamic routing system 

based on ACO Network State Prediction. Details on this algorithm are presented in 

Section 5.5.12.3. 

 

5.5.11 Approaches with No Infrastructure Support 

Arellano and Mahgoub [63] present a decentralized and infrastructure-less algorithm. 

This system is the core of our proposed algorithm and it is explained in the next section. 
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5.5.12 Ant Colony Optimization 

5.5.12.1 ACO Seminal Works. Ant Colony Optimization was first used in traffic 

assignment in  [38]. The authors used a modified version of Ant Colony System (ACS) 

[27], for traffic assignment. Several ant colonies are used, one for each OD pair, where the 

origin is the nest and the destination is the food source. In this system ants from a certain 

colony respond only to the pheromone of their own colony. Link costs are affected by the 

total flow though.  The authors found that the algorithm performs well even in the 

presence of complex networks. They claim that ACO systems are suitable in almost all 

real cases where UE is needed without the use of simplifying assumptions. They state that 

ACO algorithms are particularly suited for parallel processing and dynamic systems 

because that is precisely the nature of the algorithm. Interestingly, the authors report that 

in these algorithms the shape of the objective function is irrelevant, and they can be 

applied successfully to non-separable  link  cost  functions  or  multi-class  demand. 

5.5.12.2 ACO Approximations to Analytical Algorithms. An Ant Colony 

Optimization model using multiple ant colonies, one colony for every origin destination 

(𝒐𝒅) pair is used in [39], where stochastic user equilibrium (S-UE) algorithms for the 

fixed-point traffic assignment problem are proposed. We will introduce this problem after 

introducing some definitions. For a network of 𝑛 links let 

 𝒇 be the (𝑛 × 1) vector of link flows; 

𝒄 be the (𝑛 × 1) vector of costs; 

𝑵  be the number of routes in the road network; 

𝑭 be the set of feasible link flows; 
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the fixed-point traffic assignment can be formulated as: 

𝒇∗ = 𝒇(𝒄(𝒇∗))  𝒇∗ ∈ 𝑭 

where 𝒇∗ corresponds to the optimum traffic assignment. 

The authors prove that with proper selection of the intensity of the pheromone drops, 

the application of the algorithm is equivalent to the application of an MSA algorithm, such 

as Dial's algorithm [10]. They designate their algorithm as MSA-ANT. Another example 

of algorithms of this type, Ant Colony System for Traffic Assignment (ACS-TA), for both 

S-UE and D-UE is presented [52]. The authors generalize the algorithm presented in [39] 

by analyzing several route choice models and how these relate to the shape of the function 

that determines the concentration of pheromone deposition over time. They indicate that, 

by changing this function, different models could be obtained, from the classical Logit to 

the sophisticated Probit. Additional information on transportation fixed-point problems 

can be found in [12], [18]. Unfortunately, all these algorithms are intended for the STA. 

5.5.12.3 ACO Network State Prediction Approaches. Dynamic routing system 

based on Ant Based Control [49], presents an infrastructure supported DTA system that 

uses ants to compute and predict travel times. This system is based on Ant Based Control 

(ABC) [127]. ABC is inspired by packet-routing algorithm AntNet [128]. The 

intersections maintain local time tables that list the travel times to the current node from 

the adjacent nodes and probabilities tables that store probability-based, goodness factors 

for each next-link destination pair. When vehicles  approach a node they are directed to 

the link with the greatest goodness factor that leads to the destination. The tables are 

maintained as follows: for each pre-defined period of time they have a historical average 
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of link speeds that is retrieved from the system memory. This information is combined 

with the current estimation of speed determined by the algorithm according to formula: 

𝑣𝐴𝐵 = 𝜏ℎ𝐴𝐵(𝐼𝑘) + (1 − 𝜏)𝑓𝐴𝐵(𝐼𝑘)

where 𝑣𝐴𝐵  is the average speed between nodes 𝐴 and 𝐵, ℎ𝐴𝐵(𝐼𝑘) is the historical speed 

value at interval 𝐼𝑘, 𝑓𝐴𝐵(𝐼𝑘) is the estimated speed value on the same interval and 𝜏  is a 

combination factor that the authors set to 0.5. The routing tables are updated as explained 

next. Forward ants are sent periodically from each car to its destination. When arriving at 

a node, the estimated travel time is determined when the algorithm takes into account the 

number of forward ants that were present on that link, using a function that relates vehicle 

density to speed. Forward ants store these estimated travel times in their memory, and 

once they reach the destination, they transfer their memory to a backward ant and then die. 

Backward ants return to the originating node, using the same route as the forward ant, and 

they update the time and probabilities tables on the way back. The simulation of this 

system on a part of the Dutch highway network showed that, in general, for 50% of the 

routes, faster alternatives were found. The proposed algorithm suffers from being 

centralized.   

Another example of this type of approach, Anticipatory Vehicle Routing Using 

Delegate Multiagent Systems, is presented in [44] where they develop a DTA 

decentralized system to provide anticipatory vehicle routing using a multi-agent system. 

This system is inspired by ACO and includes agents representing vehicles and roads. In a 

simulated environment of vehicles, each vehicle sends delegated exploration ants to 

evaluate alternate routes to the destination. Exploration ants estimate travel time by 
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querying the agents on the different road segments composing the routes about the 

estimated travel time of the segment. When these ants reach the destination, they send the 

aggregated travel time back to the vehicle. The vehicle then makes a route decision, and 

sends intention ants along the selected road to update, by means of notifications, the future 

demand information of the segments. Road segments use these notifications along with 

real time traffic information to forecast travel time. The authors report improvements on 

average the travel time of up to 35%. This system has the advantage of being 

decentralized but unfortunately requires infrastructure. 

5.5.12.4 ACO Optimization of Traffic Signal Settings. Frequently in the 

literature, the Network Design Problem (NDP) for a road network aims at minimizing the 

total system costs under limited expenditure, while accounting for the route choice 

behavior of network users by expanding the capacities of the existing congested links or 

building new links [129]. The Network Design Problem is more general and may include 

traffic light settings. When it deals with optimizing signal settings is indicated in the 

literature as the Signal Setting Design Problem (SSDP). When this is done for the entire 

network, it is referred as the Global Optimization of Signal Settings (GOSS). On the other 

hand, if it is assumed that signal settings at each intersection depend only on entering 

flows of the intersection the problem is referred to as the Local Optimization of Signal 

Settings (LOSS). Both problems can be formulated as a fixed-point traffic assignment and 

LOSS is also referred to as the asymmetric traffic assignment problem. 

An ACO approach for solving LOSS is presented in [41]. The authors solved this 

problem by controlling the traffic lights by means of pressure variables that are assigned to 

each road direction. These pressure variables are directly proportional to the traffic flow in 
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the associated direction and inversely proportional to the road width. The pressure 

variables are used to define a control policy, which is solved as an MSA problem. When 

simulated on real-scale networks the proposed algorithm obtains the solution in less time 

but with the same accuracy than a traditional MSA. 

In a more general context, NDP  problems may include simultaneous optimization of 

signal setting and traffic assignment. This type of problem is characterized by the so-

called bi-level structure. Problems of this type, in general, are difficult to solve, because 

they require the evaluation of an upper-level objective which, in turn, involves solving the 

lower-level problem for every feasible set of the upper level decisions [130]. 

Baskan et al. [131], introduce ACO Reduced Search Space (ACORSES), an ACO 

algorithm that searches for optimal solutions around the best outcome of the previous 

iteration. It is used to optimize traffic signal timings under the Mutually Consistent (MC) 

solution for optimizing signal timings or the bi-level solution for optimizing signal 

timings. In the first case, the traffic light problem is solved by keeping the  flows  fixed,  

and  then  the  traffic  assignment  problem  is  solved  by  keeping  the  signal timings 

fixed. The second case requires iteratively solving the traffic light problem which, in turn, 

involves solving the traffic assignment problem for every feasible set of the traffic light 

decisions. ACORSES was found successful in terms of the signal timings and  the  final  

values  of  degree  of  saturation with the MC solution requiring more cycle times and 

being dependent on the initial settings. Unfortunately, this algorithm is intended for STA 

problems. 

Dynamic Vehicular Traffic Control Using Ant Colony and Traffic Light Optimization, 

a system that includes VANET based Traffic Light Optimization and Vehicular Routing 
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with Optimal Path is proposed in [45]. The road network system is divided in 

geographical cells. Additionally, the system is organized in three layers: 1) the physical 

layer, that includes all nodes and links, 2) the junction layer, where all links that connect 

to a single junction are eliminated, and 3) the inter-cell layer that only shows links that 

connect two different cells. The nodes on the last layer are designated border-nodes. The 

system includes a LOSS mechanism and is an infrastructure supported, junction routing 

mechanism at the border-nodes. The LOSS portion of this system counts the cars 

approaching a given intersection in each direction. It does so by direct radio contact and 

by asking the furthest away cars to extend the area and count the cars behind them. The 

number of vehicles approaching in each direction is then used to control the traffic light at 

the intersection. Border-nodes keep inter-cell routing tables tracking the numbers of 

vehicles going to the adjacent nodes on the neighbor cells during specified time intervals.  

These tables are disseminated over the entire road network. An ACO algorithm is used to 

find the shortest routes inside each cell. When doing inter-cell travel, the ACO algorithm 

includes the inter-cell routing tables in the best route selection. The proposed system was 

evaluated in a simulation and it was determined that average speed increased around 20 

km/h and the number of vehicles stopped at intersections decreased significantly. 

Unfortunately, this system requires infrastructure support. 

5.5.12.5 ACO Routing at Intersections. [42] presents an ACO based algorithm for 

DTA by routing vehicles at intersections. This work identifies the main differences 

between a vehicle network and an ant network and introduces Ant Colony Routing (ARC), 

a modified ACO algorithm that addresses the following existing differences between 

vehicles and ant networks: 
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 Ants have no individually pre-assigned destinations, while each vehicle in a 

traffic network does. 

 Ants on an ant network only strive for the user equilibrium, while vehicular 

traffic management has global objectives. 

 Ant networks have no limiting capacities on links, while traffic networks are 

constrained by link capacity. 

 In an ant networks link costs are fixed and static, while in road networks they 

change dynamically depending on time-varying traffic conditions. 

The authors address the problem of pre-assigned destination by using multiple ant 

colonies, one for each OD pair. They propose a centralized system with global objectives, 

and address the problems of links' capacities and fixed costs by using a system with two 

types of pheromones, the traditional ACO pheromone, and a stench pheromone that repels 

ants from congested links. By doing this, the authors take care of link capacities and costs. 

The recommended splitting rates for each destination are disseminated at intersections. 

After a simulation on the Walcheren area in the Netherlands, the authors found that the 

algorithm is suitable for on-line optimization, and balances well control/performance and 

computational load. Unfortunately, this algorithm is centralized. Centralized algorithms 

for VANETs require the existence of an infrastructure that may not always be available 

and suffer from great computational complexity. 

Hierarchical routing in traffic using swarm-intelligence is presented in [47]. It is a 

DTA system where the road map is divided into city zones interconnected by highways. 

The nodes of a zone that can directly link to a node in different zones are designated 
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routing-nodes. Vehicles interchange travel information with infrastructure to update travel 

routing tables at each intersection. These tables include a timetable that lists the travel 

times to the current node from the adjacent nodes and a probabilities table that lists 

probability-based, goodness factors. This last table stores goodness factor for each next-

link destination pair on the current zone, and for the routing-nodes when the destination is 

in a different zone. Nodes located in other zones are represented in this table as a virtual 

node that summarizes the neighbor zone. Routing-nodes periodically send exploring ants 

to neighbor zones in order to update travel time information on the corresponding virtual 

node and the goodness of this connection on the tables of the routing-node. The  best route 

selection is implemented by means of an adaptation of H-ABC [132], a scalable ant 

colony optimization algorithm for dynamic routing in packet switch networks, inspired by 

routing protocol AntNet [128]. In the proposed algorithm, when vehicles reach a node 

they are directed to the link of greatest goodness that leads to the destination. 

Simultaneously, forward ants, are sent to find the best route to the destination. Once these 

ants reach the destination, they die and backward ants are sent, using the same route as the 

forward ant, to update the time and probabilities tables. After the ants have updated the 

road network, the route with the lower cost is selected. This system suffers from being 

centralized and requiring support infrastructure. 

5.5.12.6 ACO Vehicle Routing Problems. The Vehicle Routing Problem (VRP) 

can be described as simultaneously determining the routes for several vehicles from a 

central supply depot to a number of customers and returning to the depot without 

exceeding the capacity constraints of each vehicle. This problem is closely related to the 

TSP, which consists of given a list of cities and the distances between each pair of cities, 
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finding the shortest possible route that visits each city exactly once and returns to the 

origin city. 

An ACO Heuristic for Vehicle Routing Problem is presented in [43]. In a TSP problem, 

ants are provided with the list of cities. Sequentially each ant constructs a tour in which 

the next city to visit is selected as in a regular ACO algorithm with pheromone deposition 

and evaporation. After a given number of ants 𝑚 a feasible solution is found by selecting 

the best route and an additional amount of pheromone, that depends on the tour quality, is 

added to the arcs of this solution to promote the use of shortest paths. The process is 

iterated a set number of times and the solution to the problem is the feasible tour with the 

smallest cost. In [43] the method is adapted to the VRP in an environment where a given 

number of ants, representing vehicles with limited capacity, departing from a depot visit 

customers exactly once, to collect packages. The algorithm is modified by having the ants 

return to the depot when the vehicle capacity is reached or when all customers have been 

visited. In this way, each single ant finds a solution to the problem. The solution with the 

smaller total cost is selected. The authors also study the use of multiple ant colonies, one 

per vehicle, and the use of a candidate list that limits the options of the next customer to 

visit. When compared to known optimal solutions the algorithm is successful in finding 

solutions within 1% difference, and in the case of large problems, the use of multiple ant 

colonies provided a competitive solution technique. The algorithms proposed for this 

interesting problem, although aimed at making route decisions, are not intended for 

optimizing traffic. 

5.5.12.7 ACO Congestion Avoidance. In [46] a Dynamic System for Avoiding 

Traffic Jams (DSATJ) is proposed. In this system, ants going from a given origin to a 
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destination select the 5 best routes based on traveled distance, using ACO. After the routes 

are selected and simulation starts, pheromone intensity on each link is updated based on 

the number of vehicles using the link. When the pheromone intensity reaches a threshold, 

congestion is detected and, vehicles entering the simulation would change their route if the 

affected link was included in their tour, while vehicles already on the simulation would 

divert to another link before they reach the affected one. A normalization formula is used 

to reduce pheromone intensity as traffic jams decrease. This system is an adaptation of 

[133], which is an algorithm for the Dynamic Traveler Salesman problem (DTSP) based 

on Ant System [23]. In [133] new routes are required, not because of congestion, but 

because the link lengths are artificially changed. The proposed system is centralized and 

requires infrastructure support.  

Self-Organizing Congestion Evasion Strategies Using Ant-Based Pheromones is 

presented in [48]. Two strategies to avoid congestion are presented using pheromone 

marks on a decentralized system of servers. In this system inspired by ants, a system of 

local servers keep the transit time, for every link, of each vehicle on the link. This 

information is used to categorize links as congested or uncongested. Two strategies are 

presented to handle congestion, Stay on Track Strategy (STS), and Immediate Evasion 

Strategy (IES). In the first strategy, vehicles stay on route until the delay exceeds that of 

an alternate route. In the second strategy, vehicles change routes as soon as congestion is 

detected. STS works best for short delays and IES does for long delays. Simulation results 

did not show a clearly winning strategy for mixed environments. In this type of 

environment, around 20% of the vehicles were able to significantly improve their travel 
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time under congestion. The problem with this approach is that it requires infrastructure, 

even though it is not centralized. 

In Table 1 we illustrate the advantage the algorithm we propose. It is a DTA, 

decentralized, and infrastructure-less algorithm. 

Table 1. Comparison of different ACO inspired algorithms with the proposed algorithm 
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ACS [38]       

MSA-ANT [39] and ACS-TA  [52] 
   

Dynamic routing system based on Ant Based Control [49] X X   

Anticipatory Vehicle Routing Using Delegate Multiagent Systems [44] X X   

ACO-based algorithm for solving the LOSS problem [41]       

ACORSES [131] 
   

Dynamic Vehicular Traffic Control Using Ant Colony and Traffic Light 

Optimization [45] 
X X   

ACR, [42] X     

Hierarchical routing in traffic using swarm-intelligence [47] X X   

DSATJ [46] X     

Self-Organizing Congestion Evasion Strategies Using Ant-Based 

Pheromones [48] 
X X   

Proposed algorithm, Road-ACO X X X 
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6. THE PROPOSED ACO INSPIRED DTA ALGORITHM

We propose an ants-inspired DTA algorithm. Ants are known to find shortest path 

solutions and ACO algorithms have been used before for traffic assignment successfully. 

6.1 Proposed Algorithm 

We propose a novel algorithm, Reverse Online Algorithm for the Dynamic-Traffic-

Assignment Ant-Colony-Optimization-inspired (Road-ACO), that assigns traffic as it 

evolves in real time, without prior knowledge of the traffic demand or the schedule of the 

cars that will enter the road network in the future. This novel, decentralized, online 

algorithm employs a new breed of ants which are position aware, capable of broadcasting 

pheromone information, have the road map in memory along with perceived edge costs, 

and execute shortest path algorithms in a selfish manner consistent with S-UE, just like a 

VANET-enabled car. Additionally, these ants differ from the traditional ants by the 

reverse way they use pheromone. Higher intensity indicates road segments of lesser 

quality, in contrast to better routes in traditional ants. Similar to traditional ants, the new 

breed of ants use pheromone subject to evaporation, and make routing decisions based on 

the pheromone concentration on the edges, although they make decisions based on the 

pheromone concentrations on the entire map and not just on the current node. In real life, 

the ants' pheromone evaporation indicates routes becoming less appealing due to food 

quality depletion. In our case, evaporation is the mechanism that progressively increases 

the quality of routes as decreased pheromone concentration means less congestion. Using 
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the terms ant and vehicles indistinctively, starting with the variables definitions in Section 

6.1, we now proceed to describe Road-ACO.  

6.2 Algorithm Variables 

We now define the algorithm variables. The variables can be divided into global and 

local variables. The global variables are constant and have the same value for all vehicles. 

Local variables store data corresponding to the individual vehicles.  

6.2.1 Global variables 

 Aggregation period (ap). Duration window that defines the time used by 

vehicles to determine travel conditions. 

 Edge default travel time (edtt). The time it takes to travel that edge at the 

maximum allowed speed. 

 𝜌. Represents the pheromone evaporation factor. 

 Speed aggregation threshold (sat). Threshold used to trigger a vehicle to 

become a cluster head. 

 Consensus threshold (ct). Threshold that triggers when a cluster head reports a 

traffic incident. 

6.2.2 Local Variables 

 Step counter. Used as a timer variable, to cycle through the Aggregation period. 

 𝜏𝑖𝑗. Represents the pheromone concentration or edge cost from node 𝑖 to node 𝑗 

at node 𝑖, as perceived by the individual vehicle. 
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 Δ𝜏𝑘. Represents the pheromone intensity used by a cluster head k to mark the 

edge it is currently in, in case of a traffic incident. 

 Speed moving average (sma). Stores the modified moving average of the 

vehicle speed. 

 Aggregated average speed (aas). Used by cluster heads to aggregate the 

average speed of reporting vehicles. 

 Aggregated travel time (att). Used by cluster heads to compute the pheromone 

intensity; 𝑎𝑡𝑡 = 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ/𝑎𝑎𝑠. 

6.3 Dynamic Traffic Assignment Algorithm 

The DTA algorithm can be subdivided into three sub algorithms: the speed 

aggregation, cluster, and the communication algorithms. The speed aggregation and the 

communication algorithms run concurrently at all times while the cluster algorithm is 

executed only when an abnormal traffic flow condition occurs. Each vehicle in the 

simulated road network independently executes these algorithms in a decentralized 

fashion. 

6.3.1 The speed aggregation Algorithm 

Fig. 6 illustrates the speed aggregation algorithm. When a vehicle enters into the 

simulated road network, the global variables are read, the step counter is set to 1, and the 

speed moving average is set to 0. At every time step thereafter, the vehicle performs the 

following actions: 
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1.  Applies evaporation to the perceived edge costs according to 𝜏𝑖𝑗 = 𝜌𝜏𝑖𝑗. If, for 

a certain edge, the new 𝜏𝑖𝑗 value is less than the edge default travel time, then 

𝜏𝑖𝑗 = 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 is used.  

2. Acquires the current speed at which it is traveling and updates the speed 

moving average as: 

𝑠𝑚𝑎 ← (𝑠𝑚𝑎 ∗ (𝑎𝑝 − 1) + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑 )/𝑎𝑝 . 

3. The step counter is incremented by 1. 

At the end of its aggregation period, the vehicle checks if the speed moving 

average falls under the speed aggregation threshold. If this is true, the vehicle will 

execute the cluster algorithm. 

6.3.2 The cluster algorithm 

This algorithm is executed when the speed moving average falls under the speed 

aggregation threshold in the speed aggregation algorithm. Fig. 7 illustrates the cluster 

algorithm. The vehicle that satisfies the mentioned condition organizes a cluster on the 

edge it is currently in by broadcasting a request message and becoming the cluster head. 

Each cluster member will reply with a reply message containing the member's average 

speed. During an entire aggregation cycle, the cluster head aggregates the received 

average speeds sent by the cluster members into aggregated average speed. At the end of 

this cycle, if the ratio of number of reply messages in consensus with the low speed 

condition (nrmc) to the total number of reply messages (TNRM) exceeds the consensus 

threshold, a pheromone drop is broadcasted in a traffic incident message and the cluster 

dissolves. The pheromone drop intensity is calculated according to:  
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𝛥𝜏𝑘 ← (𝑒𝑑𝑡𝑡 + 𝑎𝑡𝑡 ∗ (𝑛𝑟𝑚𝑐 − 1))/𝑇𝑁𝑅𝑀  

The formula above produces pheromone drop intensity increasing with the number of 

reply messages in consensus. If the total number of reply messages is large but the number 

of reply messages in consensus is small, the drop has low intensity as one would expect 

and could be negligible. The cluster formation process is explained in the communication 

algorithm. 

6.3.3 The communication algorithm 

Fig. 8 illustrates the communication algorithm. Vehicles in the simulated road network 

continuously monitor the communication channel waiting for two different kinds of 

messages: request messages and traffic incident messages. Every vehicle that is on the 

same edge as the cluster head and receives the request message will send a reply message 

containing its average speed and resets its step counter to 1 to prevent broadcasting any 

new request message until the end of the new aggregation cycle. Every vehicle receiving 

the traffic incident message will update the edge cost according to 𝜏𝑖𝑗 ⟵ 𝜏𝑖𝑗 +  Δ𝜏𝑘 and 

execute a shortest path algorithm using its internal map and the perceived costs in 

memory. The vehicle will reroute if a better route is found. 
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Fig. 6. Speed aggregation algorithm 
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Fig. 7. Cluster Algorithm 
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Fig. 8. Communication Algorithm 

6.4 SIMULATION RESULTS 

 

6.4.1 TrafficModeler Extensions 

We have created extensions to Veins that allow for rapid modeling of traffic demand 

and VANET simulations [57] using OSM maps. These extensions were successfully tested 

in a VANET simulation of the Kendal Corridor [134]. 

6.4.2 Veins Extensions for route changing 

We have extended Veins to allow changing vehicles' routes based on received traffic 

status messages. The extensions were tested on a rectangular grid with an accident 

between 2 cars, which, in absence of actions, would create a gridlock from shortly after 

the accident happened to the end of the simulation. With the extensions and an algorithm 

that will make vehicles change route if traffic congestion is detected, the gridlock was 

avoided with an increase of less than 25% on the average travel time (W. Arellano, I. 
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Mahgoub, and M. Ilyas, "Veins Extensions to Implement Message Based Algorithm for 

Dynamic Traffic Assignment in VANETs Simulations" [62], in 2014 11th International 

Conference on High Capacity Optical Networks and Enabling Technologies (HONET) (in 

press). 

6.4.3 Road-ACO 

6.4.3.1 Setup. We evaluate the algorithm performance in a simulation 

environment composed of OMNET++ [135], SUMO [59], and Veins [61], similar to the 

environment described in [57]. The simulation is performed according to IEEE 1609.4 as 

implemented in Veins. In the next section, we describe the simulated environment, state 

the assumptions, and define the input and output parameters. 

6.4.3.1.1 Simulated Environment. Fig. 9 shows the simulated road network. As we 

explain below, some vehicles may need to reroute to improve their travel times. All roads 

have two lanes in each direction, a maximum speed of 64 km/h and U turns are permitted. 

The horizontal edges are 150 m long, and all other edges are 220 m long. The road 

network contains 6 nodes: -4, -6, -8, -10, -12, -14. Nodes -10, -14 are origins and node -4 

is the only destination. From each origin node, -10, and -14, 1,000 vehicles depart to the 

common destination -4. When vehicles depart they have a planed route based on a shortest 

route algorithm (SR). Even though this road network is very symmetric and would suggest 

that all vehicles should use the shortest routes, differences in the traffic light signals and 

the allowed lane changes make the top route faster and vehicles may need to reroute to 

improve their travel times. The upper route is more favorable because, first, the traffic 

lights at nodes -8 and -6 both offer green light in sync to the incoming vehicles, while for 

the lower route when the traffic light at junction -12 is green, the traffic light at junction -6 
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has the red light on. Second, the intersection -6 favors the upper edge as the two lanes on it 

allow travel towards the destination while just one lane from the bottom route allows 

transit to the destination, since the other lane is forced to turn left. Fig. 10 illustrates these 

lane details. All the traffic lights in the direction towards the destination have the 

following cycle: green, yellow, red, equal to 31, 6, and 49 seconds respectively. This was 

the default cycle assigned by SUMO. 

 

Node Description (−𝒏 denotes node 𝒏) 

Origins -10, -14 

Destinations -4 

Junctions -8, -12, -6 

Traffic Demand 

OD Volume 

(-10, -4) 1,000 

(-14, -4) 2,000 
 

Fig. 9. Road Network Description 

 
Fig. 10. Lane Connection Detail, intersection -6 
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6.4.3.1.2 Simulation Assumptions. It is assumed that the algorithm messages 

would be broadcasted using regular IEEE1609 standard beacons. All vehicles are 5 m long 

and acceleration and deceleration are 2.6  and 4.5 m/s
2,
 respectively. 

6.4.3.1.3 Input Parameters. The number of vehicles entering the simulated road 

network from each origin. Vehicles enter the network as fast as the congestion of the roads 

allows. For our simulation we used 1,000 vehicles per origin. This number was selected 

based on reasonable simulation time and because it produces significant traffic congestion 

when routing by SR. 

The evaporation factor. Several values of this parameter are tested to assess the impact 

on the solution of the speed at which pheromone vanishes when recovering from wrong 

decisions and congestion. The value of this variable was systematically changed to obtain 

the greatest traffic flow improvement. 

The speed aggregation threshold. This parameter is varied to assess the impact of 

ignoring certain values of congestion level over the solution. The value of this variable 

was systematically changed to determine how much of congestion can be ignored and still 

obtain significant traffic flow improvements. 

6.4.3.1.4 Output Parameters. The outputs of the simulation are the vehicle’s 

average traveling time, and the total time, measured from the start of the simulation to the 

moment that the last vehicle reaches its destination. The values of these two parameters 

are obtained for the cases of route selected by SR, UE as calculated by traffic simulator 

SUMO (SUMO-DTA), and with the proposed algorithm for several different input 

parameters. SUMO-DTA is an algorithm that requires entire knowledge of the traffic 
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demand, simulates the scenario, computes new edges' costs and use them in a new 

simulation, for a given number of iterations. The Veins framework, in charge of 

controlling the simulation, keeps record of many and diverse simulation results. From 

there we were able to obtain our parameters of interest, average traveling time and the 

total time. In the next section the simulation results are analyzed. 

6.4.3.2 Results and Analysis. valuating the performance of a DTA algorithm 

under UE, by using the definition of UE, is a difficult task as this equilibrium implies that 

no vehicle can improve its travel time by changing routes and that is hard to assess. We 

base our evaluation on average trip times. A solution that seeks UE should have average 

trip times close to that of the optimal UE. Otherwise, some vehicles could be able to 

reduce their individual travel times, contradicting the definition of UE. Our algorithm does 

not minimize average trip times as that would produce SO and not UE. However, it is 

known that UE, even though less efficient, is practical to achieve and not so far from SO 

[17]. Table 2 contains the simulation results for an aggregation period of 𝑎𝑝 = 5 seconds 

and a consensus threshold of 𝑐𝑡 = 25%. The first value is chosen to keep the simulation 

execution time low, as we observe that lower values increase this time considerably. The 

second parameter is chosen to allow for early report of the accidents without the need to 

wait for a large consensus.  Row 1 contains the data for the case when shortest route 

algorithm is used; it is the worst case as it shows the largest simulation and average trip 

times. On the other hand, row 2 shows the data for the case of SUMO-DTA. This solution 

presents the best simulation and average trip times with an improvement of 34.97% in 

average trip times. SUMO-DTA provides the best results, but unfortunately, requires full 

knowledge of the traffic demand, a requirement which is not practically feasible. The rest 
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of the rows show the data for the proposed algorithm for different input parameters. All of 

the proposed algorithm trials show improvement over the average trip times of the SR. If 

any two solutions present similar average trip time, we prefer the one with the lowest 

simulated time. The best outcome is 29.17% for an evaporation factor of 75% and speed 

aggregation threshold of 50%. Evaporation factor of 75% appears to be a good choice in 

this scenario as the three best outcomes include this value. The best solution has a speed 

aggregation threshold value of 50%, which implies less use of the communication channel 

and prevents unnecessary rerouting.  

Table 2. Simulation Results. ct =25%, ap = 5 
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1 SR N/A 100 7,803 278.25 0.00 

2 SUMO-DTA N/A 100 4,142 180.95 34.97 

3 ACO 75 50 5,426 197.09 29.17 

4 ACO 75 100 5,229 197.31 29.09 

5 ACO 75 25 5,306 200.38 27.99 

6 ACO 80 100 5,345 203.88 26.73 

7 ACO 75 75 5,476 204.51 26.50 

8 ACO 50 100 5,647 207.13 25.56 

9 ACO 95 100 5,598 213.16 23.39 

10 ACO 90 100 5,663 218.89 21.33 
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7. APPLICATION TO LARGER ROAD NETWORKS

7.1 Applications to Complex Networks 

The current version of the algorithm has been tested in a road network that is simple 

since it only has 5 nodes and 6 branches. Also, this network is small since it has 3 

branches of length 220 m and 3 of length 151 m. This is a favorable environment for a 

VANET system as all vehicles in a branch can be reached by messages from any car on 

the same branch without the need for rebroadcasting. We intend to test the algorithm in a 

complex environment with a larger number of nodes and with branch lengths that make it 

impossible for a message to always reach all the vehicles in the branch without repetition. 

7.2 Defining the Complex Network 

Fig. 11 illustrates an artificial road network with 4 avenues running vertically and 3 

streets running horizontally. Avenues are designated A, B, C, and D from left to right, and 

streets are designated 1 though 3 from top to bottom. The spacing between streets and 

avenues of this grid is changed in different experiments according to the following 

combinations (125, 500), (250, 1,000), (437.50, 1750), (500, 2,000), (1,000, 4,000), and 

(2000, 8000). The first number in the previously mentioned pairs indicates the distance 

between streets and the second one is the distance between avenues; all distances are 

measured in meters. For simplicity we will identify them by the second number in the pair 

only; for example, we will name the system with streets and avenues distances of 1000, 

and 4000 meters as the "4000 System". In these road systems the distance between 
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avenues is always 4 times the distance between streets; this is selected so each of them is a 

scaled version of the (1000, 4000) road system. The appended road segments in the 

perimeter are the only ones that connect to a single node.  These segments have a fixed 

length of 1,000 m for all systems; this selection is made to allow for flawless insertion of 

the traffic demand in the yellow zones and keep the demand constant in all cases. It has 

been observed that the rate at what vehicles are inserted can be affected if these 

appendices are changed in length. The maximum speed is 100km/h and the roads have 4 

lanes, 2 in each direction. Traffic demand is modeled using trafficmodeler [58] with the 

extensions proposed in [57]. The traffic is generated with random origins inside the yellow 

left ellipse and travels towards random destinations in the yellow right ellipse. Although 

the traffic generated this way moves from left to right, individual vehicles may travel in 

the opposite direction if required by the algorithm. No traffic demand is modeled from 

right to left. An accident with a duration of 3,300 seconds is simulated near the 

intersection of street 3 and avenue D as illustrated by the circle and its zoomed image in 

Fig. 11, where the red vehicles are involved in an accident that produces a total blockage 

of the road segment in an unfavorable end of a road segment, near the exit node. 

With the exception of the 500 System, the traffic demand consisted in all cases of 1800 

vehicles entering the road randomly in a period of time of 2 hours. The 500 System uses 

900; this is selected because the small grid size would generate a gridlock in the road 

traffic simulator Sumo. Gridlocks in Sumo can be handled using "vehicle teleportation", 

this feature would remove vehicles if they are stuck in the same location for a long period 

of time. We have disabled this feature as it would interfere with the long-lasting accidents 

that we use in our simulations. Fig. 12 illustrates the mentioned grid lock. 
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Fig. 11. Complex Road System 

 

Fig. 12. Grid Lock in the 500 System 

In the next section we explain how rebroadcasting is used to improve traffic on large 

road networks where accidents occur far away from the entrance of a road segment. 

7.2.1 Modified Algorithm 

VANET transceivers are expected to transmit signals with a maximum reach of 1,000 

meters. Some of our road systems are larger than that and an accident happening near the 

exit of a long segment could not reach vehicles entering the road segment and therefore, 
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traffic congestion would possibly not be avoided. To extend the use of the algorithm to 

large roads we introduce rebroadcasting. Once a traffic accident is reported, vehicles 

receiving this message will prepare for rebroadcasting by scheduling an individual 

rebroadcasting time. Any vehicle holding a particular scheduled message of this kind 

would cancel it, if it detects that another vehicle rebroadcasted it first. The time to 

rebroadcast (𝑡𝑇𝑅) is a function of the edge length where the receiving vehicle is located 

(𝑒𝐿), the receiving vehicle position in that lane (𝑟𝑉𝑃) and the accident position (𝑎𝑃). 𝑒𝐿 

and 𝑟𝑉𝑃 are illustrated in Fig. 13. If the receiving vehicle is in the same road segment of 

the accident 𝑡𝑇𝑅 is calculated according to equation (16). From this equation we can see 

that:  

1) the further away from the accident the smaller 𝑡𝑇𝑅 is,  

2) if the receiving vehicle is in the same location as the accident the maximum value of 

1/𝛼 is achieved for 𝑡𝑇𝑅. We use 𝛼 = 0.10 in all our simulations. 

3) two vehicles at the same distance from the accident, but on opposite sides of it 

would have identical 𝑡𝑇𝑅. 

 𝑡𝑇𝑅 =
1

(|𝑟𝑉𝑃−𝑎𝑃|+α𝑒𝐿)/𝑒𝐿
 

Simulations results may change if parameter 𝛼 is varied. If it is too small, 𝑡𝑇𝑅 could 

become too large for all vehicles in the edge of the accident in cases when they are all are 

near the accident. Therefore, the first accident message would take long to be broadcasted, 

and some vehicles would receive it too late to avoid entering into the segment with the 

accident. 
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Fig. 13. Distance Meassurements 

On the other hand, if the receiving vehicle is on a road segment different from that of 

the accident, then 𝑡𝑇𝑅 is calculated using equation (17). This equation will favor those 

vehicles nearer the intersection, further away from the accident, to retransmit earlier. 

 𝑡𝑇𝑅 =
1

(𝑒𝐿−𝑟𝑉𝑃)/𝑒𝐿
 

In the following section we present the simulation results. We test the algorithm both 

with rebroadcasting and without rebroadcasting for two values of the aggregation period. 

The aggregation period, as defined previously, is the time window used by the vehicles to 

evaluate traffic conditions before forming a cluster and request for a report. We will show 

that this parameter is key when redistributing traffic on the roads. 

7.3 Simulation Results 

In this section we analyze the results of the algorithm with and without rebroadcasting 

for two values of the aggregation period, 10 and 2 seconds, and 20 values of the 

pheromone evaporation factor, from .05 to 1.00. 

7.3.1 Simulation Results for Aggregation Period of 10 Seconds 

In the road systems that we study, the maximum speed is set to 100 km/h or 

equivalently 27.78 m/s. When the aggregation period is 10 seconds the time it takes to 

form a cluster and report an accident may be long. For example, in our case the two 

vehicles involved in the accident are the first two to cross that segment. When one of these 
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vehicles detects the problem and requests a report, it will wait for the 10 seconds of the 

aggregation period to receive reports of upcoming vehicles. In this time vehicles at a 

distance of 278 m or less from the entrance node to this segment may enter the troubled 

road segment. The situation may be worse if we consider that the incident is not reported 

in the first aggregation period. This may happen because vehicles approaching the 

accident may still be moving freely and affect adversely the consensus that a problem 

exists and more aggregation periods may be needed to produce the accident report. As we 

will see in the following sections, this may negatively affect the effectiveness of the 

algorithm. In all cases Average Travel Time improvement is calculated with reference to 

the case of no algorithm. 

7.3.1.1 The 500 System with Aggregation Period of 10 Seconds. In Table 3 the 

results from the simulation for the 500 System are presented, for both, the rebroadcasting 

and non-rebroadcasting algorithms, with an aggregation period of 10 seconds. In Fig. 14 

these results are presented in graphical form.  

It can be seen in Fig. 14, that there is no need for rebroadcasting as the non-

rebroadcasting algorithm produces comparable results for values of the pheromone 

evaporation factor in the range of .70 to .85. The algorithms behave differently for values 

of evaporation factor near 1. This can be interpreted as follows: when rebroadcasting, in 

the presence of a long lasting accident, if the right information is propagated throughout 

the network with low or no decay, the knowledge of a long lasting accident can be used 

efficiently and far away vehicles would reroute efficiently. On the other hand, in the 

absence of rebroadcasting, as only nearby road segments are influenced by the accident or 
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other perturbations, short term perturbations could impair the algorithm if they are not 

allowed to decay. 

Table 3. 500 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 10 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 802.19 0.00 NA 802.19 0.00

0.05 752.84 6.15 0.05 715.79 10.77

0.10 750.75 6.41 0.10 709.47 11.56

0.15 750.10 6.49 0.15 745.77 7.03

0.20 749.07 6.62 0.20 751.08 6.37

0.25 751.61 6.30 0.25 736.71 8.16

0.30 751.61 6.30 0.30 732.99 8.63

0.35 751.79 6.28 0.35 735.32 8.34

0.40 751.79 6.28 0.40 732.68 8.66

0.45 742.31 7.46 0.45 733.70 8.54

0.50 757.74 5.54 0.50 723.46 9.81

0.55 733.06 8.62 0.55 722.32 9.96

0.60 730.72 8.91 0.60 724.32 9.71

0.65 726.40 9.45 0.65 716.33 10.70

0.70 720.59 10.17 0.70 745.36 7.08

0.75 701.81 12.51 0.75 738.65 7.92

0.80 694.85 13.38 0.80 735.75 8.28

0.85 687.89 14.25 0.85 732.19 8.73

0.90 708.19 11.72 0.90 714.12 10.98

0.95 689.96 13.99 0.95 683.87 14.75

1.00 745.85 7.02 1.00 682.07 14.97

500 No Rebroadcasting 500 Rebroadcasting

 

 
Fig. 14. 500 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 Seconds. 

Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 
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7.3.1.2 The 1000 System with Aggregation Period of 10 Seconds. In Table 4 

the results from the simulation for the 1,000 System are presented, for both the 

rebroadcasting and non-rebroadcasting algorithms, with an aggregation period of 10 

seconds. In Fig. 15 these results are presented in graphical form. It can be seen in Fig. 15, 

that the rebroadcasting algorithm is better than the non-rebroadcasting algorithm for most 

values of the evaporation factor. This is an expected result as the size of the road system is 

comparable to the reach of the VANET transceivers. However, there is still no need for 

rebroadcasting as the non-rebroadcasting algorithm produces comparable results for 

values of the pheromone evaporation factor in the range of .70 to .85 as in the case of the 

500 System. This is a borderline system where still bandwidth savings can be obtained by 

not using rebroadcasting and selecting the right evaporation factor value. 

Table 4. 1000 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 10 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 997.04 0.00 NA 997.04 0.00

0.05 981.42 1.57 0.05 888.33 10.90

0.10 985.33 1.17 0.10 885.13 11.22

0.15 959.41 3.77 0.15 888.10 10.93

0.20 958.84 3.83 0.20 879.74 11.76

0.25 939.66 5.75 0.25 885.67 11.17

0.30 940.03 5.72 0.30 857.07 14.04

0.35 941.63 5.56 0.35 834.17 16.34

0.40 943.58 5.36 0.40 860.00 13.74

0.45 930.83 6.64 0.45 886.31 11.11

0.50 932.89 6.43 0.50 833.31 16.42

0.55 928.85 6.84 0.55 893.40 10.39

0.60 911.18 8.61 0.60 874.71 12.27

0.65 924.91 7.23 0.65 886.31 11.11

0.70 887.31 11.01 0.70 869.25 12.82

0.75 852.13 14.53 0.75 833.31 16.42

0.80 865.51 13.19 0.80 839.14 15.84

0.85 863.53 13.39 0.85 846.70 15.08

0.90 849.50 14.80 0.90 856.80 14.07

0.95 856.73 14.07 0.95 857.19 14.03

1.00 841.38 15.61 1.00 850.18 14.73

1000 No Rebroadcasting 1000 Rebroadcasting
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Fig. 15. 1000 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 

Seconds. Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 

7.3.1.3 The 2000 System with Aggregation Period of 10 Seconds. We can see 

in Table 5 the results from the simulation for the 2,000 System for both the rebroadcasting 

and non-rebroadcasting algorithms, with an aggregation period of 10 seconds. In Fig. 16 

these results are presented in graphical form. It can be seen in Fig. 16, that the 

rebroadcasting algorithm produce results significantly better than the non-rebroadcasting 

algorithm. For the case of the non-rebroadcasting algorithm, this simulation illustrates the 

expected result that this scheme would not work for road segment with lengths exceeding 

1,000m. This is due to the limited range of the VANET transceivers. However, when 

using the rebroadcasting algorithm with the aggregation period of 10 seconds in this case, 

we observe that the efficiency of the algorithm decreases when the evaporation factor 

reaches 1 and the presence of a peak around the evaporation factor of .70. We present 

interpretation for these observations in the following section. As the 2000 System situation 
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is unique, we evaluated road segments around it at 1750, 2500, and 3000 meters. The most 

significant case was the 1750 System which we will explain in the next section. 

Table 5. 2000 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 10 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 1036.03 0.00 NA 1036.03 0.00

0.05 1039.09 -0.30 0.05 1044.73 -0.84

0.10 1040.88 -0.47 0.10 1034.42 0.16

0.15 1039.09 -0.30 0.15 1032.30 0.36

0.20 1038.77 -0.26 0.20 1039.05 -0.29

0.25 1038.59 -0.25 0.25 1039.05 -0.29

0.30 1038.67 -0.25 0.30 1037.63 -0.15

0.35 1038.67 -0.25 0.35 1037.72 -0.16

0.40 1038.82 -0.27 0.40 1041.75 -0.55

0.45 1040.88 -0.47 0.45 1037.84 -0.17

0.50 1039.65 -0.35 0.50 1039.07 -0.29

0.55 1039.65 -0.35 0.55 1042.45 -0.62

0.60 1039.65 -0.35 0.60 1037.71 -0.16

0.65 1039.65 -0.35 0.65 977.55 5.64

0.70 1039.65 -0.35 0.70 978.67 5.54

0.75 1042.61 -0.63 0.75 1039.01 -0.29

0.80 1039.73 -0.36 0.80 1014.80 2.05

0.85 1034.88 0.11 0.85 1045.20 -0.89

0.90 1031.55 0.43 0.90 1029.59 0.62

0.95 1029.54 0.63 0.95 1012.86 2.24

1.00 1030.02 0.58 1.00 1038.56 -0.24

2000 No Rebroadcasting 2000 Rebroadcasting

 

 
Fig. 16. 2000 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 

Seconds. Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 
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7.3.1.4 The 1750 System with Aggregation Period of 10 Seconds. In Table 6 we 

show the results from the simulation for the 1,750 System, for the rebroadcasting 

algorithm only, with an aggregation period of 10 seconds. In Fig. 17 these results are 

presented in graphical form. It can be seen in Fig. 17, that there is little gain on the 

average travel time for this algorithm. This situation can be explained as follows: we have 

an accident early in time when roads are still being populated. The accident has a long 

duration, and because of the lengths of the roads, a relatively large number of vehicles 

must enter the troubled road to allow for the messages about the accident to propagate 

outside the segment. Because of the size of this road, and the previously mentioned fact 

that an aggregation period of 10 seconds would not allow many vehicles to receive the 

information with enough time to react, the number of vehicles trapped in the road is close 

to the number of vehicles trapped in that road when no algorithm is used. 

When we analyzed the 2000 System we noted that the efficiency of the algorithm 

decreases when the evaporation factor reaches 1 and the presence of a peak around the 

evaporation factor of .70. In the 1750 System we also observe a diminishment in the 

efficacy of the algorithm when the evaporation factor approaches 1. We interpret these 

observations as follows: if the road segment with the accident is already full, and because 

there is no other long lasting accident, making the evaporation factor large would make 

transient traffic congestions appear to be permanent, and the route changes could result on 

making the general traffic condition worst. When the road segment is increased slightly 

this effect would be still valid. On the other hand, an evaporation factor of 0 disregards the 

historical information and also results in poor performance of the algorithm. There is no 

other option for the algorithm to improve other than as a peak as shown in Fig. 16. 
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Table 6. 1750 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 10 seconds 

System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 911.23 0.00

0.05 906.21 0.55

0.10 905.08 0.67

0.15 905.80 0.60

0.20 905.80 0.60

0.25 905.80 0.60

0.30 905.80 0.60

0.35 905.70 0.61

0.40 906.07 0.57

0.45 906.07 0.57

0.50 906.07 0.57

0.55 906.07 0.57

0.60 906.07 0.57

0.65 906.38 0.53

0.70 905.68 0.61

0.75 907.38 0.42

0.80 900.51 1.18

0.85 907.38 0.42

0.90 912.41 -0.13

0.95 912.38 -0.13

1.00 907.38 0.42

1750 Rebroadcasting

 

 
Fig. 17. 1750 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 

Seconds. Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 

7.3.1.5 The 4000 System with Aggregation Period of 10 Seconds. We can see 

in Table 7 the results from the simulation for the 4,000 System, for both the 

rebroadcasting and non-rebroadcasting algorithms, with an aggregation period of 10 

seconds. In Fig. 18 these results are presented in graphical form. It can be seen in Fig. 18, 
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that the rebroadcasting algorithm is consistently better than the non-rebroadcasting 

algorithm. For the case of the non-rebroadcasting algorithm, it is shown once more that 

this scheme does not work for road segments with lengths exceeding 1,000m. However, 

when using the rebroadcasting algorithm with the aggregation period of 10 seconds in this 

case, we observe that the efficiency of the algorithm increases when the evaporation factor 

approaches 1. This may be explained as follows: in the presence of a long lasting accident, 

if the accident information is able to propagate outside the road segment with the accident, 

making the information about the accident persistent in the vehicles' memory, is useful to 

improve traffic. This is similar to how humans react in real life. If an accident in a very 

long road segment with no u-turns is reported, it is convenient to avoid that road and take 

an alternate route, even if no updates about the accident are received. 

Table 7. 4000 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 10 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 1269.55 0.00 NA 1269.55 0.00

0.05 1268.97 0.05 0.05 1251.66 1.41

0.10 1268.97 0.05 0.10 1224.11 3.58

0.15 1268.97 0.05 0.15 1250.80 1.48

0.20 1268.97 0.05 0.20 1228.98 3.20

0.25 1265.99 0.28 0.25 1217.41 4.11

0.30 1268.97 0.05 0.30 1268.83 0.06

0.35 1268.97 0.05 0.35 1249.96 1.54

0.40 1268.97 0.05 0.40 1247.29 1.75

0.45 1268.97 0.05 0.45 1241.14 2.24

0.50 1268.97 0.05 0.50 1250.48 1.50

0.55 1268.97 0.05 0.55 1250.09 1.53

0.60 1268.97 0.05 0.60 1235.99 2.64

0.65 1265.99 0.28 0.65 1248.16 1.68

0.70 1268.97 0.05 0.70 1249.53 1.58

0.75 1268.97 0.05 0.75 1239.91 2.33

0.80 1268.97 0.05 0.80 1227.06 3.35

0.85 1268.97 0.05 0.85 1236.17 2.63

0.90 1261.08 0.67 0.90 1227.09 3.34

0.95 1253.15 1.29 0.95 1200.75 5.42

1.00 1265.93 0.28 1.00 1046.24 17.59

4000 No Rebroadcasting 4000 Rebroadcasting

 



98 

 
Fig. 18. 4000 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 

Seconds. Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 

7.3.2 Simulation Results for Aggregation Period of 2 Seconds 

We mentioned before that an aggregation period of 10 seconds with vehicles running at 

100 km/h could lead to many vehicles entering a road with an accident due to the fact that 

vehicles could travel 278 m in that period of time. Even worse, it could take several 

aggregation periods, until a consensus is reached by the vehicles about the traffic 

condition and a traffic incident report is sent. This situation is shown to be particularly 

critical for the 1750 and 2000 systems. To test this hypothesis we reduced the aggregation 

period to 2 seconds and we present the results in the following sections. Not all the 

scenarios will be considered due to the time consuming nature of these simulations, and 

the 8000 System is introduced and evaluated. 

7.3.2.1 The 500 System with Aggregation Period of 2 Seconds. In Table 8  the 

results from the simulation for the 500 System are presented, for both the rebroadcasting 

and non-rebroadcasting algorithms, with an aggregation period of 2 seconds. In Fig. 19 

these results are presented in graphical form.  
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Table 8. 500 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 2 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 802.19 0.00 NA 802.19 0.00

0.05 686.13 14.47 0.05 551.68 31.23

0.10 696.02 13.23 0.10 569.55 29.00

0.15 721.53 10.05 0.15 579.77 27.73

0.20 685.71 14.52 0.20 648.18 19.20

0.25 676.92 15.62 0.25 571.18 28.80

0.30 660.92 17.61 0.30 592.73 26.11

0.35 657.50 18.04 0.35 557.48 30.50

0.40 713.17 11.10 0.40 552.99 31.06

0.45 666.47 16.92 0.45 561.06 30.06

0.50 671.99 16.23 0.50 579.46 27.76

0.55 674.68 15.90 0.55 586.88 26.84

0.60 666.55 16.91 0.60 569.96 28.95

0.65 654.89 18.36 0.65 540.50 32.62

0.70 678.70 15.39 0.70 528.67 34.10

0.75 695.77 13.27 0.75 541.68 32.47

0.80 666.86 16.87 0.80 539.99 32.68

0.85 636.96 20.60 0.85 540.23 32.66

0.90 737.84 8.02 0.90 494.24 38.39

0.95 700.52 12.67 0.95 461.90 42.42

1.00 606.61 24.38 1.00 524.57 34.61

500 No Rebroadcasting 500 Rebroadcasting

 

It can be seen in Fig. 19, that there is a clear improvement in traffic when rebroadcasting 

is used with a peak improvement of 40% for an evaporation factor of 90%. The non-

rebroadcasting case becomes less sensitive to evaporation, but does not show a significant 

improvement with respect to the case with aggregation period of 10 seconds. 

 
Fig. 19. 500 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 10 Seconds. 

Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 
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7.3.2.2 The 1750 System with Aggregation Period of 2 Seconds. In Table 9 we 

show the results from the simulation for the 1,750 System, for both the rebroadcasting and 

non-rebroadcasting algorithms, with an aggregation period of 2 seconds. In Fig. 20 these 

results are presented in graphical form.  

Table 9. 1750 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 2 seconds 

System System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %
Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 911.23 0.00 NA 911.23 0.00

0.05 905.00 0.68 0.05 732.35 19.63

0.10 905.00 0.68 0.10 725.86 20.34

0.15 906.41 0.53 0.15 743.46 18.41

0.20 907.22 0.44 0.20 752.95 17.37

0.25 906.94 0.47 0.25 702.00 22.96

0.30 909.84 0.15 0.30 722.44 20.72

0.35 908.11 0.34 0.35 769.88 15.51

0.40 907.19 0.44 0.40 716.95 21.32

0.45 906.40 0.53 0.45 709.72 22.11

0.50 907.30 0.43 0.50 690.25 24.25

0.55 908.03 0.35 0.55 748.42 17.87

0.60 909.76 0.16 0.60 687.00 24.61

0.65 906.70 0.50 0.65 659.50 27.62

0.70 910.36 0.10 0.70 665.13 27.01

0.75 907.19 0.44 0.75 645.30 29.18

0.80 910.35 0.10 0.80 616.07 32.39

0.85 904.86 0.70 0.85 661.35 27.42

0.90 910.46 0.08 0.90 588.02 35.47

0.95 915.17 -0.43 0.95 544.26 40.27

1.00 954.21 -4.72 1.00 534.87 41.30

1750 No Rebroadcasting 1750 Rebroadcasting

 

It can be seen in Fig. 20, that the non-rebroadcasting algorithm is completely useless to 

improve traffic in this system, an anticipated result derived from the limited range of the 

VANET transceivers. We would like to highlight here, the fact that, for the first time, an 

evaporation factor with value of 1 would increase the average travel time. This 

observation can be explained as follows: an evaporation factor of 1 indicates that the 

traffic conditions stored in the memory of the vehicles become static, or in other words, 

persistent. As the accident information is not being able to efficiently leave the accident 

edge, it cannot be used by upcoming vehicles. However, some transient events would be 

permanently stored in memory, as if they were a long lasting accident, and lead to wrong 

route selections. On the other hand, there is a huge improvement on the rebroadcasting 
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algorithm, which is useless under the 10 second aggregation period and now presents 

improvements of up to 40%. In the following sections we will analyze the 4000 System 

and the 8000 System under rebroadcasting algorithm only, as it is shown here that the 

non-rebroadcasting algorithm does not work in large systems. 

 
Fig. 20. 1750 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 2 Seconds. 

Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 

7.3.2.3 The 4000 System with Aggregation Period of 2 Seconds. In Table 10. 

we show the results from the simulation for the 4000 System, for the rebroadcasting 

algorithm only, with an aggregation period of 2 seconds. In Fig. 21 these results are 

presented in graphical form. It can be seen in Fig. 21, that this aggregation period provides 

a consistent improvement of the average travel time for all the evaporation factors values. 

The peak gain also improved from around 17 to 22. However, we start to see that the gains 

are not as profound as those of the smaller systems. In the next section we show that for 

the 8000 System there is virtually no gain. Similar to the 1750 System, we can explain this 

new limit by the fact that as the length of the road increases, the number of vehicles 
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needed to propagate the message out of the road segment is close to the number of 

vehicles trapped in that segment when to algorithm is used. 

Table 10. 4000 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 2 seconds 

System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 1269.55 0.00

0.05 1133.94 10.68

0.10 1175.27 7.43

0.15 1183.82 6.75

0.20 1176.18 7.35

0.25 1139.90 10.21

0.30 1171.99 7.68

0.35 1221.68 3.77

0.40 1109.73 12.59

0.45 1188.83 6.36

0.50 1134.40 10.65

0.55 1149.30 9.47

0.60 1159.31 8.68

0.65 1168.23 7.98

0.70 1131.81 10.85

0.75 1134.10 10.67

0.80 1131.26 10.89

0.85 1058.01 16.66

0.90 1059.46 16.55

0.95 993.35 21.76

1.00 1004.03 20.91

4000 Rebroadcasting

 

 
Fig. 21. 4000 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 2 Seconds. 

Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 

7.3.2.4 The 8000 System with Aggregation Period of 2 Seconds. In Table 11 we 

show the results from the simulation for the 8000 System, for the rebroadcasting algorithm 
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only, with an aggregation period of 2 seconds. In Fig. 22 these results are presented in 

graphical form. It can be seen in Fig. 22, that there is no gain on the average travel time in 

this system.  

Table 11. 8000 System, rebroadcasting and non-rebroadcasting algorithm data for ap = 2 seconds 

System

Evaporation 

Factor

Average 

Travel 

Time (s)

Improvement %

NA 1766.29 0.00

0.05 1769.45 -0.18

0.10 1742.98 1.32

0.15 1769.77 -0.20

0.20 1733.31 1.87

0.25 1773.14 -0.39

0.30 1763.69 0.15

0.35 1779.92 -0.77

0.40 1767.56 -0.07

0.45 1751.37 0.84

0.50 1742.59 1.34

0.55 1771.46 -0.29

0.60 1772.17 -0.33

0.65 1765.53 0.04

0.70 1770.36 -0.23

0.75 1770.52 -0.24

0.80 1756.06 0.58

0.85 1759.95 0.36

0.90 1769.30 -0.17

0.95 1740.02 1.49

1.00 1746.43 1.12

8000 Rebroadcasting

 
 

 
Fig. 22. 8000 System, comparisson of rebroadcasting and non-rebroadcasting algorithm for AP = 2 Seconds. 

Horizontal Axis: Evaporation Factor. Vertical Axis: Average Travel Time Improvement %. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Simulation of Vehicular ad hoc networks is a complex process necessary for testing 

algorithms in this environment. We introduce and evaluate Road-ACO, a novel 

decentralized algorithm to alleviate traffic congestion on road networks and to fill the void 

left by current algorithms which are either static, centralized, or require infrastructure. 

Road-ACO is an algorithm inspired by Ant Colony Optimization for the Dynamic Traffic 

Assignment in VANETS. Initial results indicate a promising future for approaches based 

on this algorithm. Simulation results for the algorithm show an improvement on the 

average travel time of 29.17%, over the SR case when one of the two segments leading to 

the destination has heavier traffic demand and less favorable lane connections. It is 

important to indicate that Road-ACO is a realistic approach as it improves traffic as it 

evolves, in real time, without prior knowledge of the traffic demand or the schedule of the 

cars that will enter the road network in the future. Also Road-ACO enjoys the benefits of 

being decentralized and infrastructure-less. We evaluate the algorithm in road networks 

with segments exceeding 1,000 m to test the algorithm in systems where rebroadcasting is 

needed. We observe that the rebroadcasting version of the algorithm performs better when 

we use short aggregation periods. We determine that the aggregation period is an 

important factor: if it is too long, vehicles are not informed in a timely manner and the 

algorithm does not perform well. For an aggregation period of 2 seconds we observe 

significant improvement of 20% for road segments of 4,000 m, while for the case of 1,750 
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m we observe 40%. Our investigation considers vehicles travelling in one direction of the 

road system and we anticipate further improvements, both in efficiency and road 

segments' lengths when traffic is introduced in the other direction and vehicles travelling 

this direction are allowed to use a store-carry-and-forward mechanism. 

8.2 Future Work 

8.2.1 Joint Optimization of Traffic Assignment and Traffic Lights 

Traffic light cycles have an important impact on traffic. By extending the algorithm to 

control the traffic lights we expect it to achieve further improvement on the average travel 

time.  

8.2.2 Evaporation as a Function of Traffic Light Cycle, Edge Length, and accident 

severity 

Traditional ACO algorithms use evaporation to handle good paths that decay over time. 

Our algorithm uses evaporation to handle bad paths that improve over time. We believe 

that the evaporation factor is dependent on the particular road characteristics. We propose 

to evaluate the influence of the road segment length and the traffic light cycle on this 

parameter. We consider that it may be interesting to evaluate the use of several types or 

colors of pheromones concurrently, one type could be used to optimize no accident 

conditions, another color could be used for mild accidents, and a third color for serious 

accidents. We expect a different evaporation factor in each case will be required. 
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